首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Tranilast (N-[3′,4′-dimethoxycinnamonyl] anthranilic acid), an orally active anti-allergic drug, is reported to exert the anti-inflammatory effects, but the underlying mechanisms that could explain the anti-inflammatory actions of tranilast remain largely unknown. Here, we found that tranilast induces heme oxygenase-1 (HO-1) expression through the extracellular signal-regulated kinase-1/2 (ERK1/2) pathway in RAW264.7 macrophages. Tranilast suppressed cyclooxygenase-2 (COX-2) and inducible nitric oxide (NO) synthase (iNOS) expression, and thereby reduced COX-2-derived prostaglandin E2 (PGE2) and iNOS-derived NO production in lipopolysaccharide (LPS)-stimulated macrophages. Similarly, tranilast diminished tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) production. Interestingly, the effects of tranilast on LPS-induced PGE2, NO, TNF-α, and IL-1β production were partially reversed by the HO-1 inhibitor tin protoporphyrin, suggesting that tranilast-induced HO-1 expression is at least partly responsible for the resulting anti-inflammatory effects of the drug. Thus, HO-1 expression via ERK1/2 activation may be at least one of the possible mechanisms explaining the anti-inflammatory actions of tranilast.  相似文献   

2.
Macrophages develop into specialized cell types with special functional properties, depending on locally produced stimuli. Adipose tissue macrophages present particular characteristics, such as the M2 cell phenotype, and produce cytokines and chemokines usually produced by M1 cells. Our aim was to study the role of leptin, which is an adipokine produced and released by adipocytes, in the induction of these characteristics in macrophages found in the adipose tissue. Human CD14+ cells were obtained and maintained in culture with IFN-γ (classical M1 phenotype), IL-4 (alternative M2 phenotype) or leptin for 5 d. Surface marker expression was then analyzed by cytometry. In addition, the release of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1β, IL-10, IL-1ra, MCP-1, MIP-1α, and RANTES was quantified by ELISA after an LPS stimulus, in the culture supernatant. Macrophages exposed to leptin in culture expressed surface markers that were more similar to the M2 phenotype, but they were able to produce TNF-α, IL-6, IL-1β, IL-1ra, IL-10, MCP-1, and MIP-1α, as observed for M1 cells. Results suggest that leptin strongly contributes to the phenotype observed in macrophages found in adipose tissue.  相似文献   

3.
To design and discover a new compound can used as a COX with TNF-α and IL-6 inhibitors is highly challenge. A series of spiroindolone-bearing benzofuran moieties were resynthesized from the chalcone-based benzo[b]furan with substituted isatin, and amino acids. The requisite spiroindolone analogues were tested for their potential inhibitory activities against lipid metabolizing enzymes such as cyclooxygenase COX-1, COX-2, and the release of pro-inflammatory cytokines interleukin IL-6, and tumor necrosis factor TNF-α. Among the tested compounds, 5a, 5c, 5h, 5i, 5l, and 5p exhibited COX-1 inhibitor selectively with percent of inhibition 40.81–83.4% and IC50 values ranging from 20.42 µM to 38.24 µM. In addition, all the synthesized target compounds possessed lipopolysaccharide-induced TNF-α, and IL-6 expression with a varying degree of COX-1 inhibition. Compounds 5d, 5e, 5f, 5g, and 5k markedly inhibited TNF-α, and IL-6 release in WI-38 fibroblast cells. Molecular docking of the most effective and highly selective compounds were investigated and shown important binding mechanisms which could affect pro-inflammatory enzymes and cytokines via the inhibition of COX-1, COX-2, IL-6, and TNF-α.  相似文献   

