首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the prevalence and persistence of Escherichia coli strains in four sewage treatment plants (STPs) in a subtropical region of Queensland, Australia. In all, 264 E. coli strains were typed using a high-resolution biochemical fingerprinting method and grouped into either a single or a common biochemical phenotype (S-BPT and C-BPT, respectively). These strains were also tested for their phylogenetic groups and 12 virulence genes associated with intestinal and extraintestinal E. coli strains. Comparison of BPTs at various treatment stages indicated that certain BPTs were found in two or all treatment stages. These BPTs constituted the highest proportion of E. coli strains in each STP and belonged mainly to phylogenetic group B2 and, to a lesser extent, group D. No virulence genes associated with intestinal E. coli were found among the strains, but 157 (59.5%) strains belonging to 14 C-BPTs carried one or more virulence genes associated with uropathogenic strains. Of these, 120 (76.4%) strains belonged to seven persistent C-BPTs and were found in all four STPs. Our results indicate that certain clonal groups of E. coli with virulence characteristics of uropathogenic strains can survive the treatment processes of STPs. These strains were common to all STPs and constituted the highest proportion of the strains in different treatment tanks of each STP.Community sewage treatment plants (STPs) receive waste from diverse sources, including residential, industrial, and recreational facilities (31). Waste generated from these facilities contains the liquid and fecal discharges of humans and animals, household wastes, industry-specific materials, and storm water runoff (31). These materials are treated through primary, secondary, and tertiary sedimentation processes (18). Following these processes, effluent is normally clear and thus often recycled for nonpotable use (20), with excess water released into receiving waterways. However, due to possible malfunctions or poor management of wastewater systems (1), effluent containing pathogenic bacteria can be discharged into receiving waterways (11, 34). It has been speculated that waters contaminated with feces are a great risk to human health, as they are likely to contain human-specific enteric pathogens, including Salmonella spp. (30), Shigella spp. (10), enteroviruses (12), hepatitis A virus (13), and pathogenic Escherichia coli (30).E. coli, while widely used as an indicator bacterium (30, 35), can actually be pathogenic and be responsible for both intestinal and extraintestinal diseases (16). Intestinal pathogenic strains of E. coli are rarely encountered in the fecal flora of healthy hosts. Extraintestinal pathogenic E. coli (ExPEC) strains commonly cause infections of any organ or anatomical site (28). The ability of these pathogenic bacteria to cause disease is due to their acquisition of specialized virulence factors, which commensal E. coli strains typically lack. These specialized virulence factors allow them to cause a broad spectrum of diseases (17, 28), such as gastroenteritis (34), diarrhea (16), urinary tract infections and meningitis (29), and soft tissue infections and bacteremia (28). E. coli strains belong to four main phylogenetic groups (A, B1, B2, and D) (2), with pathogenic strains belonging mostly to phylogenetic group B2 and, to a lesser extent, group D. Another phylogenetic group (group E) has also been identified; however, it is uncommon and is not widely used (5).Presently, chlorination is an extremely widespread practice aimed at reducing the pathogen load in the final effluent to levels low enough to ensure that the organisms will not cause disease when the wastewater is discharged (31). Despite this, some pathogenic strains of E. coli may survive to become a significant public health risk (14, 35). The aim of this study was to investigate the presence and survival of these pathogenic E. coli strains during the treatment processes of four community STPs with different capacities in South East Queensland, Australia.  相似文献   

2.
The study of phylogenetic groups and pathogenicity island (PAI) markers in commensal Escherichia coli strains from asymptomatic Chinese people showed that group A strains are the most common and that nearly half of all fecal strains which were randomly selected harbor PAIs.Escherichia coli is a well-diversified commensal species in the intestine of healthy humans but also includes intestinal or extraintestinal pathogens. It has been reported that pathogenic E. coli may be derived from fecal strains by acquisition of virulence determinants (11). The relationship between the E. coli genetic background and the acquisition of virulence factors is now better understood (1, 5). Extraintestinal E. coli strains may harbor several virulence factors, such as adhesins, fimbriae, and hemolysin, which can contribute to bacterial pathogenesis. These traits are usually encoded on pathogenicity islands (PAIs), which have been studied in pathogenic E. coli previously (15). The E. coli population includes 4 major phylogroups (A, B1, B2, and D) (2). Pathogenic strains belong mainly to groups B2 and D, while most fecal isolates belong to groups A and B1. Strains of groups B2 and D often carry virulence factors that are lacking in group A and B1 strains (3, 9, 13).In this study, we examined the distribution of phylogroups and the prevalence of PAIs in commensal E. coli strains isolated from asymptomatic persons in one region of China.  相似文献   

3.
