首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Highly active antiretroviral therapy (HAART) can reduce human immunodeficiency virus type 1 (HIV-1) viremia to clinically undetectable levels. Despite this dramatic reduction, some virus is present in the blood. In addition, a long-lived latent reservoir for HIV-1 exists in resting memory CD4+ T cells. This reservoir is believed to be a source of the residual viremia and is the focus of eradication efforts. Here, we use two measures of population structure—analysis of molecular variance and the Slatkin-Maddison test—to demonstrate that the residual viremia is genetically distinct from proviruses in resting CD4+ T cells but that proviruses in resting and activated CD4+ T cells belong to a single population. Residual viremia is genetically distinct from proviruses in activated CD4+ T cells, monocytes, and unfractionated peripheral blood mononuclear cells. The finding that some of the residual viremia in patients on HAART stems from an unidentified cellular source other than CD4+ T cells has implications for eradication efforts.Successful treatment of human immunodeficiency virus type 1 (HIV-1) infection with highly active antiretroviral therapy (HAART) reduces free virus in the blood to levels undetectable by the most sensitive clinical assays (18, 36). However, HIV-1 persists as a latent provirus in resting, memory CD4+ T lymphocytes (6, 9, 12, 16, 48) and perhaps in other cell types (45, 52). The latent reservoir in resting CD4+ T cells represents a barrier to eradication because of its long half-life (15, 37, 40-42) and because specifically targeting and purging this reservoir is inherently difficult (8, 25, 27).In addition to the latent reservoir in resting CD4+ T cells, patients on HAART also have a low amount of free virus in the plasma, typically at levels below the limit of detection of current clinical assays (13, 19, 35, 37). Because free virus has a short half-life (20, 47), residual viremia is indicative of active virus production. The continued presence of free virus in the plasma of patients on HAART indicates either ongoing replication (10, 13, 17, 19), release of virus after reactivation of latently infected CD4+ T cells (22, 24, 31, 50), release from other cellular reservoirs (7, 45, 52), or some combination of these mechanisms. Finding the cellular source of residual viremia is important because it will identify the cells that are still capable of producing virus in patients on HAART, cells that must be targeted in any eradication effort.Detailed analysis of this residual viremia has been hindered by technical challenges involved in working with very low concentrations of virus (13, 19, 35). Recently, new insights into the nature of residual viremia have been obtained through intensive patient sampling and enhanced ultrasensitive sequencing methods (1). In a subset of patients, most of the residual viremia consisted of a small number of viral clones (1, 46) produced by a cell type severely underrepresented in the peripheral circulation (1). These unique viral clones, termed predominant plasma clones (PPCs), persist unchanged for extended periods of time (1). The persistence of PPCs indicates that in some patients there may be another major cellular source of residual viremia (1). However, PPCs were observed in a small group of patients who started HAART with very low CD4 counts, and it has been unclear whether the PPC phenomenon extends beyond this group of patients. More importantly, it has been unclear whether the residual viremia generally consists of distinct virus populations produced by different cell types.Since the HIV-1 infection in most patients is initially established by a single viral clone (23, 51), with subsequent diversification (29), the presence of genetically distinct populations of virus in a single individual can reflect entry of viruses into compartments where replication occurs with limited subsequent intercompartmental mixing (32). Sophisticated genetic tests can detect such population structure in a sample of viral sequences (4, 39, 49). Using two complementary tests of population structure (14, 43), we analyzed viral sequences from multiple sources within individual patients in order to determine whether a source other than circulating resting CD4+ T cells contributes to residual viremia and viral persistence. Our results have important clinical implications for understanding HIV-1 persistence and treatment failure and for improving eradication strategies, which are currently focusing only on the latent CD4+ T-cell reservoir.  相似文献   

2.
Dengue is a common arthropod-borne flaviviral infection in the tropics, for which there is no vaccine or specific antiviral drug. The infection is often associated with serious complications such as dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), in which both viral and host factors have been implicated. RNA interference (RNAi) is a potent antiviral strategy and a potential therapeutic option for dengue if a feasible strategy can be developed for delivery of small interfering RNA (siRNA) to dendritic cells (DCs) and macrophages, the major in vivo targets of the virus and also the source of proinflammatory cytokines. Here we show that a dendritic cell-targeting 12-mer peptide (DC3) fused to nona-d-arginine (9dR) residues (DC3-9dR) delivers siRNA and knocks down endogenous gene expression in heterogenous DC subsets, (monocyte-derived DCs [MDDCs], CD34+ hematopoietic stem cell [HSC])-derived Langerhans DCs, and peripheral blood DCs). Moreover, DC3-9dR-mediated delivery of siRNA targeting a highly conserved sequence in the dengue virus envelope gene (siFvED) effectively suppressed dengue virus replication in MDDCs and macrophages. In addition, DC-specific delivery of siRNA targeting the acute-phase cytokine tumor necrosis factor alpha (TNF-α), which plays a major role in dengue pathogenesis, either alone or in combination with an antiviral siRNA, significantly reduced virus-induced production of the cytokine in MDDCs. Finally to validate the strategy in vivo, we tested the ability of the peptide to target human DCs in the NOD/SCID/IL-2Rγ−/− mouse model engrafted with human CD34+ hematopoietic stem cells (HuHSC mice). Treatment of mice by intravenous (i.v.) injection of DC3-9dR-complexed siRNA targeting TNF-α effectively suppressed poly(I:C)-induced TNF-α production by DCs. Thus, DC3-9dR can deliver siRNA to DCs both in vitro and in vivo, and this delivery approach holds promise as a therapeutic strategy to simultaneously suppress virus replication and curb virus-induced detrimental host immune responses in dengue infection.Dengue is a mosquito-borne flavivirus infection that has emerged as a serious public health problem worldwide. Four serotypes of dengue virus (DEN-1 to DEN-4) are capable of causing human disease varying in severity from acute self-limiting febrile illness to life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The plasma leakage, hemorrhagic manifestations, and shock that characterize DHF/DSS are considered to have an immunological basis, as they are more common during secondary infection with a heterologous dengue virus strain (15, 28, 33). However, severe clinical manifestations can also occur during primary dengue infection, pointing to a contributory role of viral virulence factors. The WHO estimates that more than 20,000 people worldwide, mainly children, die each year from serious complications of