4.
目的研究草木犀石油醚提取物在体外的抗炎作用。方法采用小鼠巨噬细胞系RAW264.7建立炎症细胞模型,加入10μg/L的LPS培养液和不同浓度的草木犀石油醚提取物进行干预。ELISA法检测上清液中TNF-α,IL-1β,IL-6和NO的分泌量;实时荧光定量RT-PCR检测TNF-α,iNOS和COX-2的mRNA表达;Western印迹法检测COX-2蛋白的表达。结果草木犀提取物干预后细胞所分泌的炎性介质(TNF—α,IL-1β,IL-6和NO)与模型组相比均显著降低(P〈0.01),并存在剂量依赖关系;RT-PCR结果显示干预后细胞TNF-α,iNOS和COX-2的mRNA表达水平显著降低(P〈0.01),也存在剂量依赖关系;Western印迹结果显示草木犀石油醚提取物及地塞米松干预后COX-2蛋白水平明显降低(P〈0.01)。结论草木犀的石油醚提取物通过下调LPS诱导的巨噬细胞表达炎性介质而发挥其体外抗炎作用,且其下调作用呈剂量依赖性。  相似文献   

5.
Crohn's disease (CD) is associated with gut barrier dysfunction. Besides the baseline barrier defect, a subgroup of patients also expresses an intestinal barrier hyperresponsiveness to nonsteroidal anti-inflammatory drugs. On the other hand, the anti-tumour necrosis factor alpha (TNF-α) treatment has brought benefits to these patients. Thus, this study aimed to evaluate the effect of lumiracoxib, a selective-cyclooxygenase-2 (COX-2) inhibitor, and Etanercept (ETC), a TNF-α antagonist on the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis. A total of 47 Wistar rats were randomized into seven groups, as follows: (1) Sham: sham induced-colitis; (2) TNBS: nontreated induced-colitis; (3) Lumiracoxib control; (4) Lumiracoxib-treated induced-colitis; (5) ETC control; (6) ETC-treated induced-colitis; (7) Lumiracoxib-ETC-treated induced-colitis. Rats from groups 6 and 7 presented significant improvement of macroscopic and histopathological damages in the distal colon. The gene expression of COX-2 mRNA, as well of TNF-α mRNA, decreased significantly in groups 6 and 7 compared to the TNBS nontreated and lumiracoxib-treated groups. The treatment only with lumiracoxib did not reduce the inflammation on TNBS-induced experimental colitis. ETC attenuated the damage seen in the colon and reduced the inflammation caused by TNBS. Our results suggest that down-regulation of TNF-α and COX-2 resulted in a decrease in inflammation caused by TNBS and thus provided some protection from the colonic damage caused by TNBS.  相似文献   

6.
Oxidative stress and low grade chronic inflammation are increased in accumulating fat. Our objective was to test whether 4-hydroxynonenal (4-HNE), an end-product of lipid peroxidation, affects cyclooxygenases in 3T3-L1 adipose cells. 4-HNE increased COX-2 mRNA and protein expression and p38MAP-kinase phosphorylation in a dose-dependent manner. Pretreatment of 3T3-L1 cells by a selective inhibitor of p38MAPK (PD 169316) abolished 4-HNE and glucose oxidase induced COX-2 expression. Our results show that oxidative stress induces COX-2 expression through the production of 4-HNE which activates p38MAPKinase, suggesting that 4-HNE links oxidative stress and chronic inflammation through the activation of cyclooxygenase.  相似文献   

7.
Rosacea is a chronic inflammatory cutaneous disease which mainly affects central face, leading to cosmetic disfigurement and compromised social psychology in billions of rosacea patients. Though the exact etiology of rosacea remains elusive, accumulating evidence has highlighted the dysfunction of innate immunity and inflammation in rosacea pathogenesis. Disintegrin Metalloprotease ADAM-like Decysin-1 (ADAMDEC1) is an orphan ADAM-like metalloprotease which is believed to be closely related to inflammation. Here for the first time, we reported that Adamdec1 expression was significantly increased in the skin lesions of rosacea patients and LL37–induced rosacea-like mouse models. Immunofluorescence analysis revealed co-localization of ADAMDEC1 and macrophages in patient and mouse biopsies. In cellular experiment, the expression of ADAMDEC1 was prominently elevated in M1 but not M2 macrophages. Knocking down of ADAMDEC1 significantly blunted M1 polarization in macrophages induced from human monocytes and THP-1 cell lines. Furthermore, silencing of Adamdec1 in LL-37-induced mouse model also suppressed the expression of M1 signature genes such as IL-6, iNOS and TNF-α, resulting in attenuated rosacea-like phenotype and inflammation. Taken together, our results demonstrate that ADAMDEC1 plays a pro-inflammatory role in rosacea via modulating the M1 polarization of macrophages.  相似文献   