Since enterohemorrhagic Escherichia coli (EHEC) isolates of serogroup O156 have been obtained from human diarrhea patients and asymptomatic carriers, we studied cattle as a potential reservoir for these bacteria. E. coli isolates serotyped by agglutination as O156:H25/H−/Hnt strains (n = 32) were isolated from three cattle farms during a period of 21 months and characterized by rapid microarray-based genotyping. The serotyping by agglutination of the O156 isolates was not confirmed in some cases by the results of DNA-based serotyping as only 25 of the 32 isolates were conclusively identified as O156:H25. In the multilocus sequence typing (MLST) analysis, all EHEC O156:H25 isolates were characterized as sequence type 300 (ST300) and ST688, which differ by a single-nucleotide exchange in the purA gene. Oligonucleotide microarrays allow simultaneous detection of a wider range of EHEC-associated and other E. coli virulence markers than other methods. All O156:H25 isolates showed a wide spectrum of virulence factors typical for EHEC. The stx1 genes combined with the EHEC hlyA (hlyAEHEC) gene, the eae gene of the ζ subtype, as well as numerous other virulence markers were present in all EHEC O156:H25 strains. The behavior of eight different cluster groups, including four that were EHEC O156:H25, was monitored in space and time. Variations in the O156 cluster groups were detected. The results of the cluster analysis suggest that some O156:H25 strains had the genetic potential for a long persistence in the host and on the farm, while other strains did not. As judged by their pattern of virulence markers, E. coli O156:H25 isolates of bovine origin may represent a considerable risk for human infection. Our results showed that the miniaturized E. coli oligonucleotide arrays are an excellent tool for the rapid detection of a large number of virulence markers.Shiga toxin-producing Escherichia coli (STEC) strains comprise a group of zoonotic enteric pathogens (45). In humans, infections with some STEC serotypes may result in hemorrhagic or nonhemorrhagic diarrhea, which can be complicated by the hemolytic uremic syndrome (HUS) (32). These STEC strains are also designated enterohemorrhagic Escherichia coli (EHEC). Consequently, EHEC strains represent a subgroup of STEC with high pathogenic potential for humans. Although E. coli O157:H7 is the most frequent EHEC serotype implicated in HUS, other serotypes can also cause this complication. Non-O157:H7 EHEC strains including serotypes O26:H11/H−, O103:H2/H−, O111:H8/H10/H−, and O145:H28/H25/H− and sorbitol-fermenting E. coli O157:H− isolates are present in about 50% of stool cultures from German HUS patients (10, 42). However, STEC strains that cause human infection belong to a large number of E. coli serotypes, although a small number of STEC isolates of serogroup O156 were associated with human disease (7). Strains of the serotypes O156:H1/H8/H21/H25 were found in human cases of diarrhea or asymptomatic infections (9, 22, 25, 26). The detection of STEC of serogroup O156 from healthy and diseased ruminants such as cattle, sheep, and goats was reported by several authors (1, 11-13, 21, 39, 46, 50, 52). Additional EHEC-associated virulence genes such as stx, eae, hlyAEHEC, or nlaA were found preferentially in the serotypes O156:H25 and O156:H− (11-13, 21, 22, 50, 52).Numerous methods exist for the detection of pathogenic E. coli, including genotypic and phenotypic marker assays for the detection of virulence genes and their products (19, 47, 55, 57). All of these methods have the common drawback of screening a relatively small number of determinants simultaneously. A diagnostic DNA microarray based on the ArrayTube format of CLONDIAG GmbH was developed as a viable alternative due to its ability to screen multiple virulence markers simultaneously (2). Further microarray layouts working with the same principle but different gene targets were developed for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria (5) and for the rapid DNA-based serotyping of E. coli (4). In addition, a protein microarray for E. coli O serotyping based on the ArrayTube format was described by Anjum et al. (3).The aim of our study was the molecular genotyping of bovine E. coli field isolates of serogroup O156 based on miniaturized E. coli oligonucleotide arrays in the ArrayStrip format and to combine the screening of E. coli virulence markers, antimicrobial resistance genes, and DNA serotyping targets, some of which were partially described previously for separate arrays (2, 4, 5). The epidemiological situation in the beef herds from which the isolates were obtained and the spatial and temporal behavior of the clonal distribution of E. coli serogroup O156 were analyzed during the observation period. The potential risk of the isolates inducing disease in humans was assessed.  相似文献   

4.
Populations of the food- and waterborne pathogen Escherichia coli O157:H7 are comprised of two major lineages. Recent studies have shown that specific genotypes within these lineages differ substantially in the frequencies with which they are associated with human clinical disease. While the nucleotide sequences of the genomes of lineage I strains E. coli O157 Sakai and EDL9333 have been determined, much less is known about the genomes of lineage II strains. In this study, suppression subtractive hybridization (SSH) was used to identify genomic features that define lineage II populations. Three SSH experiments were performed, yielding 1,085 genomic fragments consisting of 811 contigs. Bacteriophage sequences were identified in 11.3% of the contigs, 9% showed insertions and 2.3% deletions with respect to E. coli O157:H7 Sakai, and 23.2% did not have significant identity to annotated sequences in GenBank. In order to test for the presence of these novel loci in lineage I and II strains, 27 PCR primer sets were designed based on sequences from these contigs. All but two of these PCR targets were found in the majority (51.9% to 100%) of 27 lineage II strains but in no more than one (<6%) of the 17 lineage I strains. Several of these linage II-related fragments contain insertions/deletions that may play an important role in virulence. These lineage II-related loci were also shown to be useful markers for genotyping of E. coli O157:H7 strains isolated from human and animal sources.Enterohemorrhagic Escherichia coli is associated with diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome in humans (31). E. coli serotype O157:H7 predominates in epidemics and sporadic cases of enterohemorrhagic E. coli-related infections in the United States, Canada, Japan, and the United Kingdom (12). Cattle are considered the most important reservoir of E. coli O157:H7 (10, 24, 37, 41), and foods contaminated with bovine feces are thought to be the most common source of human infection with this pathogen (27, 33). The two most important virulence factors of the organism are the production of one or more Shiga toxins (Stx) (6, 20, 32) and the ability to attach to and efface microvilli of host intestinal cells (AE). Stx genes are encoded by temperate bacteriophage inserted in the bacterial chromosome, and genes responsible for the AE phenotype are located on the locus of enterocyte effacement (LEE) as well as other pathogenicity islands (4, 17). All E. coli O157:H7 strains also possess a large plasmid which is thought to play a role in virulence (10, 40, 42).Octamer-based genome scanning (OBGS) was first used to show that E. coli O157 strains from the United States and Australia could be subdivided into two genetically distinct lineages (21, 22, 46). While both E. coli O157:H7 lineages are associated with human disease and are isolated from cattle, there is a bias in the host distribution between the two lineages, with a significantly higher proportion of lineage I strains isolated from humans than lineage II strains. Several recent studies have shown that there are inherent differences in gene content and expression between populations of lineage I and lineage II E. coli O157:H7 strains. Lejeune et al. (26) reported that the antiterminator Q gene of the stx2-converting bacteriophage 933W was found in all nine OBGS lineage I strains examined but in only two of seven lineage II strains, suggesting that there may be lineage-specific differences in toxin production. Dowd and Ishizaki (9) used DNA microarray analysis to examine expression of 610 E. coli O157:H7 genes and showed that lineage I and lineage II E. coli O157:H7 strains have evolved distinct patterns of gene expression which may alter their virulence and their ability to survive in different microenvironments and colonize the intestines of different hosts (9, 28, 38).The observations of lineage host bias have been supported and extended by studies using a six-locus-based multiplex PCR termed the lineage-specific polymorphism assay (LSPA-6) (46). However, Ziebell et al. (48) have recently shown that not all LSPA-6 types within lineage II are host biased; e.g., LSPA-6 type 211111 isolation rates from humans and cattle were significantly different from those of other lineage II LSPA-6 types. Therefore, a clearer definition is required of not only the differences between lineages but also the differences among clonal groups within lineages.The genome sequences of two E. coli O157:H7 strains, Sakai and EDL933 (14, 36), have been determined; however, both of these strains are of lineage I, and there are presently no completed and fully annotated genome sequences available for lineage II strains. In our laboratory, comparative studies utilizing suppression subtractive hybridization (SSH) and comparative genomic hybridization revealed numerous potential virulence factors that are conserved in lineage I strains and that are rare or absent in lineage II strains (42, 47). In this study, we have used SSH to identify genomic regions present in E. coli O157:H7 lineage II strains that are absent from lineage I strains. We wished to examine the distribution of these novel gene segments in E. coli O157:H7 strains and gain insight into their origins and functions. We also attempted to identify molecular markers specific to lineage II strains as well as other markers that would be useful in the genetic subtyping or molecular fingerprinting of E. coli O157:H7 strains in population and epidemiological studies (25). This information may be helpful in the identification of genotypes of the organism associated with specific phenotypes of both lesser and greater virulence (29).  相似文献   

5.