dengue. No specific antiviral therapies are currently available for treating the infection, and efforts to develop a safe prophylactic vaccine have been hindered by the complex role of the immune system in disease pathogenesis (39, 52, 57). Thus, novel treatment strategies that block viral replication and/or to attenuate the exaggerated cytokine response associated with DHF/DSS complications are urgently needed.Potent and specific gene silencing mediated by RNA interference (RNAi) has generated a great deal of interest in development of RNAi as a therapeutic strategy against viral infections (50, 54). Many studies have demonstrated the effectiveness of the RNAi approach to suppress flavivirus infection, including dengue virus replication in experimental cell lines (3, 23, 26, 42, 60). In addition, the versatility of RNAi could also be exploited to block important host mediators that contribute to dengue pathogenesis. However, the existence of four distinct dengue virus serotypes and the ability of viruses to develop resistance to RNAi by mutating their sequences will have to be taken into account before clinical use can be contemplated. A more serious hurdle for RNAi therapeutics is the specific delivery of small interfering RNA (siRNA) to relevant cell types.Even though dengue virus antigens have been detected in many tissues, including liver, spleen, lymph node, and skin of patients with DHF/DSS, macrophages and dendritic cells (DCs) are considered the predominant infected cell types (9, 36, 59). Following the bite of an infected Aedes mosquito, the initial local viral replication is believed to take place in the skin DCs, including myeloid DCs and Langerhans cells (31, 53, 59). Dengue-infected DCs play a key role in the immunopathogenesis of DHF/DSS, as, along with macrophages, they release proinflammatory cytokines and soluble factors that mediate plasma leakage, thrombocytopenia, and hypovolemic shock associated with severe dengue infection (14, 15, 29, 38). Therefore, development of a method to introduce siRNA into DCs would be an important step toward using RNAi therapeutically to suppress viral replication and/or to attenuate the vigorous host cytokine responses in dengue infection (7, 19).To target DCs, we used a previously characterized 12-amino-acid peptide identified from a phage display peptide library that specifically binds to a ligand expressed on DCs (10). In an earlier study, we demonstrated that fusing nucleic acid-binding nine d-arginine residues to a neuronal cell-targeting peptide enabled siRNA delivery to neuronal cells (27). Here, in a similar approach, we synthesized a chimeric peptide consisting of the DC-targeting peptide fused to nona-D-arginines (9dR) to target siRNA selectively to DCs. We investigated whether the DC3-9dR peptide could deliver siRNA targeting a dengue virus envelope sequence to reduce the viral load in DCs. As tumor necrosis factor alpha (TNF-α) is one of the acute-phase cytokines with a major role in inducing plasma leakage in dengue infection (8, 12, 17, 20), we also explored the possibility of reducing TNF-α expression in DC in vitro and in vivo. Our findings demonstrate the potential of a targeted RNAi-based approach for simultaneously decreasing viral load and reducing aberrant cytokine responses in DCs.  相似文献   

3.
4.
The generation of humanized BLT mice by the cotransplantation of human fetal thymus and liver tissues and CD34+ fetal liver cells into nonobese diabetic/severe combined immunodeficiency mice allows for the long-term reconstitution of a functional human immune system, with human T cells, B cells, dendritic cells, and monocytes/macrophages repopulating mouse tissues. Here, we show that humanized BLT mice sustained high-level disseminated human immunodeficiency virus (HIV) infection, resulting in CD4+ T-cell depletion and generalized immune activation. Following infection, HIV-specific humoral responses were present in all mice by 3 months, and HIV-specific CD4+ and CD8+ T-cell responses were detected in the majority of mice tested after 9 weeks of infection. Despite robust HIV-specific responses, however, viral loads remained elevated in infected BLT mice, raising the possibility that these responses are dysfunctional. The increased T-cell expression of the negative costimulator PD-1 recently has been postulated to contribute to T-cell dysfunction in chronic HIV infection. As seen in human infection, both CD4+ and CD8+ T cells demonstrated increased PD-1 expression in HIV-infected BLT mice, and PD-1 levels in these cells correlated positively with viral load and inversely with CD4+ cell levels. The ability of humanized BLT mice to generate both cellular and humoral immune responses to HIV will allow the further investigation of human HIV-specific immune responses in vivo and suggests that these mice are able to provide a platform to assess candidate HIV vaccines and other immunotherapeutic strategies.An ideal animal model of human immunodeficiency virus (HIV) infection remains elusive. Nonhuman primates that are susceptible to HIV infection typically do not develop immunodeficiency (63), and although the simian immunodeficiency virus (SIV) infection of rhesus macaques has provided many critically important insights into retroviral pathogenesis (30), biological and financial considerations have created some limitations to the wide dissemination of this model. The great need for an improved animal model of HIV itself recently has been underscored by the disappointing results of human trials of MRKAd5, an adenovirus-based HIV type 1 (HIV-1) vaccine. This vaccine was not effective and actually may have increased some subjects'' risk of acquiring HIV (53). In the wake of these disappointing results, there has been increased interest in humanized mouse models of HIV infection (54). The ability of humanized mouse models to test candidate vaccines or other immunomodulatory strategies will depend critically on the ability of these mice to generate robust anti-HIV human immune responses.Mice have provided important model systems for the study of many human diseases, but they are unable to support productive HIV infection, even when made to express human coreceptors for the virus (7, 37, 52). A more successful strategy to humanize mice has been to engraft human immune cells and/or tissues into immunodeficient severe combined immunodeficiency (SCID) or nonobese diabetic (NOD)/SCID mice that are unable to reject xenogeneic grafts (39, 42, 57). Early versions of humanized mice supported productive HIV infection and allowed investigators to begin to address important questions in HIV biology in vivo (23, 40, 43-45). More recently, human cord blood or fetal liver CD34+ cells have been used to reconstitute Rag2−/− interleukin-2 receptor γ chain-deficient (γc−/−) and NOD/SCID/γc−/− mice, resulting in higher levels of sustained human immune cell engraftment (27, 29, 61). These mice have allowed for stable, disseminated HIV infection (2, 4, 24, 65, 67), including mucosal transmission via vaginal and rectal routes (3). These mice recently have been used to demonstrate an important role for Treg cells in acute HIV infection (29) and to demonstrate that the T-cell-specific delivery of antiviral small interfering RNA is able to suppress HIV replication in vivo (31). These mice also have demonstrated some evidence of adaptive human immune responses, including the generation of HIV-specific antibody responses in some infected mice (2, 65), and some evidence of humoral and cell-mediated responses to non-HIV antigens or pathogens (24, 61). Most impressively, Rag2−/− γc−/− mice reconstituted with human fetal liver-derived CD34+ cells have generated humoral responses to dengue virus infection that demonstrated both class switching and neutralizing capacity (32). In spite of these advances, however, these models have not yet been reported to generate de novo HIV-specific cell-mediated immune responses, which are considered to be a crucial arm of host defense against HIV infection in humans.In contrast to humanized mouse models in which only human hematopoietic cells are transferred into immunodeficient mice, the surgical implantation of human fetal thymic and liver tissue has been performed in addition to the transfer of human hematopoietic stem cells (HSC) to generate mice in which human T cells are educated by autologous human thymic tissue rather than by the xenogeneic mouse thymus. Melkus and colleagues refer to mice they have reconstituted in this way as NOD/SCID-hu BLT (for bone marrow, liver, and thymus), or simply BLT, mice (41). We previously referred to mice that we have humanized in a similar way as NOD/SCID mice cotransplanted with human fetal thymic and liver tissues (Thy/Liv) and CD34+ fetal liver cells (FLC) (33, 60) but now adopt the designation BLT mice as well. BLT mice demonstrate the robust repopulation of mouse lymphoid tissues with functional human T lymphocytes (33, 41, 60) and can support the rectal and vaginal transmission of HIV (13, 59). Further, BLT mice demonstrate antigen-specific human immune responses against non-HIV antigens and/or pathogens (41, 60). The ability of these mice to generate human immune responses against HIV, however, has not yet been reported. In this study, we investigated whether the provision of autologous human thymic tissue in BLT mice generated by the cotransplantion of human fetal Thy/Liv tissues and CD34+ FLC would allow for the maturation of human T cells in humanized mice capable of providing improved cellular responses to HIV as well as providing adequate help for improved humoral responses. To describe the cells contributing to human immune responses in BLT mice, we also characterized the phenotypes of multiple subsets of T cells, B cells, dendritic cells (DCs), and monocytes/macrophages present in uninfected humanized mice. The generation of robust HIV-directed human cellular and humoral immune responses in these mice would further demonstrate the ability of humanized mice to provide a much needed platform for the evaluation of HIV vaccines and other novel immunomodulatory strategies.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) controllers maintain viremia at <2,000 RNA copies/ml without antiretroviral therapy. Viruses from controllers with chronic infection were shown to exhibit impaired replication capacities, in part associated with escape mutations from cytotoxic-T-lymphocyte (CTL) responses. In contrast, little is known about viruses during acute/early infection in individuals who subsequently become HIV controllers. Here, we examine the viral replication capacities, HLA types, and virus sequences from 18 HIV-1 controllers identified during primary infection. gag-protease chimeric viruses constructed using the earliest postinfection samples displayed significantly lower replication capacities than isolates from persons who failed to control viremia (P = 0.0003). Protective HLA class I alleles were not enriched in these early HIV controllers, but viral sequencing revealed a significantly higher prevalence of drug resistance mutations associated with impaired viral fitness in controllers than in noncontrollers (6/15 [40.0%] versus 10/80 [12.5%], P = 0.018). Moreover, of two HLA-B57-positive (B57+) controllers identified, both harbored, at the earliest time point tested, signature escape mutations within Gag that likewise impair viral replication capacity. Only five controllers did not express “protective” alleles or harbor viruses with drug resistance mutations; intriguingly, two of them displayed typical B57 signature mutations (T242N), suggesting the acquisition of attenuated viruses from B57+ donors. These data indicate that acute/early stage viruses from persons who become controllers have evidence of reduced replication capacity during the initial stages of infection which is likely associated with transmitted or acquired CTL escape mutations or transmitted drug resistance mutations. These data suggest that viral dynamics during acute infection have a major impact on HIV disease outcome.Human immunodeficiency virus type I (HIV-1)-infected individuals who control viremia spontaneously without antiviral therapy have been termed HIV controllers (3, 18, 21, 48, 52). Unraveling the mechanisms associated with this phenotype should provide important insights regarding HIV pathogenesis and could contribute to vaccine development.Host and viral genetics, as well as host innate and adaptive immune responses, influence the rate of disease progression in HIV-1 infection (reviewed in reference 18). Several studies have reported the correlation between in vitro HIV replication capacity and level of plasma virus loads or disease progression in individuals with chronic infection (6, 13, 35, 45, 50, 55). Studies of HIV-1 elite controllers (EC), who control viremia to below the limit of detection in commercial assays, have revealed the presence of replication-competent viruses in these individuals (7), although these viruses appear to be less fit based on studies of envelope (35) and Gag-protease (45). This fitness defect in the chronic phase of infection is due at least in part to fitness-impairing mutations induced by cytotoxic-T-lymphocyte (CTL) responses restricted by “protective” HLA class I alleles (46).In contrast, little is known about viruses obtained from the acute/early phase of infection in persons who subsequently become HIV-1 controllers, largely due to the difficulty in enrolling such people during the acute/early phase of infection. The characterization of acute/early-phase viruses in individuals who subsequently achieve low set-point virus loads is of paramount importance to our understanding of the mechanisms of HIV-1 control.In the present study, we analyzed acute/early-phase plasma HIV RNA sequences from 18 untreated individuals who were diagnosed during the acute/early phase and subsequently became controllers (<2,000 RNA copies/ml). We compared these to sequences from a group of HIV-1 noncontrollers enrolled similarly during acute/early infection. We also generated chimeric viruses carrying patient-derived gag-protease sequences from acute/early-phase infection and compared the viral replication capacities of the chimeric viruses from controllers and from noncontrollers.We observed that the chimeric viruses derived from controllers have significantly reduced replicative capacities compared to those from noncontrollers. Moreover, we observed that at least 80% of these individuals who go on to become controllers featured transmission of attenuated drug-resistant viruses, transmission of HLA-B57-restricted CTL escape variants to HLA-mismatched recipients, selection of attenuated CTL escape variants in HLA-B57-positive (B57+) recipients, or combinations of these factors. Taken together, these results indicate that the initial viral dynamics have a major influence on the subsequent course of disease.  相似文献   

6.
7.
8.