8.
Endodontic treatment is mainly based on root canal disinfection and its failure may be motivated by microbial resistance. Endodontic therapy can be benefitted by host defense peptides (HDPs), which are multifunctional molecules that act against persistent infection and inflammation. This study aimed to evaluate the antimicrobial, cytotoxic and immunomodulatory activity of several HDPs, namely clavanin A, clavanin A modified (MO) and LL-37, compared to intracanal medication Ca(OH)2. HDPs and Ca(OH)2 were evaluated by: (1) antimicrobial assays against Candida albicans and Enterococcus faecalis, (2) cytotoxicity assays and (3) cytokine tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, interleukin (IL)-1α, IL-6, IL-10 and IL-12 and nitric oxide (NO) production by RAW 264.7 cells incubated with or without heat-killed (HK) C. albicans or E. faecalis combined or not with interferon-γ. The minimum inhibitory concentration (MIC) was established only for E. faecalis (LL-37, 57 μM). Considering cytotoxicity, clavanin MO was able to reduce cell viability in many groups and demonstrated lowest LC50. The Ca(OH)2 up-regulated the production of MCP-1, TNF-α, IL-12 and IL-6 and down-regulated IL-1α, IL-10 and NO. Clavanins up-regulated the TNF-α and NO and down-regulated IL-10 production. LL-37 demonstrated up-regulation of IL-6 and TNF-α production and down-regulation in IL-10 and NO production. In conclusion, LL-37 demonstrated better antibacterial potential. In addition, Ca(OH)2 demonstrated a proinflammatory response, while the HDPs modulated the inflammatory response from non-interference with the active cytokines in the osteoclastogenesis process, probably promoting the health of periradicular tissues.  相似文献   

9.
Accumulating evidence suggests that obesity and enhanced inflammatory reactions are predisposing conditions for developing colon cancer. Obesity is associated with high levels of circulating leptin. Leptin is an adipocytokine that is secreted by adipose tissue and modulates immune response and inflammation. Lipid droplets (LD) are organelles involved in lipid metabolism and production of inflammatory mediators, and increased numbers of LD were observed in human colon cancer. Leptin induces the formation of LD in macrophages in a PI3K/mTOR pathway-dependent manner. Moreover, the mTOR is a serine/threonine kinase that plays a key role in cellular growth and is frequently altered in tumors. We therefore investigated the role of leptin in the modulation of mTOR pathway and regulation of lipid metabolism and inflammatory phenotype in intestinal epithelial cells (IEC-6 cells). We show that leptin promotes a dose- and time-dependent enhancement of LD formation. The biogenesis of LD was accompanied by enhanced CXCL1/CINC-1, CCL2/MCP-1 and TGF-β production and increased COX-2 expression in these cells. We demonstrated that leptin-induced increased phosphorylation of STAT3 and AKT and a dose and time-dependent mTORC activation with enhanced phosphorilation of the downstream protein P70S6K protein. Pre-treatment with rapamycin significantly inhibited leptin effects in LD formation, COX-2 and TGF-β production in IEC-6 cells. Moreover, leptin was able to stimulate the proliferation of epithelial cells on a mTOR-dependent manner. We conclude that leptin regulates lipid metabolism, cytokine production and proliferation of intestinal cells through a mechanism largely dependent on activation of the mTOR pathway, thus suggesting that leptin-induced mTOR activation may contribute to the obesity-related enhanced susceptibility to colon carcinoma.  相似文献   