DNA sequence-based molecular subtyping methods such as multilocus sequence typing (MLST) are commonly used to generate phylogenetic inferences for monomorphic pathogens. The development of an effective MLST scheme for subtyping Escherichia coli O157:H7 has been hindered in the past due to the lack of sequence variation found within analyzed housekeeping and virulence genes. A recent study suggested that rhs genes are under strong positive selection pressure, and therefore in this study we analyzed these genes within a diverse collection of E. coli O157:H7 strains for sequence variability. Eighteen O157:H7 strains from lineages I and II and 15 O157:H7 strains from eight clades were included. Examination of these rhs genes revealed 44 polymorphic loci (PL) and 10 sequence types (STs) among the 18 lineage strains and 280 PL and 12 STs among the 15 clade strains. Phylogenetic analysis using rhs genes generally grouped strains according to their known lineage and clade classifications. These findings also suggested that O157:H7 strains from clades 6 and 8 fall into lineage I/II and that strains of clades 1, 2, 3, and 4 fall into lineage I. Additionally, unique markers were found in rhsA and rhsJ that might be used to define clade 8 and clade 6. Therefore, rhs genes may be useful markers for phylogenetic analysis of E. coli O157:H7.Escherichia coli O157:H7 was first described in 1983 as the causative agent of a food-borne outbreak attributed to contaminated ground beef patties (35), and it has subsequently emerged as a very important food-borne pathogen. Diseases caused by E. coli O157:H7, such as hemorrhagic colitis and hemolytic uremic syndrome, can be very severe or even life-threatening. Cattle are believed to be the main reservoir for E. coli O157:H7 (5, 15, 41), although other animals may also carry this organism (6, 21). Outbreaks are commonly associated with the consumption of beef and fresh produce that come into contact with bovine feces or feces-contaminated environments, such as food contact surfaces, animal hides, or irrigation water (12, 21, 30, 38).It is well-established that strains of E. coli O157:H7 vary in terms of virulence and transmissibility to humans and that strains differing in these characteristics can be distinguished using DNA-based methods (22, 29, 42). For example, octamer-based genome scanning, which is a PCR approach using 8-bp primers, provided the first evidence that there are at least two lineages of O157:H7, termed lineage I and lineage II (22). Strains classified as lineage I are more frequently isolated from humans than are lineage II strains (42). A later refinement of this classification system was coined the lineage-specific polymorphism assay (LSPA), which classified strains based upon the amplicon size obtained using PCRs targeting six chromosomal regions of E. coli O157:H7 and assigned a six-digit code based upon the pattern obtained (42). Most strains of lineage I grouped into LSPA type 111111, while the majority of lineage II strains fell into LSPA types 211111, 212111, and 222222. More recently, it was suggested that LSPA type 211111 strains comprise a separate group called lineage I/II (45).To gain greater insight into the recent evolution of E. coli O157:H7, a method that is more discriminatory than the LSPA method is desirable. Multilocus sequence typing (MLST) is a method that discriminates between strains of a bacterial species by identifying DNA sequence differences in six to eight targeted genes. Satisfactory MLST schemes exist for other bacterial pathogens (28, 43); however, due to the lack of sequence variations in previously targeted gene markers in E. coli O157:H7 (13, 33), MLST approaches for subtyping this pathogen have been more difficult to develop. More recently, high-throughput microarray and sequencing platforms have been used to identify hundreds of single nucleotide polymorphisms (SNPs) that are useful for discriminating between strains of E. coli O157:H7 during epidemiologic investigations and for drawing phylogenetic inferences (11, 20, 29, 44). Particularly noteworthy, Manning et al. (29) developed a subtyping scheme based upon the interrogation of 32 putative SNP loci. This method separated 528 strains into 39 distinct SNP genotypes, which were grouped into nine statistically supported phylogenetic groups called clade 1 through clade 9. By analyzing the rates of hemolytic uremic syndrome observed in patients infected with strains of clades 2, 7, and 8, it was also concluded that clade 8 strains are more virulent to humans than other strains (29).One drawback of current DNA sequence-based subtyping schemes for E. coli O157:H7 is that they require screening of at least 32 SNP loci. We were interested in asking whether a simpler approach that targets a few informative gene markers could be developed for rapid strain discrimination and phylogenetic determination. A recent analysis of E. coli genomes predicted that rearrangement hot spot (rhs) genes are under the strongest positive selection of all coding sequences analyzed (34). Therefore, we hypothesized that these genes would display significant sequence variations for subtyping O157:H7 strains. The rhs genes were first discovered as elements mediating tandem duplication of the glyS locus in E. coli K-12 (26); however, their function remains unknown. There are nine rhs genes within the genome of the prototypical E. coli O157:H7 strain Sakai, and these genes are designated rhsA, -C, -D, -E, -F, -G, -I, -J, and -K (see Table S1 in the supplemental material) (16). Three of these nine rhs genes, rhsF, -J, and -K, were previously studied by Zhang et al. (44), and a number of SNPs were identified among these genes. However, no studies have been conducted to comprehensively investigate rhs genes as markers in an MLST scheme for subtyping E. coli O157:H7.The primary purpose of the present study was to investigate whether there are sufficient DNA sequence variations among rhs genes to develop an MLST approach for subtyping E. coli O157:H7. In this study, a greater level of DNA sequence variation was observed among rhs genes than in gene markers targeted in previous studies (13, 33). Furthermore, phylogenetic analysis using these rhs genes generally agreed with the established lineage and clade classifications of O157:H7 strains defined previously. We also wanted to determine whether there is a correlation between the lineage classification of O157:H7 strains (42) and the recently proposed clade classification (29). The present study reports evidence that O157:H7 strains from clade 8 are classified as lineage I/II, which is a different lineage from well-studied E. coli O157:H7 outbreak strains, such as EDL933 and Sakai. Therefore, we suggest that outbreaks of O157:H7 are caused by two lineages of this pathogen, lineage I and lineage I/II.  相似文献   

6.