A novel flavivirus was isolated from mosquitoes in Finland, representing the first mosquito-borne flavivirus from Northern Europe. The isolate, designated Lammi virus (LAMV), was antigenically cross-reactive with other flaviviruses and exhibited typical flavivirus morphology as determined by electron microscopy. The genomic sequence of LAMV was highly divergent from the recognized flaviviruses, and yet the polyprotein properties resembled those of mosquito-borne flaviviruses. Phylogenetic analysis of the complete coding sequence showed that LAMV represented a distinct lineage related to the Aedes sp.-transmitted human pathogenic flaviviruses, similarly to the newly described Nounané virus (NOUV), a flavivirus from Africa (S. Junglen et al., J. Virol. 83:4462-4468, 2009). Despite the low sequence homology, LAMV and NOUV were phylogenetically grouped closely, likely representing separate species of a novel group of flaviviruses. Despite the biological properties preferring replication in mosquito cells, the genetic relatedness of LAMV to viruses associated with vertebrate hosts warrants a search for disease associations.The genus Flavivirus in the family Flaviviridae consists of 53 recognized virus species that are enveloped, positive-sense single-stranded RNA viruses. The virion consists of three structural proteins: capsid (C), membrane (M), and envelope (E). In addition, seven nonstructural proteins are present in infected cells (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). Based on their antigenic properties and vector associations, flaviviruses have been grouped into mosquito-borne, tick-borne, and no-known-vector viruses and have been isolated from vertebrates, bats, and rodents (15, 25). The grouping of flaviviruses according to their transmission mode is strongly supported by phylogenetic analyses of their genomic sequences (9, 18, 31).Mosquito-borne flaviviruses are a large and divergent group of viruses that can be differentiated phylogenetically into those associated either with encephalitic disease and transmission by Culex spp. mosquitoes or with diseases with hemorrhagic complications and transmission by Aedes spp. (18). Seven groups of mosquito-borne flaviviruses, namely, the Aroa, dengue, Japanese encephalitis, Kokobera, Ntaya, Spondweni, and yellow fever virus groups are recognized (15, 25). These groups include important animal and human pathogens such as dengue virus (DENV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and yellow fever virus (YFV).Unclassified insect flaviviruses that have no recognized association with vertebrates have been isolated from a variety of mosquito species and also from mosquito cell lines. These insect flaviviruses do not appear to infect vertebrate cells and are not associated with human or animal disease. The cell fusing agent virus (CFAV), a tentative species in the genus Flavivirus, was the first of these insect viruses to be characterized (5, 40), Although CFAV was originally identified in cultured mosquito cells, it was later isolated from mosquitoes collected in Puerto Rico (7). This as-yet-unclassified insect flavivirus group now also includes Kamiti river virus (KRV) isolated in Kenya (10, 38) and a virus isolated from Culex spp. in Japan, designated culex flavivirus (22). In addition, related viral sequences or isolates have been recently reported from mosquitoes in Spain (1), the United States and Trinidad (26), and Mexico (14). Moreover, the identification of flaviviruslike sequences integrated within the genomes of Aedes mosquitoes further complicates the evolutionary history of the flaviviruses. These sequences, currently referred to as cell silent agent are genetically most closely related to CFAV and possibly share common evolutionary origin (11). Phylogenetically, the insect viruses form a divergent outgroup that may represent a primordial flavivirus lineage. Apart from the insect flaviviruses, the other recently discovered novel flaviviruses represent highly divergent lineages, such as Tamana bat virus (13), and Ngoye virus (20). Recently, a novel flavivirus, Nounané virus (NOUV) was isolated from a novel mosquito vector species, Uranotaenia mashonaensis in Côte d''Ivoire (23), and was shown to be phylogenetically related to the human pathogenic mosquito-borne flaviviruses.Several arboviruses have been reported from Northern Europe including the flavivirus tick-borne encephalitis virus (24, 36) but, to date, no mosquito-borne flaviviruses have been isolated. Our aim was to screen for arboviruses in Finland by studying mosquitoes using virus isolation and subsequent arbovirus antigen detection, which resulted in the identification of a novel flavivirus. We present here the isolation and characterization of this isolate, designated Lammi virus (LAMV), and discuss the implications of our findings.  相似文献   

9.
Genomic hypermutation of RNA viruses, including human immunodeficiency virus type 1 (HIV-1), can be provoked by intrinsic and extrinsic pressures, which lead to the inhibition of viral replication and/or the progression of viral diversity. Human APOBEC3G was identified as an HIV-1 restriction factor, which edits nascent HIV-1 DNA by inducing G-to-A hypermutations and debilitates the infectivity of vif-deficient HIV-1. On the other hand, HIV-1 Vif protein has the robust potential to degrade APOBEC3G protein. Although subsequent investigations have revealed that lines of APOBEC3 family proteins have the capacity to mutate HIV-1 DNA, it remains unclear whether these endogenous APOBEC3s, including APOBEC3G, contribute to mutations of vif-proficient HIV-1 provirus in vivo and, if so, what is the significance of these mutations. In this study, we use a human hematopoietic stem cell-transplanted humanized mouse (NOG-hCD34 mouse) model and demonstrate the predominant accumulation of G-to-A mutations in vif-proficient HIV-1 provirus displaying characteristics of APOBEC3-mediated mutagenesis. Notably, the APOBEC3-associated G-to-A mutation of HIV-1 DNA that leads to the termination of translation was significantly observed. We further provide a novel insight suggesting that HIV-1 G-to-A hypermutation is independently induced by individual APOBEC3 proteins. In contrast to the prominent mutation in intracellular proviral DNA, viral RNA in plasma possessed fewer G-to-A mutations. Taken together, these results provide the evidence indicating that endogenous APOBEC3s are associated with G-to-A mutation of HIV-1 provirus in vivo, which can result in the abrogation of HIV-1 infection.Human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3 [A3]) family proteins are potent mutators of a broad spectrum of retroviruses, including human immunodeficiency virus type 1 (HIV-1) (4, 5, 13, 16, 29, 61). A3s are cellular cytidine deaminases that convert C in the viral minus-strand cDNA to U, resulting in the alteration of G to A in the nascent proviral DNA. Several A3 proteins are incorporated into progeny virions and mutate viral cDNA in the invaded cells, which is thought to result in the inhibition of viral replication (4, 5, 13, 16, 29, 46, 61). On the other hand, an HIV-1 accessory protein, viral infectivity factor (Vif), has the ability to counteract the incorporation of certain A3 proteins such as A3G and A3F into progeny virions by degrading these proteins through the proteasome-dependent pathway (31, 45, 47, 50). Lines of in vitro investigations have elucidated the mechanisms of G-to-A hypermutation of HIV-1 DNA mediated by A3s and the counteracting ability of Vif against A3s, which have shed light on the relevance of host-retrovirus interaction (4, 5, 21, 59, 60). Nevertheless, the physiological balance between intrinsic A3s and Vif in vivo is poorly understood, and the significance of A3-mediated mutagenesis for HIV-1 replication in vivo remains unresolved.In order to investigate the dynamics of human-specific pathogens in vivo, we have recently constructed a humanized mouse (NOG-hCD34 mouse) model by xenotransplanting human CD34+ hematopoietic stem cells into an immunodeficient NOD/SCID/IL-2R-γnull (NOG) mouse (15, 34). In the humanized mice, human leukocytes, including human CD4+ T cells, are successfully differentiated de novo and are stably and longitudinally maintained for more than 1 year (15, 34). By utilizing the humanized mice, we have established a novel animal model for HIV-1 infection (34). Our humanized mice are capable of supporting persistent replication of CCR5-tropic HIV-1 for more than 7 months and mirror the characteristics of HIV-1 pathogenesis, such as the depletion of memory CD4+ T cells in the periphery and the preferential infection of effector memory T cells (34).Recently, Ince et al. reported the significance of HIV-1 mutation and its influence on HIV-1 expansion by using a humanized mouse model system (14). In that paper, however, the authors particularly focused on the diversity of the HIV-1 env gene, and therefore, the involvement and the significance of A3-associated mutagenesis in HIV-1 expansion in vivo remain unclear.In this study, by using the humanized mouse (NOG-hCD34 mouse) model, we show that G-to-A mutation of vif-proficient HIV-1 provirus exhibiting the characteristics of A3-mediated mutagenesis occurs in vivo. We also provide a novel insight indicating that intrinsic A3-mediated G-to-A mutation is independently caused by endogenous A3 protein. Furthermore, in contrast to the prominent accumulation of G-to-A mutation in provirus, we observed few mutations in virion-associated RNA in plasma. Based on our findings, we discuss the possibility that endogenous A3s have a significant influence on HIV-1 infection in vivo.  相似文献   

10.