10.
Enterococcus faecalis is a commensal bacterium residing in the gastrointestinal tract of mammals, but in certain situations it is also an opportunistic pathogen which can cause serious disease. Macrophages have been shown to play a critical role in controlling infections by commensal enterococci and also have an important role in mediating chromosomal instability and promoting colon cancer during high-level enterococcal colonization in genetically susceptible mice. However, the molecular mechanisms involved in the interaction of macrophages with enterococci during infection are not fully understood. In this study, using BMDM and RAW264.7 macrophages we show that enterococcal infection activates ERK, JNK and p38 MAPK as well as NF-κB, and drives polarization of macrophages towards the M1 phenotype. Inhibition of NF-κB activation significantly reduced the expression of TNF-α and IL-1β, as did the inhibition of ERK, JNK and p38 MAPK, although to differing extent. Enterococci-induced activation of these pathways and subsequent cytokine expression was contact dependent, modest compared to activation by E. coli and, required the adaptor protein MyD88. Phagocytosis of enterococci by macrophages was enhanced by preopsonization with E. faecalis antiserum and involved the ERK and JNK signaling pathways, with the adaptor protein MyD88 as an important mediator. This study of the interaction of macrophages with enterococci could provide a foundation for studying the pathogenesis of infection by this opportunistic pathogen and to developing new therapeutic approaches to combat enterococcal infection.  相似文献   

11.
12.
Macrophages are important with respect to both innate and adaptive immune responses and are known to differentiate into pro-inflammatory M1- or anti-inflammatory M2-phenotypes following activation. In order to study how different bacteria affect macrophage polarization, we exposed murine RAW 264.7 macrophages to sixteen different strains representing probiotic strains, pathogens, commensals and strains of food origin. Increased inducible nitric oxide synthase (iNOS) or arginase-1 gene expression indicates M1 or M2 polarization, respectively, and was quantified by qRT-PCR. Strains of Escherichia and Salmonella elevated iNOS expression more so than strains of Enterococcus, Lactobacillus and Lactococcus, indicating that Gram-negative strains are more potent M1 inducers. However, strain-specific responses were observed. For instance, Escherichia coli Nissle 1917 was a poor inducer of iNOS gene expression compared to the other E. coli strains, while Enterococcus faecalis Symbioflor-1 was more potent in this respect compared to all the eleven Gram-positive strains tested. Macrophage polarization was further characterized by quantifying secreted pro- and anti-inflammatory cytokines. Exposure to the pathogen E. coli 042 produced a cytokine profile indicating M1 differentiation, which is in accordance with the PCR data. However, exposure to most strains resulted in either high or low secretion levels of all cytokines tested, rather than a clear M1 or M2 profile. In general, the Gram-negative strains induced high levels of cytokine secretion compared to the Gram-positive strains. Interestingly, strains of human origin had a higher impact on macrophages compared to strains of food origin.  相似文献   

13.
Dysregulation of immune responses to environmental antigens by the intestine leads to the chronic inflammatory disease, inflammatory bowel disease (IBD). Recent studies have thus sought to identify a dietary component that can inhibit lipopolysaccharide (LPS)-induced nuclear factor-kappa beta (NF-κB) signaling to ameliorate IBD. This study assessed if the lactic acid bacteria (LAB) from kimchi, suppresses the expression of tumor necrosis factor-alpha (TNF-α) in peritoneal macrophages induced by LPS. Leuconostoc lactis EJ-1, an isolate from LAB, reduced the expression of interleukin-6 (IL-6) and IL-1β in peritoneal macrophages induced by LPS. The study further tested whether EJ-1 alleviates colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice. TNBS significantly increased myeloperoxidase (MPO) expression, macroscopic colitis scores, and colon shortening. Oral administration of L. lactis EJ-1 resulted in an inhibited in TNBS-induced loss in body weight, colon shortening, MPO activity, and NF-κB and inducible nitric oxide synthase expression; it also led to a marked reduction in cyclooxygenase-2 expression. L. lactis EJ-1 also inhibited the TNBS-induced expression of TNF-α, IL-1β, and IL-6; however, it induced the expression of IL-10. The M2 macrophage markers arginase I, IL-10, and CD206 were elevated by EJ-1. Collectively, these results suggest that EJ-1 inhibits the NF-κB signaling and polarizes M1- to M2-macrophage transition, which help in ameliorating colitis.  相似文献   