7.
Forty-nine typical and atypical enteropathogenic Escherichia coli (EPEC) strains belonging to different serotypes and isolated from humans, pets (cats and dogs), farm animals (bovines, sheep, and rabbits), and wild animals (monkeys) were investigated for virulence markers and clonal similarity by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The virulence markers analyzed revealed that atypical EPEC strains isolated from animals have the potential to cause diarrhea in humans. A close clonal relationship between human and animal isolates was found by MLST and PFGE. These results indicate that these animals act as atypical EPEC reservoirs and may represent sources of infection for humans. Since humans also act as a reservoir of atypical EPEC strains, the cycle of mutual infection of atypical EPEC between animals and humans, mainly pets and their owners, cannot be ruled out since the transmission dynamics between the reservoirs are not yet clearly understood.Enteropathogenic Escherichia coli (EPEC) strains are among the major causes of infantile diarrhea in developing countries (71) and can be classified as typical and atypical, depending on the presence or absence of the E. coli adherence factor plasmid (pEAF), respectively (39).The pathogenesis of EPEC resides in the ability to cause the attaching and effacing (A/E) lesion in the gut mucosa of human or animal hosts, leading to diarrheal illness (40). The genes responsible for the A/E lesion formation are located in a chromosomal pathogenicity island of ∼35 kb, known as the locus of enterocyte effacement (LEE) (23, 47). LEE encodes an adhesin called intimin (38), its translocated receptor (Tir) (42), components of a type III secretion system (36), and effector molecules, named E. coli-secreted proteins (Esp proteins) (41). These virulence factors have a crucial role in A/E lesion formation, and their detection in EPEC strains is an indicator of their potential to produce these lesions (19, 56).Atypical EPEC strains have been associated with diarrhea outbreaks in developed countries (31, 73, 77) and with sporadic cases of diarrhea in developing and developed countries (1, 12, 26, 52, 55). At present, the prevalence of atypical EPEC is higher than that of typical EPEC in several countries (1, 12, 26, 52, 55, 65).Different from the situation in developed countries, where atypical EPEC outbreaks and sporadic infections are associated with children and adults, atypical EPEC infection in Brazil is mainly associated with children''s illnesses (32, 71).Typical EPEC strains are rarely isolated from animals, and humans are the major natural reservoir for these pathogens (14, 32, 53, 71). In contrast, atypical EPEC strains are present in both healthy and diseased animals (dog, monkey, cats, and bovines) and humans (4, 6, 18, 28, 71). Some studies have associated pets and farm and wild animals as reservoirs and infection sources of atypical EPEC strains for humans (32). However, these studies did not compare atypical EPEC strains isolated from humans and animals by gold-standard molecular methods like multilocus sequence typing (MLST) or pulsed-field gel electrophoresis (PFGE) (15, 35, 43, 53). For this reason, there are some doubts about whether atypical EPEC strains isolated from animals represent risks for human health and whether animals really play the role of reservoirs of atypical EPEC.The aim of this study was to compare atypical EPEC strains isolated from humans and different animals, including pets (cats and dogs), farm animals (bovines, ovines, and rabbits), and wild animals (monkeys), by molecular phylogenetic techniques to verify the role of animals as reservoirs of and sources of infection with atypical EPEC in humans.  相似文献   

8.
To discern the possible spread of the Escherichia coli O25b:H4-ST131 clonal group in poultry and the zoonotic potential of avian strains, we made a retrospective search of our strain collection and compared the findings for those strains with the findings for current strains. Thus, we have characterized a collection of 19 avian O25b:H4-ST131 E. coli strains isolated from 1995 to 2010 which, interestingly, harbored the ibeA gene. Using this virulence gene as a criterion for selection, we compared those 19 avian strains with 33 human O25b:H4-ST131 ibeA-positive E. coli strains obtained from patients with extraintestinal infections (1993 to 2009). All 52 O25b:H4-ST131 ibeA-positive E. coli strains shared the fimH, kpsMII, malX, and usp genes but showed statistically significant differences in nine virulence factors, namely, papGIII, cdtB, sat, and kpsMII K5, which were associated with human strains, and iroN, kpsMII K1, cvaC, iss, and tsh, which were associated with strains of avian origin. The XbaI macrorestriction profiles of the 52 E. coli O25b:H4-ST131 ibeA-positive strains revealed 11 clusters (clusters I to XI) of >85% similarity, with four clusters including strains of human and avian origin. Cluster VII (90.9% similarity) grouped 10 strains (7 avian and 3 human strains) that mostly produced CTX-M-9 and that also shared the same virulence profile. Finally, we compared the macrorestriction profiles of the 12 CTX-M-9-producing O25b:H4-ST131 ibeA strains (7 avian and 5 human strains) identified among the 52 strains with those of 15 human O25b:H4-ST131 CTX-M-14-, CTX-M-15-, and CTX-M-32-producing strains that proved to be negative for ibeA and showed that they clearly differed in the level of similarity from the CTX-M-9-producing strains. In conclusion, E. coli clonal group O25b:H4-ST131 ibeA has recently emerged among avian isolates with the new acquisition of the K1 capsule antigen and includes CTX-M-9-producing strains. This clonal group represents a real zoonotic risk that has crossed the barrier between human and avian hosts.Strains of the extensively antimicrobial-resistant Escherichia coli clonal group of sequence type (ST) 131 (ST131) belonging to serotype O25b:H4 have recently been recognized to be important human pathogens worldwide (9, 33). Although it is commonly associated with the dissemination of CTX-M-15 extended-spectrum cephalosporin resistance, E. coli O25b:H4-ST131 also occurs as a fluoroquinolone (FQ)-resistant but cephalosporin-susceptible pathogen (5, 22, 26, 27). Currently, it is assumed that O25b:H4-ST131 strains circulate not only among humans but also among animal hosts (13, 21, 37), which would contribute to the ongoing global emergence of O25b:H4-ST131, in the case of regular transmission between animals and humans. Even though CTX-M-15 is the most widely distributed extended-spectrum beta-lactamase (ESBL) linked to this clonal group, other, different variants of CTX-M have recently been reported, such as CTX-M-9, CTX-M-14, and CTX-M-32 (4, 34, 36, 39). Noteworthy was the detection, for the first time on poultry farms, of this clonal group producing CTX-M-9 that had macrorestriction profiles and virulence genes very similar to those observed in clinical human isolates (10).Extraintestinal pathogenic E. coli (ExPEC) strains, which include avian pathogenic E. coli (APEC) and human uropathogenic E. coli (UPEC), septicemic E. coli, and newborn meningitis-causing E. coli (NMEC) strains, exhibit considerable genome diversity and have a wide range of virulence-associated factors (12, 18). While infections caused by APEC strains initially start as a respiratory tract disease which evolves to a systemic infection of the internal organs and, finally, to sepsis, the most frequent origin of human sepsis is urinary tract infection (UTI), especially pyelonephritis (2, 3, 11). However, APEC strains have been recognized to share common traits with human isolates (29, 30, 31), including the K1 capsule antigen (23, 24, 29) and the ibeA gene (14). In addition, retail chicken products have been found to carry nalidixic-resistant ExPEC strains (17, 19), and although it is drug susceptible, an E. coli strain belonging to the O25b:H4-ST131 clonal group has even recently been detected in retail chicken (41), supporting the urgent necessity for the implementation of food control measures.The aim of the present study was to discern the possible spread of the O25b:H4-ST131 clonal group, especially CTX-M-9-producing strains, in poultry and the zoonotic potential of avian isolates. For this purpose, we made a retrospective search of our human and avian strain collections and compared the findings for those strains with the findings for current strains. Identification of this emerging clone among avian sources and comparison of the clone with clinical human isolates will shed new light on the epidemiology of the O25b:H4-ST131 clonal group.  相似文献   

9.
