首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Following entry of the HIV-1 core into target cells, productive infection depends on the proper disassembly of the viral capsid (uncoating). Although much is known regarding HIV-1 entry, the actions of host cell proteins that HIV-1 utilizes during early postentry steps are poorly understood. One such factor, transportin SR2 (TRN-SR2)/transportin 3 (TNPO3), promotes infection by HIV-1 and some other lentiviruses, and recent studies have genetically linked TNPO3 dependence of infection to the viral capsid protein (CA). Here we report that purified recombinant TNPO3 stimulates the uncoating of HIV-1 cores in vitro. The stimulatory effect was reduced by RanGTP, a known ligand for transportin family members. Depletion of TNPO3 in target cells rendered HIV-1 less susceptible to inhibition by PF74, a small-molecule HIV-1 inhibitor that induces premature uncoating. In contrast to the case for TNPO3, addition of the CA-binding host protein cyclophilin A (CypA) inhibited HIV-1 uncoating and reduced the stimulatory effect of TNPO3 on uncoating in vitro. In cells in which TNPO3 was depleted, HIV-1 infection was enhanced 4-fold by addition of cyclosporine, indicating that the requirement for TNPO3 in HIV-1 infection is modulated by CypA-CA interactions. Although TNPO3 was localized primarily to the cytoplasm, depletion of TNPO3 from target cells inhibited HIV-1 infection without reducing the accumulation of nuclear proviral DNA, suggesting that TNPO3 facilitates a stage of the virus life cycle subsequent to nuclear entry. Our results suggest that TNPO3 and cyclophilin A facilitate HIV-1 infection by coordinating proper uncoating of the core in target cells.  相似文献   

3.
Abstract: The tissue content and the interstitial fluid levels of glutamate, aspartate, GABA, glutamine, glycine, and serine were studied in amygdaloid-kindled rat brain. Interstitial levels were studied in vivo before and during stage 5 full limbic seizures using microdialysis. Slices of amygdala from kindled and sham-operated animals were used to study baseline and KCl-evoked release in vitro. The contents of these amino acids were measured in slices of amygdala, hippocampus, and cerebral cortex from kindled and sham-operated animals. Kindled brains showed two- to threefold higher levels of glutamate, aspartate, and GABA and 12-fold higher levels of glutamine than sham-operated controls. Correlating with this, interstitial fluid levels of glutamate were two- to threefold higher from kindled amygdala than from control both in vivo (microdialysis) and in vitro (superfusion). GABA levels in interstitial fluid from kindled amygdala were reduced by 67% compared with control amygdala.  相似文献   

4.
Poor downregulation of ErbB receptors is associated with enhanced downstream signaling and tumorigenesis. It has been suggested that poor downregulation of ErbB-2, -3 and -4 receptors when compared to ErbB1 is due to decreased recruitment of Cbl E3 ligase proteins. However, a highly conserved Cbl binding site is not only present in ErbB1/EGFR (FLQRpY1045SSDP), but also in ErbB2 (PLQRpY1091SEDP) and ErbB4 (STQRpY1103SADP). We therefore replaced the ErbB1 Cbl binding site by that of ErbB2 and ErbB4. Whereas retrovirally infected NIH3T3 cells containing the EGFR Y1045F mutation showed dramatically impaired Cbl recruitment, EGFR ubiquitination and delayed EGFR degradation, replacement of the EGFR Cbl binding site by that of ErbB2 or ErbB4 did not affect Cbl recruitment, receptor-ubiquitination, -degradation, -downregulation or ligand degradation. We conclude that poor downregulation of ErbB2 and ErbB4 receptors is not due to sequence variations in the Cbl binding site of these receptors.  相似文献   