14.
Gingipains secreted by Porphyromonas gingivalis (P. gingivalis, Pg) play an important role in maintaining macrophage infiltrating. And, this study is to evaluate effects of gingipain on M1 macrophage polarization after exposure to Porphyromonas gingivalis (P. gingivalis, Pg) and if these effects are through complement component 5a (C5a) pathway. Mouse RAW264.7 macrophages were exposed to gingipain extracts, Escherichia coli lipopolysaccharides (Ec-LPS), Pg-LPS with or without the C5aR antagonist: PMX-53 for 24 h. Then, gene expressions and protein of IL-12, IL-23, iNOS, IL-10, TNF-α, IL-1β, and IL-6 were determined by qRT-PCR and ELISA assays. Surface markers CD86 for M1 and CD206 for M2 were also evaluated by flow cytometry. The results show that gingipain extracts alone increased expressions of IL-12, IL-23, iNOS, TNF-α, IL-1β, and IL-6, but not IL-10. Gingipain extracts plus Ec-LPS decreased expressions of IL-12, IL-23, iNOS, TNF-α, IL-1β, and IL-6 in which Ec-LPS induced increase. For gingipain extracts plus Pg-LPS-treated RAW264.7, macrophages, gingipain extracts enhanced expressions of IL-12 and IL-23 in which Pg-LPS induced increase, but not iNOS and IL-10 while gingipain extracts decreased expressions of TNF-α, IL-1β, and IL-6 in which Pg-LPS induced increase. Interestingly, PMX-53 increased expressions of IL-12, IL-23, and iNOS when RAW264.7 macrophages were treated with gingipain extracts plus Ec-LPS or Pg-LPS and PMX-53, while PMX-53 decreased expressions of TNF-α, IL-1β, and IL-6. Changes of CD86-positive macrophages were consistent with cytokine changes. Our data indicate that gingipain is a critical regulator, more like a promoter to manipulate M1 macrophage polarization in order to benefit P. gingivalis infection through the C5a pathway.  相似文献   

15.
Monocytes and macrophages play a major role in atherosclerosis development. Previously, we found that triglyceride (TG) promoted cell death of PMA-differentiated THP-1 macrophages. In this study, we compared the responsiveness of THP-1 monocytes and PMA-differentiated THP-1 macrophages to TNF-α-induced cell death. We found that, whereas THP-1 monocytes were TNF-α-resistant, THP-1 macrophages were sensitive to TNF-α-induced cell death. THP-1 monocytes treated with TG underwent cell death beginning at 24 h and addition of TNF-α further increased cell death. Based on these observations, we hypothesized that TG-induced differentiation of THP-1 monocytes into THP-1 macrophages, subsequently allowing sensitivity to TNF-α. To determine if TG could induce differentiation of THP-1 monocytes into THP-1 macrophages, we examined the mRNA expression levels of the macrophage-specific markers, CD11b, CD18, CD36 and CD68, by RT-PCR analysis. Our results show that expression of CD11b, CD36 and CD68 increased in TG-treated THP-1 monocytes in a dose- and time-dependent manner; furthermore, TNF-α expression was upregulated in TG-treated THP-1 monocytes. We have concluded that TG induces differentiation of THP-1 monocytes into macrophages concomitant with the production of TNF-α and increased sensitivity to TNF-α-dependent cell death.  相似文献   