Genital herpes, caused by herpes simplex virus type 2 (HSV-2), is one of the most prevalent sexually transmitted diseases worldwide and a risk factor for acquiring human immunodeficiency virus. Although many vaccine candidates have shown promising results in animal models, they have failed to be effective in human trials. In this study, a humanized mouse strain was evaluated as a potential preclinical model for studying human immune responses to HSV-2 infection and vaccination. Immunodeficient mouse strains were examined for their abilities to develop human innate and adaptive immune cells after transplantation of human umbilical cord stem cells. A RAG2−/− γc−/− mouse strain with a BALB/c background was chosen as the most appropriate model and was then examined for its ability to mount innate and adaptive immune responses to intravaginal HSV-2 infection and immunization. After primary infection, human cells in the lymph nodes were able to generate a protective innate immune response and produce gamma interferon (IFN-γ). After intravaginal immunization and infection, human T cells and NK cells were found in the genital tract and iliac lymph nodes. In addition, human T cells in the spleen, lymph nodes, and vaginal tract were able to respond to stimulation with HSV-2 antigens by replicating and producing IFN-γ. Human B cells were also able to produce HSV-2-specific immunoglobulin G. These adaptive responses were also shown to be protective and reduce local viral replication in the genital tract. This approach provides a means for studying human immune responses in vivo using a small-animal model and may become an important preclinical tool.Genital herpes, caused primarily by herpes simplex virus type 2 (HSV-2), is one of the most prevalent sexually transmitted diseases in the world and is associated with substantial morbidity (13). After initial infection of the genital tract, the virus establishes latency within the nervous system and thus maintains lifelong infection in humans. Latent virus can reactivate and cause recurrent symptoms, including genital lesions; however, subclinical infection and asymptomatic viral shedding also occur (11, 35, 40, 53). HSV-2 has gained increasing interest in the light of evidence that it is a major risk factor for human immunodeficiency virus type 1 (HIV-1) acquisition and transmission and for the progression of HIV-1 infection (8, 9, 17, 25, 37, 55, 56). In addition, there is evidence that anti-HSV therapy can reduce the amount of infectious HIV-1 in the genital tracts of women (9, 45). Although antiviral treatment is available and can reduce the severity of the infection, compliance problems, as well as difficulty in diagnosing infection in patients, have hampered efforts to control the disease. A vaccine would provide a more effective way of preventing or limiting infection and would therefore greatly reduce the social and economic burdens caused by HSV-2 infection.Several vaccine candidates exist; however, they have proven to be less successful in clinical trials than anticipated, and new strategies may need to be developed (24, 61). A key concern is that preclinical vaccine strategies have been evaluated largely by using studies performed with mouse models of HSV-2 infection and, thus, the immune responses observed were mediated by murine cells. As a consequence, the results of these studies may not accurately represent the human immune response to infection. In order to develop an effective vaccine and/or treatment, it is necessary to understand which immune mechanisms provide protection against infection at the site of viral entry, the vaginal tract, and how these immune responses can be induced in humans.Innate and adaptive immune responses are both important for controlling HSV-2 infection. Innate immune cells such as NK and NKT cells are required for protection against genital HSV-2 infection in mice (1) and in humans; NK cells accumulate at sites of HSV-2 infection and can lyse HSV-infected cells (30, 67). Adaptive immune responses to HSV-2 include the cellular response mediated by CD4+ and CD8+ T cells and the humoral response mediated by B cells and antibodies. There is much evidence that T cells play a crucial role in protection against HSV-2 in mice and humans (28). T cells are present in herpes lesions, and depletion of T cells in mice greatly reduces protection (16, 27, 29, 30, 44, 51, 70). Gamma interferon (IFN-γ), which is produced early after infection by NK cells and later by CD4+ T cells, has been shown to be a crucial cytokine for the control of HSV (43, 52, 58, 63). Although HSV-2-specific antibodies are produced in response to infection and vaccination, a correlation with protection in humans has not been established (2, 3, 7, 10, 11, 48). In mice, a role for antibodies early after infection has been shown; however, if B cells are knocked out, mice are still able to eventually clear the virus (16, 50). Although we do not have a complete understanding of the components that are necessary for protection, it appears that both innate and adaptive immune responses will be required and that it will be important to elicit these responses at the site of infection in the genital tract.The lack of an effective vaccine and accurate translation of results obtained with mice to humans indicates a need for a more relevant preclinical model to study human immune responses and disease. Substantial improvements in the development of humanized mice have made them a novel tool for the study of human diseases (69). Human CD34+ stem cells have been injected into several immunodeficient mouse strains, such as NOD/SCID/γc−/− and RAG2−/− γc−/− mice, in which superior engraftment has resulted in multilineage differentiation of the human cells (23, 64). These novel humanized mice have been shown to develop human immune responses to pathogens such as Epstein-Barr virus, dengue virus, and influenza virus and to immunization with cholera toxin (33, 64, 66, 68). In addition, humanized mice can support infection with HIV after systemic or mucosal challenge in the vaginal tract and rectum (4-6, 62, 65). HSV-2 infection in humanized mice has not been examined, and mucosal immunization that can provide protection from infection with wild-type virus has also not been demonstrated. In addition, although it is clear that adaptive immune responses can be generated in humanized mice, innate responses to viral infection have not been extensively examined.In this study, we evaluated three immunodeficient mouse strains for their abilities to engraft human umbilical cord-derived stem cells and support the differentiation of these cells into important innate and adaptive immune cells. The most appropriate model was then used to examine mucosal immune responses following primary HSV-2 infection, immunization, and secondary HSV-2 challenge. We show for the first time that the humanized mice can mount protective human NK cell-mediated innate immune responses to primary mucosal infection with HSV-2. In addition, mucosal immunization and infection can induce HSV-2-specific antibody production and, to a greater extent, T-cell-mediated responses both systemically and locally in the genital tracts of humanized mice. We further show that mucosal immunization can provide protection against a lethal intravaginal (IVAG) challenge with HSV-2.  相似文献   

11.