5.
The effects of corticostriatal deafferentation (decortication) and destruction of intrinsic neurons (intrastriatal kainate injection) on the extracellular concentration, and veratrine-releasable pools, of endogenous amino acids in the rat striatum were examined using the in vivo brain dialysis technique. Intracellular amino acid content was also determined. Decortication reduced selectively intra- and extracellular levels of glutamate (Glu) and aspartate (Asp). Extracellular changes were more pronounced than those in tissue content. gamma-Aminobutyric acid (GABA), taurine (Tau), and phosphoethanolamine (PEA) levels were not affected, whereas nonneuroactive amino acids were increased at 1 week but not at 1 month post-lesion. The intracellular pool of Glu and Asp was also reduced in kainate-lesioned striata. However, extracellular levels of these compounds were not affected significantly by this treatment. The tissue content of all other amino acids was decreased, the most prominent change being in the concentration of GABA. Extracellular GABA concentration was also reduced dramatically, whereas the concentrations of noneuroactive amino acids were increased to varying degrees. These data suggest that transmitter pools of neuroactive amino acids are an important supply for their extracellular pools. Lesion-induced alterations in nonneuroactive amino acids are discussed with regard to the loss of metabolic pools, glial reactivity, and changes in blood-brain barrier transport. Veratrine induced a massive release of neuroactive amino acids such as Glu, Asp, GABA, and Tau into the extracellular fluid, and a delayed increase in PEA. Extracellular levels of neuroactive amino acids were raised slightly. Decortication reduced, selectively, the amounts of Glu and Asp released by veratrine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The extensively glycosylated lysosome-associated membrane proteins (LAMP)-2a, b, and c are derived from a single gene by alternative splicing that produces proteins with differences in the transmembrane and cytosolic domains. The lysosomal targeting signals reside in the cytosolic domain of these proteins. LAMPs are not restricted to lysosomes but can also be found in endosomes and at the cell surface. We investigated the subcellular distribution of chimeras comprised of the lumenal domain of avian LAMP-1 and the alternatively spliced domains of avian LAMP-2. Chimeras with the LAMP-2c cytosolic domain showed predominantly lysosomal distribution, while higher levels of chimeras with the LAMP-2a or b cytosolic domain were present at the cell surface. The increase in cell surface expression was due to differences in the recognition of the targeting signals and not saturation of intracellular trafficking machinery. Site-directed mutagenesis defined the COOH-terminal residue of the cytosolic tail as critical in governing the distributions of LAMP-2a, b, and c between intracellular compartments and the cell surface.  相似文献   

7.
In the present study we have applied a brain microdialysis technique to investigate the effects of ouabain infusion on the release of dopamine, acetylcholine, and amino acids from striatal neurons in freely moving rats. Ouabain caused an increase in the dialysate levels of dopamine; its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC); and the amino acids glutamate, aspartate, taurine, glycine, alanine, serine, asparagine, and threonine. The ouabain-induced increase in dopamine was dose dependent and explosive (100-fold at an infusion concentration of 1 mmol/L) and contrasted strongly with the small effect of the glycoside on the output of DOPAC. We investigated the nature of ouabain-induced transmitter release by determining its sensitivity to coinfusion with tetrodotoxin or the calcium antagonist Mg2+. In the case of dopamine two mechanisms of ouabain-induced release could be established. At lower infusion concentrations ouabain induced an exocytotic type of release whereas at higher concentrations the release was probably carrier mediated. In the case of amino acids we noticed a calcium-independent release which was nerve impulse flow dependent in the case of glutamate and aspartate and impulse flow independent in the case of alanine, serine, glycine, threonine, and asparagine. Ouabain induced a decrease in the release of acetylcholine and glutamine.  相似文献   

8.
Tityustoxin, the active component of the venom of the Brazilian yellow scorpion Tityus serrulatus, caused specific release of the neurotransmitter amino acids glutamate, aspartate and GABA in vivo from the superfused sensori-motor cortex of conscious unanesthetised rats and in vitro from rat cortical synaptosomes. The effects on synaptosomes appear to be due to a depolarising action. Synaptosomal potassium levels were depleted by the toxin. The action was also blocked both in vivo and in vitro by tetrodotoxin and was Ca2+-dependent. The uptake of [U-14C]GABA was inhibited by tityustoxin but this action was prevented by tetrodotoxin (1 microM). Since the release of [U-14C]GABA from synaptosomes due to the tityustoxin was also prevented by tetrodotoxin under identical circumstances, it is concluded that the tityustoxin has a primary action on release of neurotransmitters rather than on uptake.  相似文献   

9.
10.
Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and α-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of α-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and α-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from α-keto acids only. BL2 also converted α-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and α-keto acids and that carbon metabolism is important in regulating this event.  相似文献   

11.
A cortical cup model with continuous perfusion of artificial cerebrospinal fluid (containing 134 mM NaCl) was used to investigate the effects of anion channel blockers on the hyposmotically-induced release of amino acids from the in vivo rat cerebral cortex. The hyposmotic stimulus (25 mM NaCl) evoked a release of taurine, glutamate, aspartate, glycine, phosphoethanolamine and GABA. Topically applied anion channel blockers 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (1 mM); 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid (2 mM); 5-nitro-2-(3-phenylpropylamino) benzoic acid (350 M); niflumic acid (500 M); tamoxifen (20 M) and arachidonic acid (0.5 M) all significantly reduced the hyposmotically-induced release of taurine. The releases of glutamate, aspartate, glycine, phosphoethanolamine and GABA were variably susceptible to inhibition by these compounds. These results demonstrate that osmoregulatory processes in cortical cells, in vivo, involve amino acids, with taurine playing a dominant role. The efflux of taurine and, to a lesser extent, the other amino acids may be mediated by anion channels.  相似文献   