16.
Fisetin, a dietary flavonoid, is commonly found in many fruits and vegetables. Although studies indicate that fisetin has an anti-inflammatory property, little is known about its effects on intestinal inflammation. The present study investigated the effects of the fisetin on dextran sulphate sodium (DSS)-induced murine colitis, an animal model that resembles human inflammatory bowel disease. Fisetin treatment to DSS-exposed mice significantly reduced the severity of colitis and alleviated the macroscopic and microscopic signs of the disease. Moreover, fisetin reduced the levels of myeloperoxidase activity, the production of proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) and the expressions of COX-2 and iNOS in the colon tissues. Further studies revealed that fisetin suppressed the activation of NF-κB (p65) by inhibiting IκBα phosphorylation and NF-κB (p65)–DNA binding activity and attenuated the phosphorylation of Akt and the p38, but not ERK and JNK MAPKs in the colon tissues of DSS-exposed mice. In addition, DSS-induced decline in reduced glutathione (GSH) and the increase in malondialdehyde (MDA) levels were significantly restored by oral fisetin. Furthermore, the results from in vitro studies showed that fisetin significantly reduced the pro-inflammatory cytokine and mediator release and suppressed the degradation and phosphorylation of IκBα with subsequent nuclear translocation of NF-κB (p65) in lipopolysaccharide (LPS)-stimulated mouse primary peritoneal macrophages. These results suggest that fisetin exerts anti-inflammatory activity via inhibition of Akt, p38 MAPK and NF-κB signaling in the colon tissues of DSS-exposed mice. Thus, fisetin may be a promising candidate as pharmaceuticals or nutraceuticals in the treatment of inflammatory bowel disease.  相似文献   

17.
Chronic colitis is associated with decreased colonic muscle contraction and loss of mucosal barrier function. Pro-inflammatory cytokines and bacterial lipopolysaccharide (LPS) are important in the generation and maintenance of inflammation. While colitis is associated with upregulated COX-2 -derived prostanoids and nitric oxide (NO), the direct activity of pro-inflammatory cytokines on human colonic neuromuscular function is less clear. This study investigated the effects of IBD-associated pro-inflammatory cytokines IL-17, TNF-α, IL-1β and LPS on human colonic muscle strip contractility, alone and following inhibition of COX-2 or nitric oxide production. In addition, human colonic epithelial Caco-2 cell monolayers were treated with LPS or COX-2 mediators including prostaglandins (PGE2, PGF) or their corresponding ethanolamides (PGE2-EA or PGF-EA) over 48 h and trans-epithelial electrical resistance used to record permeability changes. Longitudinal muscle strips were obtained from healthy colonic resection margins and mounted in organ baths following IL-17, TNF-α, IL-1β and bacterial LPS incubations in an explant setting over 20 h. Contraction in response to acetylcholine (ACh) was then measured, before and after either COX-2 inhibition (nimesulide; 10−5 M) or nitric oxide synthase (NOS) inhibition (l-NNA; 10−4 M). None of the cytokine or LPS explant incubations affected the potency or maximum cholinergic contraction in vitro, and subsequent COX-2 blockade with nimesulide revealed a significant but similar decrease in potency of ACh-evoked contraction in control, LPS and cytokine-incubated muscle strips. Pre-treatment with l-NNA provided no functional differences in the potency or maximum contractile responses to ACh in cytokine or LPS-incubated colonic longitudinal smooth muscle. Only PGE2 transiently increased Caco-2 monolayer permeability at 24 h, while LPS (10 μg/ml) increased permeability over 24–48 h.These findings indicate that cholinergic contractility in the human colon can be decreased by the blockade of COX-2 generated excitatory prostanoids, but major pro-inflammatory cytokines or LPS do not alter the sensitivity or amplitude of this contraction ex vivo. While PGE2 transiently increase epithelial permeability, LPS generates a significant and sustained increase in permeability indicative of an important role on barrier function at the mucosal interface.  相似文献   