Genetic conflicts between retroviruses and their receptors result in the evolution of novel host entry restrictions and novel virus envelopes, and such variants can influence trans-species transmission. We screened rodents and other mammals for sequence variation in the Xpr1 receptor for the mouse xenotropic or polytropic mouse leukemia viruses (X-MLVs or P-MLVs, respectively) of the gammaretrovirus family and for susceptibility to mouse-derived X/P-MLVs and to XMRV (xenotropic murine leukemia virus-related virus), an X-MLV-like virus isolated from humans with prostate cancer and chronic fatigue syndrome. We identified multiple distinct susceptibility phenotypes; these include the four known Xpr1 variants in Mus and a novel fifth Xpr1 gene found in Mus molossinus and Mus musculus. We describe the geographic and species distribution of the Mus Xpr1 variants but failed to find the X-MLV-restrictive laboratory mouse allele in any wild mouse. We used mutagenesis and phylogenetic analysis to evaluate the functional contributions made by constrained, variable, and deleted residues. Rodent Xpr1 is under positive selection, indicating a history of host-pathogen conflicts; several codons under selection have known roles in virus entry. All non-Mus mammals are susceptible to mouse X-MLVs, but some restrict other members of the X/P-MLV family, and the resistance of hamster and gerbil cells to XMRV indicates that XMRV has unique receptor requirements. We show that the hypervariable fourth extracellular XPR1 loop (ECL4) contains three evolutionarily constrained residues that do not contribute to receptor function, we identify two novel residues important for virus entry (I579 and T583), and we describe a unique pattern of ECL4 variation in the three virus-restrictive Xpr1 variants found in MLV-infected house mice; these mice carry different deletions in ECL4, suggesting either that these sites or loop size affects receptor function.The XPR1 receptor mediates entry for the mouse leukemia viruses (MLVs) with xenotropic and polytropic host ranges (X-MLVs and P-MLVs, respectively). X-MLVs and P-MLVs can be isolated from laboratory mice and are capable of infecting cells of nonrodent species; these viruses are distinguished by the ability of P-MLVs, but not X-MLVs, to infect cells of the laboratory mouse and by the cytopathic and leukemogenic properties of P-MLVs, also termed MCF MLVs (mink cell focus-inducing MLVs) (11, 16, 24). XPR1 is also the receptor for several wild mouse isolates with an atypical host range (6, 48, 49) and for the recently described virus XMRV (xenotropic murine leukemia virus-related virus) (8), isolated from human patients with prostate cancer or chronic fatigue syndrome (27, 37, 43). Studies on the XPR1 receptor have identified residues critical for virus entry and described functionally distinct variants of XPR1 in human and rodent species that differ in their abilities to mediate entry of various virus isolates (18, 29, 31, 48, 49).In Mus, four receptor variants of Xpr1 are found in different taxonomic groups. Xpr1n was originally described in strains of the laboratory mouse (1, 41, 51), which are largely derived from Mus domesticus (50). Xpr1c was identified in the Asian species Mus castaneus (29, 31); Xpr1p is in the Asian species Mus pahari (48); and Xpr1sxv was found in several Eurasian species (18, 31). These variants are distinguished by their differential susceptibilities to prototype X-MLVs and P-MLVs as well as to two wild mouse isolates, CasE#1 and Cz524 (49); only Xpr1sxv encodes a receptor that is fully permissive for all isolates. The host range differences of these various virus isolates are due to sequence polymorphisms in both receptor and viral envelope genes.The various mouse X/P-MLV isolates and the humanized XMRV define six different tropism patterns based on infectivity on rodent cells carrying Xpr1 variants (49). These tropisms distinguish the two wild mouse isolates, CasE#1 and Cz524, and identify two P-MLV host range subgroups and two X-MLV/XMRV subgroups. Specific XPR1 residues responsible for entry of these viruses have been identified by analysis of rodent Xpr1 variants and mutants. These receptor determinants lie in two of the four predicted extracellular loops (ECLs) of Xpr1, ECL3 and ECL4 (31, 44, 48, 49). Two critical amino acids have been defined for X-MLV entry: K500 in ECL3 and T582 in ECL4 (31). These two receptor determinants independently produce X-MLV receptors but are not functionally equivalent, as the Δ582Τ insertion into Xpr1n generates a receptor for CasE#1, but the E500K substitution does not (48). Sensitivity to the six tropism subgroups is further modulated by specific substitutions at ECL3 residues 500, 507, and 508 (49). The sequence variations that distinguish the rodent XPR1 receptors can result in subtle differences in the efficiency of virus infection or complete resistance to specific X/P-MLVs.The characterization of host genes that effect and/or block entry has obvious importance for a broader understanding of how viruses spread in natural populations and are transmitted to new hosts and how those populations adapt to retrovirus infections. The four house mouse species carry endogenous retroviruses (ERVs) for X-MLVs and P-MLVs (XMVs and PMVs, respectively) (3, 20, 42), and three of these species harbor infectious X-MLVs (4, 19, 48, 49). Restrictive variants of the XPR1 receptor have evolved in these virus-infected mice, along with the virus envelope (env) variants that define the tropism subgroups. We thus sought to examine the evolution of Xpr1 in rodent species, and we extended this functional and sequence analysis to nonrodent species for two reasons. First, identification of XMRV in several human patient cohorts (27, 37, 43), the recent detection of P-MLV-related sequences in patients and blood donors (26), and the multiple instances of transspecies transmission of mouse gammaretroviruses (33) support an effort to describe factors that mediate or modulate virus entry in these species. Second, analysis of nonrodent species with novel patterns of virus restriction may uncover different or additional entry determinants. In the present study, we characterized 49 mice of different species or from different geographic locations and 24 other mammalian species for sequence and functional variants of the Xpr1 receptor. We identified a novel 5th functional Xpr1 variation in Mus, showed that restrictive XPR1 receptors in the three MLV-infected house mouse lineages have different deletions in ECL4, demonstrated that XPR1 is under positive selection, identified novel virus restriction phenotypes in nonrodent species, and demonstrated that XMRV relies on unique entry determinants.  相似文献   

12.