The impact of feed supplementation with bambermycin, monensin, narasin, virginiamycin, chlortetracycline, penicillin, salinomycin, and bacitracin on the distribution of Escherichia coli pathotypes in broiler chickens was investigated using an E. coli virulence DNA microarray. Among 256 E. coli isolates examined, 59 (23%) were classified as potentially extraintestinal pathogenic E. coli (ExPEC), while 197 (77%) were considered commensal. Except for chlortetracycline treatment, the pathotype distribution was not significantly different among treatments (P > 0.05). Within the 59 ExPEC isolates, 44 (75%) were determined to be potentially avian pathogenic E. coli (APEC), with the remaining 15 (25%) considered potentially “other” ExPEC isolates. The distribution within phylogenetic groups showed that 52 (88%) of the ExPEC isolates belonged to groups B2 and D, with the majority of APEC isolates classified as group D and most commensal isolates (170, 86%) as group A or B1. Indirect assessment of the presence of the virulence plasmid pAPEC-O2-ColV showed a strong association of the plasmid with APEC isolates. Among the 256 isolates, 224 (88%) possessed at least one antimicrobial resistance gene, with nearly half (107, 42%) showing multiple resistance genes. The majority of resistance genes were distributed among commensal isolates. Considering that the simultaneous detection of antimicrobial resistance tet(A), sulI, and blaTEM genes and the integron class I indicated a potential presence of the resistance pAPEC-O2-R plasmid, the results revealed that 35 (14%) of the isolates, all commensals, possessed this multigene resistance plasmid. The virulence plasmid was never found in combination with the antimicrobial resistance plasmid. The presence of the ColV plasmid or the combination of iss and tsh genes in the majority of APEC isolates supports the notion that when found together, the plasmid, iss, and tsh serve as good markers for APEC. These data indicate that different resistant E. coli pathotypes can be found in broiler chickens and that the distribution of such pathotypes and certain virulence determinants could be modulated by antimicrobial agent feed supplementation.Several classes of antimicrobial agents, such as glycolipids (bambermycin), cyclic peptides (bacitracin), ionophores (monensin and salinomycin), streptogramins (virginiamycin), and β-lactams (penicillin), are widely used as food additives in modern animal husbandry to prevent infections and promote growth (6). Increasing antimicrobial resistance in animals and its potential threat to human health led to the ban of bacitracin, spiramycin, tylosin, and virginiamycin as feeding additives by the European Union in 1999 (7, 46). Although this precautionary measure is still controversial because of being seen as having a negligible impact on human health, negative consequences for animal health and welfare, including economic losses for farmers, were subsequently observed in Europe (7). In stark contrast, however, the ban has been beneficial in reducing the total quantity of antibiotics administered to food animals (7, 47). Under good production conditions and correct use of antibiotics, poultry production is reported to be competitive (14, 47, 48) and even beneficial in reducing antimicrobial resistance in important food animal reservoirs and thus the potential threat to public health (48).Escherichia coli is generally considered a commensal member of the normal gastrointestinal microflora in humans and animals, yet some strains are known to cause serious morbidity and mortality. The expression of various virulence factors, which affect cellular processes, can result in different clinical diseases, such as cystitis, pyelonephritis, sepsis/meningitis, and gastroenteritis. The possession of different virulence gene subsets can further define the E. coli pathotype (31). The extraintestinal pathogenic E. coli (ExPEC) strains are epidemiologically and phylogenetically distinct from both intestinal pathogenic and commensal strains (43). In North America, annually, several million cases of urinary tract infections, abdominal infections, pelvic infections, pneumonia, meningitis, and sepsis are caused by ExPEC (42). In poultry production, avian pathogenic E. coli (APEC) is responsible for significant economic losses. APEC strains induce extraintestinal diseases such as air sacculitis, colibacillosis, polysorositis, and septicemia in birds (9, 21, 22, 31, 35, 45). Although no specific set of virulence factors has been clearly linked to APEC strains, most identified virulence factors are similar to those frequently associated with ExPEC (36).Bearing in mind that the avian intestinal environment has been considered a reservoir of E. coli having zoonotic potential (15) and the possible contamination of poultry products with such bacteria during slaughter, the impact of antimicrobial feeding additives on the distribution and dissemination of bacterial pathotypes and antibiotic resistance needs to be explored to address human, animal, and environmental health concerns. To this end, an E. coli DNA virulence microarray previously employed to assess the genotypes (virulence and antibiotic resistance genes) of E. coli strains isolated from different environmental ecosystems and from the chicken intestinal tract (1, 10, 19, 20, 33) was used. The aim of the present trial was to investigate the distributions of pathotypes and of virulence and antibiotic resistance genes in E. coli isolates from broilers fed with antimicrobial supplementation diets including bambermycin, penicillin, salinomycin, bacitracin, chlortetracycline, virginiamycin, monensin, and narasin.  相似文献   

10.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

11.