12.
13.
Diethyldithiocarbamic acid (DDC) potentiates in vivo neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and in vitro neurotoxicity of 1-methyl-4-phenylpyridinium (MPP+). Male C57B1/6 mice were given two or five injections of MPTP (30 mg/kg i.p.) preceded 0.5 h by DDC (400 mg/kg i.p.). The mice were tested for catalepsy, akinesia, or motor activity during and after the period of dosing. Striatal and hippocampal tissues were obtained at 2 and 7 days following the last injection and evaluated for dopamine and norepinephrine levels, respectively. These same tissues were also analyzed for the levels of glial fibrillary acidic protein (GFAP), an astrocyte-localized protein known to increase in response to neural injury. Pretreatment with DDC potentiated the effect of MPTP in striatum and resulted in substantially greater dopamine depletion, as well as a more pronounced elevation in GFAP. In hippocampus, the levels of norepinephrine and GFAP were not different from controls in mice receiving only MPTP, but pretreatment with DDC resulted in a sustained depletion of norepinephrine and an elevation of GFAP, suggesting that damage was extended to this brain area by the combined treatment. Mice receiving MPTP preceded by DDC also demonstrated a more profound, but reversible, catalepsy and akinesia compared to those receiving MPTP alone. Systemically administered MPP+ decreased heart norepinephrine, but did not alter the striatal levels of dopamine or GFAP, and pretreatment with DDC did not alter these effects, but did increase lethality. DDC is known to increase brain levels of MPP+ after MPTP, but our data indicate that this is not due to a movement of peripherally generated MPP+ into CNS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The association of receptor tyrosine kinases is a key step in the initiation of growth factor-mediated signaling. Although the ligand-induced dimerization of inactive, monomeric receptors was the central dogma of receptor tyrosine kinase activation for decades, the existence of larger oligomers is now accepted. Both homoassociations and heteroassociations are of extreme importance in the epidermal growth factor (EGF) receptor family, leading to diverse and robust signaling. We present a statistically reliable, flow-cytometric homo-fluorescence resonance energy transfer method for the quantitative characterization of large-scale receptor clusters. We assumed that a fraction of a certain protein species is monomeric, whereas the rest are present in homoclusters of N-mers. We measured fluorescence anisotropy as a function of the saturation of fluorescent antibody binding, and fitted the model to the anisotropy data yielding the fraction of monomers and the cluster size. We found that ErbB2 formed larger homoclusters than ErbB1. Stimulation with EGF and heregulin led to a decrease in ErbB2 homocluster size, whereas ErbB1 homoclusters became larger after EGF stimulation. The activation level of ErbB2 was inversely proportional to its homocluster size. We conclude that homoclusters of ErbB1 and ErbB2 behave in a fundamentally different way. Whereas huge ErbB2 clusters serve as a reservoir of inactive coreceptors and dissociate upon stimulation, small ErbB1 homoclusters form higher-order oligomers after ligand binding.  相似文献   

15.
The With No lysine (K) family of serine/threonine kinase (WNK) defines a small family of kinases with significant roles in ion homeostasis. WNK1 has been shown to have different isoforms due to what seems to be largely tissue specific splicing. Here, we used two distinct in situ hybridization riboprobes on developing and adult mouse tissues to make a comparative analysis of Wnk1 and its sensory associated splice isoform, Wnk1/Hsn2. The hybridization signals in developing mouse tissues, which were prepared at embryonic day e10.5 and e12.5, revealed a homogenous expression profile with both probes. At e15.5 and in the newborn mouse, the two probes revealed different expression profiles with prominent signals in nervous system tissues and also other tissues such as kidney, thymus and testis. In adult mouse tissues, the two expression profiles appeared even more restricted to the nervous tissues, kidney, thymus and testis, with no detectable signal in the other tissues. Throughout the nervous system, sensory tissues, as well as in Cornu Ammonis 1 (CA1), CA2 and CA3 areas of the hippocampus, were strongly labeled with both probes. Hybridization signals were also strongly detected in Schwann and supporting satellite cells. Our results show that the expression profiles of Wnk1 isoforms change during the development, and that the expression of the Wnk1 splice variant containing the Hsn2 exon is prominent during developing and in adult mouse tissues, suggesting its important role in the development and maintenance of the nervous system.  相似文献   