Only a few archaeal viruses have been subjected to detailed structural analyses. Major obstacles have been the extreme conditions such as high salinity or temperature needed for the propagation of these viruses. In addition, unusual morphotypes of many archaeal viruses have made it difficult to obtain further information on virion architectures. We used controlled virion dissociation to reveal the structural organization of Halorubrum pleomorphic virus 1 (HRPV-1) infecting an extremely halophilic archaeal host. The single-stranded DNA genome is enclosed in a pleomorphic membrane vesicle without detected nucleoproteins. VP4, the larger major structural protein of HRPV-1, forms glycosylated spikes on the virion surface and VP3, the smaller major structural protein, resides on the inner surface of the membrane vesicle. Together, these proteins organize the structure of the membrane vesicle. Quantitative lipid comparison of HRPV-1 and its host Halorubrum sp. revealed that HRPV-1 acquires lipids nonselectively from the host cell membrane, which is typical of pleomorphic enveloped viruses.In recent years there has been growing interest in viruses infecting hosts in the domain Archaea (43). Archaeal viruses were discovered 35 years ago (52), and today about 50 such viruses are known (43). They represent highly diverse virion morphotypes in contrast to the vast majority (96%) of head-tail virions among the over 5,000 described bacterial viruses (1). Although archaea are widespread in both moderate and extreme environments (13), viruses have been isolated only for halophiles and anaerobic methanogenes of the kingdom Euryarchaeota and hyperthermophiles of the kingdom Crenarchaeota (43).In addition to soil and marine environments, high viral abundance has also been detected in hypersaline habitats such as salterns (i.e., a multipond system where seawater is evaporated for the production of salt) (19, 37, 50). Archaea are dominant organisms at extreme salinities (36), and about 20 haloarchaeal viruses have been isolated to date (43). The majority of these are head-tail viruses, whereas electron microscopic (EM) studies of highly saline environments indicate that the two other described morphotypes, spindle-shaped and round particles, are the most abundant ones (19, 37, 43). Thus far, the morphological diversity of the isolated haloarchaeal viruses is restricted compared to viruses infecting hyperthermophilic archaea, which are classified into seven viral families (43).All of the previously described archaeal viruses have a double-stranded DNA (dsDNA) genome (44). However, a newly characterized haloarchaeal virus, Halorubrum pleomorphic virus 1 (HRPV-1), has a single-stranded DNA (ssDNA) genome (39). HRPV-1 and its host Halorubrum sp. were isolated from an Italian (Trapani, Sicily) solar saltern. Most of the studied haloarchaeal viruses lyse their host cells, but persistent infections are also typical (40, 44). HRPV-1 is a nonlytic virus that persists in the host cells. In liquid propagation, nonsynchronous infection cycles of HRPV-1 lead to continuous virus production until the growth of the host ceases, resulting in high virus titers in the growth medium (39).The pleomorphic virion of HRPV-1 represents a novel archaeal virus morphotype constituted of lipids and two major structural proteins VP3 (11 kDa) and VP4 (65 kDa). The genome of HRPV-1 is a circular ssDNA molecule (7,048 nucleotides [nt]) containing nine putative open reading frames (ORFs). Three of them are confirmed to encode structural proteins VP3, VP4, and VP8, which is a putative ATPase (39). The ORFs of the HRPV-1 genome show significant similarity, at the amino acid level, to the minimal replicon of plasmid pHK2 of Haloferax sp. (20, 39). Furthermore, an ∼4-kb region, encoding VP4- and VP8-like proteins, is found in the genomes of two haloarchaea, Haloarcula marismortui and Natronomonas pharaonis, and in the linear dsDNA genome (16 kb) of spindle-shaped haloarchaeal virus His2 (39). The possible relationship between ssDNA virus HRPV-1 and dsDNA virus His2 challenges the classification of viruses, which is based on the genome type among other criteria (15, 39).HRPV-1 is proposed to represent a new lineage of pleomorphic enveloped viruses (39). A putative representative of this lineage among bacterial viruses might be L172 of Acholeplasma laidlawii (14). The enveloped virion of L172 is pleomorphic, and the virus has a circular ssDNA genome (14 kb). In addition, the structural protein pattern of L172 with two major structural proteins, of 15 and 53 kDa, resembles that of HRPV-1.The structural approach has made it possible to reveal relationships between viruses where no sequence similarity can be detected. It has been realized that several icosahedral viruses infecting hosts in different domains of life share common virion architectures and folds of their major capsid proteins. These findings have consequences for the concept of the origin of viruses. A viral lineage hypothesis predicts that viruses within the same lineage may have a common ancestor that existed before the separation of the cellular domains of life (3, 5, 8, 26). Currently, limited information is available on the detailed structures of viruses infecting archaea. For example, the virion structures of nontailed icosahedral Sulfolobus turreted icosahedral virus (STIV) and SH1 have been determined (21, 23, 46). However, most archaeal viruses represent unusual, sometimes nonregular, morphotypes (43), which makes it difficult to apply structural methods that are based on averaging techniques.A biochemical approach, i.e., controlled virion dissociation, gives information on the localization and interaction of virion components. In the present study, controlled dissociation was used to address the virion architecture of HRPV-1. A comparative lipid analysis of HRPV-1 and its host was also carried out. Our results show that the unique virion type is composed of a flexible membrane decorated with the glycosylated spikes of VP4 and internal membrane protein VP3. The circular ssDNA genome resides inside the viral membrane vesicle without detected association to any nucleoproteins.  相似文献   

13.