In most cases, Escherichia coli exists as a harmless commensal organism, but it may on occasion cause intestinal and/or extraintestinal disease. Enterotoxigenic E. coli (ETEC) is the predominant cause of E. coli-mediated diarrhea in the developing world and is responsible for a significant portion of pediatric deaths. In this study, we determined the complete genomic sequence of E. coli H10407, a prototypical strain of enterotoxigenic E. coli, which reproducibly elicits diarrhea in human volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains, revealing that the chromosome is closely related to that of the nonpathogenic commensal strain E. coli HS and to those of the laboratory strains E. coli K-12 and C. Furthermore, these analyses demonstrated that there were no chromosomally encoded factors unique to any sequenced ETEC strains. Comparison of the E. coli H10407 plasmids with those from several ETEC strains revealed that the plasmids had a mosaic structure but that several loci were conserved among ETEC strains. This study provides a genetic context for the vast amount of experimental and epidemiological data that have been published.Current dogma suggests the Gram-negative motile bacterium Escherichia coli colonizes the infant gut within hours of birth and establishes itself as the predominant facultative anaerobe of the colon for the remainder of life (3, 59). While the majority of E. coli strains maintain this harmless existence, some strains have adopted a pathogenic lifestyle. Contemporary tenets suggest that pathogenic strains of E. coli have acquired genetic elements that encode virulence factors and enable the organism to cause disease (12). The large repertoire of virulence factors enables E. coli to cause a variety of clinical manifestations, including intestinal infections mediating diarrhea and extraintestinal infections, such as urinary tract infections, septicemia, and meningitis. Based on clinical manifestation of disease, the repertoire of virulence factors, epidemiology, and phylogenetic profiles, the strains causing intestinal infections can be divided into six separate pathotypes, viz., enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterohemorrhagic E. coli (EHEC), diffuse adhering E. coli (DAEC), and enterotoxigenic E. coli (ETEC) (33, 35, 39).ETEC is responsible for the majority of E. coli-mediated cases of human diarrhea worldwide. It is particularly prevalent among children in developing countries, where sanitation and clean supplies of drinking water are inadequate, and in travelers to such regions. It is estimated that there are 200 million incidences of ETEC infection annually, resulting in hundreds of thousands of deaths in children under the age of 5 (55, 64). The essential determinants of ETEC virulence are traditionally considered to be colonization of the host small-intestinal epithelium via plasmid-encoded colonization factors (CFs) and subsequent release of plasmid-encoded heat-stable (ST) and/or heat-labile (LT) enterotoxins that induce a net secretory state leading to profuse watery diarrhea (20, 62). More recently, additional plasmid-encoded factors have been implicated in the pathogenesis of ETEC, namely, the EatA serine protease autotransporter (SPATE) and the EtpA protein, which acts as an intermediate in the adhesion between bacterial flagella and host cells (23, 32, 42, 46). Furthermore, a number of chromosomal factors are thought to be involved in virulence, e.g., the invasin Tia; the TibA adhesin/invasin; and LeoA, a GTPase with unknown function (14, 21, 22). E. coli H10407 is considered a prototypical ETEC strain; it expresses colonization factor antigen 1 (CFA/I) and the heat-stable and heat labile toxins. Loss of a 94.8-kb plasmid encoding CFA/I and a gene for ST enterotoxin from E. coli strain H10407 leads to reduced ability to cause diarrhea (17).Here, we report the complete genome sequence and virulence factor repertoire of the prototypical ETEC strain H10407 and the nucleotide sequence and gene repertoire of the plasmids from ETEC strain E1392/75, and we describe a novel conserved secretion system associated with the sequenced ETEC strains.  相似文献   

12.
13.
14.
15.
The diversity of the Escherichia coli species is in part due to the large number of mobile genetic elements that are exchanged between strains. We report here the identification of a new integrative and conjugative element (ICE) of the pKLC102/PAGI-2 family located downstream of the tRNA gene pheU in the E. coli strain BEN374. Indeed, this new region, which we called ICEEc2, can be transferred by conjugation from strain BEN374 to the E. coli strain C600. We were also able to transfer this region into a Salmonella enterica serovar Typhimurium strain and into a Yersinia pseudotuberculosis strain. This transfer was then followed by the integration of ICEEc2 into the host chromosome downstream of a phe tRNA gene. Our data indicated that this transfer involved a set of three genes encoding DNA mobility enzymes and a type IV pilus encoded by genes present on ICEEc2. Given the wide distribution of members of this family, these mobile genetic elements are likely to play an important role in the diversification of bacteria.The fantastic diversity of the Escherichia coli species has been known for a long time. With modern sequencing strategies, the molecular bases of this diversity are now being unraveled (49). Analyzing the genome of 20 E. coli strains, Touchon et al. recently showed that only a minority of genes, approximately 1,900 genes, were shared by all E. coli strains and constituted the core genome of the E. coli species (50). Additionally, the total number of genes found in all E. coli strains, the pan-genome, is an order of magnitude larger than this core genome (50). The non-core genome of a strain, also called flexible gene pool, is therefore made of a wide diversity of genes. This genetic diversity of the E. coli species translates into a diversity of phenotypic properties. While most E. coli strains are commensal of the gastrointestinal tract of humans and warm-blooded animals, a significant number are responsible for different diseases in humans and animals (22), including extraintestinal infections in chickens; strains isolated from such cases are designated by the term APEC for avian pathogenic E. coli (10).This diversity arises from frequent horizontal gene transfers of mobile genetic elements such as transposons, plasmids, phages, genomic islands, or integrative and conjugative elements (ICEs) (11, 21, 34). Among these mobile genetic elements, ICEs have a particular place as they share properties with both plasmids, genomic islands, and transposons; they can be defined as elements that encode all the necessary machineries that allow their excision from the chromosome, their transfer to a recipient strain, and their integration into the recipient strain''s genome (5, 6, 46, 54). Well-known representatives of this class of genetic elements include Tn916 discovered in Enterococcus faecalis, the conjugative transposon CTnDOT in Bacteroides thetaiotaomicron, ICEKp1 in Klebsiella pneumoniae, SXT/R391-related elements, PFGI-1 in Pseudomonas fluorescens, and the clc element in Pseudomonas sp. strain B13 as well as ICEBs1 in Bacillus subtilis and ICEEc1 in the E. coli strain ECOR31 (1, 39, 44, 46, 54). Typically, ICEs contain at least three modules that are required for key steps in the ICE''s life cycle: an excision/integration module, a transfer module, and a regulation module (54). Besides these, ICEs often contain cargo regions that confer on their host a diverse array of properties, such as virulence properties (ICEEc1), antibiotic resistance (SXT), or degradation of chemical compounds (clc). Because of their self-transfer abilities and their diverse accessory gene repertoires, ICEs are very likely to play a major role in bacteria evolution (46).A new family of ICEs has recently gained interest and was named the pKLC102/PAGI-2 family. The first element of this family, the clc element, was discovered in Pseudomonas sp. strain B13 and confers on the bacteria the possibility to degrade aromatic compounds (42). The transfer of this element was discovered long before its complete sequence was characterized (16). Other