18.
Macrophage polarization switches during the course of inflammation along with the lipid mediators released. We investigated the lipid mediator formation in human monocyte-derived macrophages during in vitro differentiation and pathogen stimulation. For this, peripheral blood monocytes were differentiated into M1 (CSF-2/IFNγ) or M2 (CSF-1/IL-4) macrophages followed by stimulation with the toll-like receptor (TLR) ligands zymosan (TLR-2), Poly(I:C) (TLR-3) or bacterial lipopolysaccharides (TLR-4) mimicking fungal, viral and bacterial infection, respectively. Expression of enzymes involved in lipid mediator formation such as 5- and 15-lipoxygenases (LO), the 5-LO activating protein and cyclooxygenase-2 (COX-2) was monitored on mRNA and protein level and lipid mediator formation was assessed. In addition, cytokine release was measured. In vitro differentiation of human peripheral blood monocytes to M1 and M2 macrophages considerably attenuated 5-LO activity. Furthermore, while TLR-2 and -4 stimulation of M1 macrophages primarily triggered pro-inflammatory cytokines and lipid mediators, persistent stimulation (16 h) of human M2 macrophages induced a coordinated upregulation of 5- and 15-LO-2 expression. This was accompanied by a marked increase in IL-10 and monohydroxylated 15-LO products in the conditioned media of the cells. After additional stimulation with Ca2+ ionophore combined with supplementation of arachidonic, eicosapentaenoic and docosahexaenoic acid these cells also released small amounts of SPM such as lipoxins and resolvins. From this we conclude that activation of TLR-2 or -4 triggers the biosynthesis of pro-inflammatory 5-LO and COX-2 derived lipid mediators in human monocyte-derived M1 macrophages while persistent stimulation of M2 macrophages induces a shift towards pro-resolving 15-LO derived oxylipins.  相似文献   

19.
Our previous studies found that 4 compounds, namely pseudohypericin, amentoflavone, quercetin, and chlorogenic acid, in Hypericum perforatum ethanol extract synergistically inhibited lipopolysaccharide (LPS)-induced macrophage production of prostaglandin E2 (PGE2). Microarray studies led us to hypothesize that these compounds inhibited PGE2 production by activating suppressor of cytokine signaling 3 (SOCS3). In the current study, siRNA was used to knockdown expression of SOCS3 in RAW 264.7 macrophages and investigated the impact of H. perforatum extract and the 4 compounds on inflammatory mediators and cytokines. It was found that the SOCS3 knockdown significantly compromised the inhibition of PGE2 and nitric oxide (NO) by the 4 compounds, but not by the extract. The 4 compounds, but not the extract, decreased interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), while both lowered interleukine-1β. SOCS3 knockdown further decreased IL-6 and TNF-α. Pseudohypericin was the major contributor to the PGE2 and NO inhibition in cells treated with the 4 compounds, and its activity was lost with the SOCS3 knockdown. Cyclooxygenase-2 (COX-2) and inducible NO synthase protein expression were not altered by the treatments, while COX-2 activity was decreased by the extract and the 4 compounds and increased by SOCS3 knockdown. In summary, it was demonstrated that the 4 compounds inhibited LPS-induced PGE2 and NO through SOCS3 activation. The reduction of PGE2 can be partially attributed to COX-2 enzyme activity, which was significantly elevated with SOCS3 knockdown. At the same time, these results also suggest that constituents in H. perforatum extract were alleviating LPS-induced macrophage response through SOCS3 independent mechanisms.  相似文献   

20.
In the present study we have discovered compound 1, a benzo[1.3.2]dithiazolium ylide-based compound, as a new prototype dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (5-LOX). Compound 1 was initially discovered as a COX-2 inhibitor, resulting indirectly from the COX-2 structure-based virtual screening that identified compound 2 as a virtual hit. Compounds 1 and 2 inhibited COX-1 and COX-2 in mouse macrophages with IC50 in the range of 1.5–18.1 μM. Both compounds 1 and 2 were also found to be potent inhibitors of human 5-LOX (IC50 = 1.22 and 0.47 μM, respectively). Interestingly, compound 1 also had an inhibitory effect on tumor necrosis factor-α (TNF-α) production (IC50 = 0.44 μM), which was not observed with compound 2. Docking studies suggested the (S)-enantiomer of 1 as the biologically active isomer that binds to COX-2. Being a cytokine-suppressive dual COX/5-LOX inhibitor, compound 1 may represent a useful lead structure for the development of advantageous new anti-inflammatory agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号