16.
Mucins provide a protective barrier for epithelial surfaces, and their overexpression in tumors has been implicated in malignancy. We have previously demonstrated that Muc4, a transmembrane mucin that promotes tumor growth and metastasis, physically interacts with the ErbB2 receptor tyrosine kinase and augments receptor tyrosine phosphorylation in response to the neuregulin-1beta (NRG1beta) growth factor. In the present study we demonstrate that Muc4 expression in A375 human melanoma cells, as well as MCF7 and T47D human breast cancer cells, enhances NRG1beta signaling through the phosphatidylinositol 3-kinase pathway. In examining the mechanism underlying Muc4-potentiated ErbB2 signaling, we found that Muc4 expression markedly augments NRG1beta binding to A375 cells without altering the total quantity of receptors expressed by the cells. Cell-surface protein biotinylation experiments and immunofluorescence studies suggest that Muc4 induces the relocalization of the ErbB2 and ErbB3 receptors from intracellular compartments to the plasma membrane. Moreover, Muc4 interferes with the accumulation of surface receptors within internal compartments following NRG1beta treatment by suppressing the efficiency of receptor internalization. These observations suggest that transmembrane mucins can modulate receptor tyrosine kinase signaling by influencing receptor localization and trafficking and contribute to our understanding of the mechanisms by which mucins contribute to tumor growth and progression.  相似文献   

17.
Abstract: The influences of total tryptophan concentration, albumin binding and amino acid competition on the rate of tryptophan influx into rat brain were compared using a single-pass injection technique with tritiated water as a freely diffusible reference. Omission of 3% bovine albumin from a bolus containing tryptophan in Krebs–Ringer bicarbonate buffer injected into the carotid artery increased non-albumin bound (free) tryptophan concentration threefold but tryptophan uptake by only 35% and 30% into forebrain and hypothalamus, respectively. However, tryptophan uptake from injected rat plasma was more markedly elevated when free tryptophan concentration was raised. Thus, when free tryptophan was doubled, but total tryptophan unchanged, by in vitro addition of clofibrate to a plasma bolus, uptake was increased by 53% and 28% into forebrain and hypothalamus respectively. When clofibrate was injected in vivo so that plasma total tryptophan concentration was decreased by 45% but neither free tryptophan nor competing amino acid concentrations were altered, then uptake from a bolus of the rat's own plasma was unchanged. Addition of competing amino acids at physiological concentrations to tryptophan in Krebs-Ringer buffer significantly reduced tryptophan influx into both brain regions, but did not increase the effect of albumin binding. The results indicate that tryptophan uptake into rat forebrain is substantially influenced by albumin binding and competition from other amino acids, but that hypothalamic uptake is less influenced by these factors.  相似文献   

18.
The purpose of the present study is to clarify the effects of the administration of choline on the in vivo release and biosynthesis of acetylcholine (ACh) in the brain. For this purpose, the changes in the extracellular concentration of choline and ACh in the rat striatum following intracerebroventricular administration of choline were determined using brain microdialysis. We also determined changes in the tissue content of choline and ACh. When the striatum was dialyzed with Ringer solution containing 10 microM physostigmine, ACh levels in dialysates rapidly and dose dependently increased following administration of various doses of choline and reached a maximum within 20 min. In contrast, choline levels in dialysates increased after a lag period of 20 min following the administration. When the striatum was dialyzed with physostigmine-free Ringer solution, ACh could not be detected in dialysates both before and even after choline administration. After addition of hemicholinium-3 to the perfusion fluid, the choline-induced increase in ACh levels in dialysates was abolished. Following administration of choline, the tissue content of choline and ACh increased within 20 min. These results suggest that administered choline is rapidly taken up into the intracellular compartment of the cholinergic neurons, where it enhances both the release and the biosynthesis of ACh.  相似文献   

19.
Expression of p16(Ink4a) and p19(Arf) increases with age in both rodent and human tissues. However, whether these tumour suppressors are effectors of ageing remains unclear, mainly because knockout mice lacking p16(Ink4a) or p19(Arf) die early of tumours. Here, we show that skeletal muscle and fat, two tissues that develop early ageing-associated phenotypes in response to BubR1 insufficiency, have high levels of p16(Ink4a) and p19(Arf). Inactivation of p16(Ink4a) in BubR1-insufficient mice attenuates both cellular senescence and premature ageing in these tissues. Conversely, p19(Arf) inactivation exacerbates senescence and ageing in BubR1 mutant mice. Thus, we identify BubR1 insufficiency as a trigger for activation of the Cdkn2a locus in certain mouse tissues, and demonstrate that p16(Ink4a) is an effector and p19(Arf) an attenuator of senescence and ageing in these tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号