members of this family include several elements present in Pseudomonas strains such as PAGI-1 and PAGI-2 as well as the pKLC102 element first considered to be a plasmid but later on shown to be an ICE because of its ability to integrate into the chromosome of its host (23, 52). pKLC102/PAGI-2 elements share a set of core genes (33) and, like most ICEs and genomic islands, are all integrated downstream of tRNA genes (26, 52). The transfer between strains has been demonstrated, albeit with different frequencies, for only a few members, such as the clc element, Pseudomonas aeruginosa pathogenicity island 1 (PAPI-1), and ICEHin1056 from Haemophilus influenzae (20, 37, 41); this transfer involves the type IV pilus (20), the integrase (40), and in some cases the formation of a circular intermediate of the excised ICE (24).In order to identify new accessory genes of APEC strains, we previously described tRNA loci in the E. coli genome that could represent potential insertion sites for new genomic islands (18). We had already used this strategy to characterize the AGI-3 region that is involved in the virulence of an avian pathogenic E. coli strain and that confers the ability to grow on fructooligosaccharides (7, 43). During this tRNA screening, we showed that genomic islands might potentially be present downstream of the tRNA genes argW, leuX, pheU, pheV, selC, serU, and thrW in several APEC strains.In this report, we describe the identification of a new genomic island located downstream of pheU in the APEC strain BEN374. This region, which we named ICEEc2, was fully sequenced, and its properties were analyzed in detail; ICEEc2 is a new ICE found in E. coli and belongs to the pKLC102/PAGI-2 family described above.  相似文献   

16.
17.
18.
19.
Despite the recognized potential of long-term survival or even growth of fecal indicators bacteria (FIB) in marine sediments, this compartment is largely ignored by health protection authorities. We conducted a large-scale study over approximately 50 km of the Marche coasts (Adriatic Sea) at depths ranging from 2 to 5 m. Total and fecal coliforms (FC) were counted by culture-based methods. Escherichia coli was also quantified using fluorescence in situ hybridization targeting specific 16S rRNA sequences, which yielded significantly higher abundances than culture-based methods, suggesting the potential importance of viable but nonculturable E. coli cells. Fecal coliforms displayed high abundances at most sites and showed a prevalence of E. coli. FC isolates (n = 113) were identified by API 20E, additional biochemical tests, and internal transcribed spacer-PCR. E. coli strains, representing 96% of isolates, were then characterized for genomic relatedness and phylogenetic group (A, B1, B2, and D) of origin by randomly amplified polymorphic DNA and multiplex-PCR. The results indicated that E. coli displayed a wide genotypic diversity, also among isolates from the same station, and that 44 of the 109 E. coli isolates belonged to groups B2 and D. Further characterization of B2 and D isolates for the presence of 11 virulence factor genes (pap, sfa/foc, afa, eaeA, ibeA, traT, hlyA, stx1, stx2, aer, and fyuA) showed that 90% of B2 and 65% of D isolates were positive for at least one of these. Most of the variance of both E. coli abundance and assemblage composition (>62%) was explained by a combination of physical-chemical and trophic variables. These findings indicate that coastal sediments could represent a potential reservoir for commensal and pathogenic E. coli and that E. coli distribution in marine coastal sediments largely depends upon the physical and trophic status of the sediment. We conclude that future sampling designs aimed at monitoring the microbiological quality of marine coastal areas should not further neglect the analysis of the sediment and that monitoring of these environments can be improved by including molecular methods as a complement of culture-based techniques.Marine environments contaminated by fecal material, derived from human or animal waste, may contain a large variety of pathogenic microorganisms. Health protection and monitoring programs analyze the contamination of aquatic ecosystems (20) but, due to technical and practical difficulties, the search of fecal indicator bacteria (FIB) is routinely preferred to the systematic search of all potential pathogens to assess the sanitary risk of a water body (17). Recreational seawaters are, for instance, classified on the basis of the concentration of Escherichia coli and Enterococcus spp. (21, 33, 40), assumed to be indicators of fecal contamination and of the presence of other pathogenic enteric bacteria. Exposure to waters contaminated with E. coli and Enterococcus spp. have been associated with an increased risk of contracting gastrointestinal and respiratory illnesses (10, 24, 31, 62, 64). Although most E. coli strains are harmless, some strains can cause a variety of intestinal and extraintestinal diseases (11, 57, 58, 62) such as diarrhea, urinary tract infections, bacteremia, sepsis, and meningitis (57). Phylogenetic analyses have shown that E. coli includes four main phylogroups (A, B1, B2, and D) and that most virulent extraintestinal strains belong to the groups B2 and D (11, 23, 46).The microbiological quality of marine waters is typically based exclusively on the water column, whereas sediments have received attention only recently (7, 14, 27, 45). Fecal coliforms (FC) and enterococci have been reported from marine sediments (5, 19, 41), and it has been also proposed that FIB accumulated in the sediments have the potential to contaminate the overlying waters by resuspension of sediment particles (35). There is evidence that FIB and pathogenic bacteria can survive longer in aquatic sediments than in the overlying water column (12, 34). However, the available knowledge on the environmental factors influencing the ecology of pathogenic bacteria in marine sediments is still extremely scant, and there are only few detailed studies on the pathogenic potential, genetic diversity, or population structure of FIB in sediments (1, 63).The development of molecular methods has permitted a range of new approaches to monitor the safety of recreational waters (2). Among the available molecular methods, the fluorescence in situ hybridization (FISH) based on probes specific to 16S or 23S rRNA can be utilized to detect and enumerate specific prokaryotic taxa (16, 59). Since the number of ribosomes varies, generally between 103 and 105 per cell, depending on the species and physiological state, FISH has also been used to provide evidence of an active metabolic state of the detected cells (2, 8). FISH can thus represent a good complement to culture-based methods, and provides reliable quantitative data in a short time (within 4 h). With regard to FIB, the use of FISH to detect total coliforms (TC) has proven to be difficult, due to their high phylogenetic heterogeneity (55). Conversely, the use of species-specific probes for the detection of single species, such as E. coli, is routinely used (22, 47, 53); however, it has been never tested on marine sediments.The objective of the present study was to investigate the microbiological quality of coastal marine sediments along a large area of the Adriatic Sea (Central Mediterranean Sea) and to evaluate the presence and distribution of specific bacterial genotypes associated with different marine areas. More specifically, it was our aim to evaluate whether marine sediments may be a potential reservoir of active pathogenic E. coli and thus represent a risk for human health. To do this, we analyzed (i) the abundance and distribution of TC and FC; (ii) the abundance and distribution of E. coli strains, along with their genetic relatedness; and (iii) the presence of extraintestinal pathogenic E. coli carrying virulence gene factors. To determine bacterial abundance, culture-dependent (the membrane filtration [MF] technique) and culture-independent (the FISH technique) approaches were used. Finally, to identify the factors potentially responsible for the accumulation and survival of E. coli in the benthic environment, we investigated the environmental variables possibly related to the distribution of FIB.  相似文献   

20.
Soils are typically considered to be suboptimal environments for enteric organisms, but there is increasing evidence that Escherichia coli populations can become resident in soil under favorable conditions. Previous work reported the growth of autochthonous E. coli in a maritime temperate Luvic Stagnosol soil, and this study aimed to characterize, by molecular and physiological means, the genetic diversity and physiology of environmentally persistent E. coli isolates leached from the soil. Molecular analysis (16S rRNA sequencing, enterobacterial repetitive intergenic consensus PCR, pulsed-field gel electrophoresis, and a multiplex PCR method) established the genetic diversity of the isolates (n = 7), while physiological methods determined the metabolic capability and environmental fitness of the isolates, relative to those of laboratory strains, under the conditions tested. Genotypic analysis indicated that the leached isolates do not form a single genetic grouping but that multiple genotypic groups are capable of surviving and proliferating in this environment. In physiological studies, environmental isolates grew well across a broad range of temperatures and media, in comparison with the growth of laboratory strains. These findings suggest that certain E. coli strains may have the ability to colonize and adapt to soil conditions. The resulting lack of fecal specificity has implications for the use of E. coli as an indicator of fecal pollution in the environment.Escherichia coli is a well-established indicator of fecal contamination in the environment. The organism''s validity as an indicator of water pollution is dependent, among other factors, on its fecal specificity and its inability to multiply outside the primary host, the gastrointestinal tracts of humans and warm-blooded animals (9). While many pathogens and indicator organisms are considered to be poorly adapted for long-term survival, or proliferation, outside their primary hosts (24), there is increasing evidence that this view needs to be reconsidered with respect to E. coli (17, 38). In particular, questions remain about its fate and survival capacity in environmental matrices, such as soil. While the habitat within the primary host is characterized by constant warm temperature conditions and a ready availability of nutrients and carbon, that of soil is often characterized by oligotrophic and highly dynamic conditions, temperature and pH variation, predatory populations, and competition with environmentally adapted indigenous microflora (39). Soils are thus typically considered to be suboptimal environments for enteric organisms, and growth is thought to be negligible, with die-off of organisms at rates reported to be a function of the interaction of numerous factors, including the type and physiological state of the microorganism, the physical, chemical, and biological properties of the soil, atmospheric conditions (including sunlight, moisture, and temperature), and organism application method (10).In recent years, the growth of E. coli in soils, sediments, and water in tropical and subtropical regions has been widely documented, and the organism is considered to be an established part of the soil biota within these regions (4, 5, 7, 12, 14, 19, 25, 32). The integration of E. coli as a component of the indigenous microflora in soils of tropical and subtropical regions may be attributable to the nutrient-rich nature and warm temperatures of these habitats (21, 39), combined with the metabolic versatility of the organism and its simple nutritional requirements (21). In addition to tropical and subtropical regions, the presence of autochthonous E. coli populations in the cooler soils of temperate and northern temperate regions has also been reported (6, 20, 22, 37), with one report on an alpine soil (34) and, most recently, a report on a maritime temperate grassland soil (3). The growth of E. coli within soils can act as a reservoir for the further contamination of bodies of water (20, 31, 32), compromising the indicator status of E. coli within these regions. As such, an understanding of the ecological characteristics of E. coli in soil is critical to its validation as an indicator organism. With respect to the input of pathogenic E. coli into the environment, this knowledge becomes essential for assessing the potential health risk to human and animal hosts from agricultural activities such as landspreading of manures and slurries (24).It has been suggested that E. coli can sustain autochthonous populations within soils in temperate regions, wherever favorable conditions exist (21). The phenotypic traits of the organism (including its metabolic diversity and its ability to grow both aerobically and anaerobically in a broad temperature range) may assist the persistence, colonization, and growth of E. coli when conditions permit. The challenging nature of the soil environment and the disparity of conditions between the primary host and the secondary habitat raises the question of how these E. coli populations survive and compete for niche space among the highly competitive and diverse coexisting populations of the indigenous microflora (15, 21). There is some evidence that naturalized E. coli may form genetically distinct populations in the environment (17, 20, 34, 36). This suggests that autochthonous E. coli populations in soil may have increased environmental fitness, facilitating their residence in soil (20, 34, 38). Little is known, however, of the physiology of these organisms, and their capacity for survival in soil remains poorly understood (21).Previous work (3) recorded continuous low-level leaching of viable E. coli from lysimeters of a poorly drained Luvic Stagnosol soil type, more than 9 years after the last application of fecal material. This finding was indicative of the growth of E. coli within the soil and suggested the presence of autochthonous E. coli populations within the soil that could be leached subsequently. To our knowledge, prior to this report, naturalized autochthonous E. coli populations persisting under the relatively oligotrophic, low-temperature conditions of maritime temperate soil environments had not been described previously. Growth within this soil was attributed chiefly to favorable characteristics of the soil, which include high clay and moisture contents, nutrient retention, and the presence of anaerobic zones. The objective of this work was to characterize, by molecular and physiological means, the genetic diversity and physiology of environmentally persistent E. coli isolates leached. In particular, we were interested in determining if the isolates possessed phenotypic characteristics that may enhance their capacity to survive and occupy niche space within the soil. This study tested the hypothesis that E. coli clones persisting in lysimeters of this soil form a genetically distinct grouping and possess a physiology tailored to the soil environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号