The highly pathogenic H5N1 avian influenza virus emerged from China in 1996 and has spread across Eurasia and Africa, with a continuous stream of new cases of human infection appearing since the first large-scale outbreak among migratory birds at Qinghai Lake. The role of wild birds, which are the natural reservoirs for the virus, in the epidemiology of the H5N1 virus has raised great public health concern, but their role in the spread of the virus within the natural ecosystem of free-ranging terrestrial wild mammals remains unclear. In this study, we investigated H5N1 virus infection in wild pikas in an attempt to trace the circulation of the virus. Seroepidemiological surveys confirmed a natural H5N1 virus infection of wild pikas in their native environment. The hemagglutination gene of the H5N1 virus isolated from pikas reveals two distinct evolutionary clades, a mixed/Vietnam H5N1 virus sublineage (MV-like pika virus) and a wild bird Qinghai (QH)-like H5N1 virus sublineage (QH-like pika virus). The amino acid residue (glutamic acid) at position 627 encoded by the PB2 gene of the MV-like pika virus was different from that of the QH-like pika virus; the residue of the MV-like pika virus was the same as that of the goose H5N1 virus (A/GS/Guangdong [GD]/1/96). Further, we discovered that in contrast to the MV-like pika virus, which is nonpathogenic to mice, the QH-like pika virus is highly pathogenic. To mimic the virus infection of pikas, we intranasally inoculated rabbits, a species closely related to pikas, with the H5N1 virus of pika origin. Our findings first demonstrate that wild pikas are mammalian hosts exposed to H5N1 subtype avian influenza viruses in the natural ecosystem and also imply a potential transmission of highly pathogenic avian influenza virus from wild mammals into domestic mammalian hosts and humans.Highly pathogenic avian influenza (HPAI) is an extremely infectious, systemic viral disease that causes a high rate of mortality in birds. HPAI H5N1 viruses are now endemic in avian populations in Southeast Asia and have repeatedly been transmitted to humans (9, 14, 27). Since 2003, the H5N1 subtype has been reported in 391 human cases of influenza and has caused 247 human deaths in 15 countries, leading to greater than 60% mortality among infected individuals (38). Although currently incapable of sustained human-to-human transmission, H5N1 viruses undoubtedly pose a serious threat to public health, as well as to the global economy. Hence, preparedness for such a threat is a global priority (36).Wild birds are considered to be natural reservoirs for influenza A viruses (6, 18, 21, 35, 37). Of the 144 type A influenza virus hemagglutinin-neuraminidase (HA-NA) combinations, 103 have been found in wild birds (5, 7, 17, 37). Since the first HPAI outbreak among migratory wild birds appeared at Qinghai Lake in western China in May 2005 (3, 16, 25, 34, 41), HPAI viruses of the H5N1 subtype have been isolated from poultry throughout Eurasia and Africa. The continued occurrence of human cases has created a situation that could facilitate a pandemic emergence. There is heightened concern that wild birds are a reservoir for influenza A viruses that switch hosts and stably adapt to mammals, including horses, swine, and humans (11, 19, 22, 37).Despite the recent expansion of avian influenza virus (AIV) surveillance and genomic data (5, 17, 20, 21, 33, 40), fundamental questions remain concerning the ecology and evolution of these viruses. Little is known about how terrestrial wild mammals within their natural ecological systems affect HPAI H5N1 epidemiology or about the virus''s effects on public health, though there are many reports of natural and experimental H5N1 virus infection in animals belonging to the taxonomic orders Carnivora (12, 13, 15, 28, 29) and Artiodactyla (15). Herein, we provide the results of our investigation into H5N1 virus infection in wild pikas (Ochotona curzoniae of the order Lagomorpha) within their natural ecological setting. We describe our attempt to trace the circulation of H5N1 viruses and to characterize pika H5N1 influenza virus (PK virus).  相似文献   

14.
Avian H7 influenza viruses have been responsible for poultry outbreaks worldwide and have resulted in numerous cases of human infection in recent years. The high rate of conjunctivitis associated with avian H7 subtype virus infections may represent a portal of entry for avian influenza viruses and highlights the need to better understand the apparent ocular tropism observed in humans. To study this, mice were inoculated by the ocular route with viruses of multiple subtypes and degrees of virulence. We found that in contrast to human (H3N2 and H1N1) viruses, H7N7 viruses isolated from The Netherlands in 2003 and H7N3 viruses isolated from British Columbia, Canada, in 2004, two subtypes that were highly virulent for poultry, replicated to a significant titer in the mouse eye. Remarkably, an H7N7 virus, as well as some avian H5N1 viruses, spread systemically following ocular inoculation, including to the brain, resulting in morbidity and mortality of mice. This correlated with efficient replication of highly pathogenic H7 and H5 subtypes in murine corneal epithelial sheets (ex vivo) and primary human corneal epithelial cells (in vitro). Influenza viruses were labeled to identify the virus attachment site in the mouse cornea. Although we found abundant H7 virus attachment to corneal epithelial tissue, this did not account for the differences in virus replication as multiple subtypes were able to attach to these cells. These findings demonstrate that avian influenza viruses within H7 and H5 subtypes are capable of using the eye as a portal of entry.Highly pathogenic avian influenza (HPAI) H5N1 viruses, which have resulted in over 420 documented cases of human infection to date, have generally caused acute, often severe and fatal, respiratory illness (1, 50). While conjunctivitis following infection with H5N1 or human influenza viruses has been rare, most human infections associated with H7 subtype viruses have resulted in ocular and not respiratory disease (1, 9, 37, 38). Infrequent reports of human conjunctivitis infection following exposure to H7 influenza viruses date from 1977, predominantly resulting from laboratory or occupational exposure (21, 40, 48). However, in The Netherlands in 2003, more than 80 human infections with H7N7 influenza virus occurred among poultry farmers and cullers amid widespread outbreaks of HPAI in domestic poultry; the majority of these human infections resulted in conjunctivitis (14, 20). Additionally, conjunctivitis was documented in the two human infections resulting from an H7N3 outbreak in British Columbia, Canada, in 2004, as well as in H7N3- and H7N2-infected individuals in the United Kingdom in 2006 and 2007, respectively (13, 18, 29, 46, 51). The properties that contribute to an apparent ocular tropism of some influenza viruses are currently not well understood (30).Host cell glycoproteins bearing sialic acids (SAs) are the cellular receptors for influenza viruses and can be found on epithelial cells within both the human respiratory tract and ocular tissue (26, 31, 41). Both respiratory and ocular tissues additionally secrete sialylated mucins that function in pathogen defense and protection of the epithelial surface (5, 11, 22). Within the upper respiratory tract, α2-6-linked SAs (the preferred receptor for human influenza viruses) predominate on epithelial cells (26). While α2-3-linked SAs are also present to a lesser degree on respiratory epithelial cells, this linkage is more abundantly expressed on secreted mucins (2). In contrast, α2-3-linked SAs (the preferred receptor for avian influenza viruses) are found on corneal and conjunctival epithelial cells of the human eye (31, 41), while secreted ocular mucins are abundantly composed of α2-6 SAs (5). It has been suggested that avian influenza viruses are more suited to infect the ocular surface due to their general α2-3-linked SA binding preference, but this has not been demonstrated experimentally (30).The mouse model has been used previously to study the role of ocular exposure to respiratory viruses (6, 39). In mice, ocular inoculation with an H3N2 influenza virus resulted in virus replication in nasal turbinates and lung (39), whereas ocular infection with respiratory syncytial virus (RSV) resulted in detectable virus titers in the eye and lung (6). These studies have revealed that respiratory viruses are not limited to the ocular area following inoculation at this site. However, the ability of influenza viruses to replicate specifically within ocular tissue has not been examined.Despite repeated instances of conjunctivitis associated with H7 subtype infections in humans, the reasons for this apparent ocular tropism have not been studied extensively. Here, we present a murine model to study the ability of human and avian influenza viruses to cause disease by the ocular route. We found that highly pathogenic H7 and H5 influenza viruses were capable of causing a systemic and lethal infection in mice following ocular inoculation. These highly pathogenic viruses, unlike human H3N2 and H1N1 viruses, replicated to significant titers in the mouse corneal epithelium and primary human corneal epithelial cells (HCEpiCs). Identification of viruses well suited to infecting the ocular surface is the first step in better understanding the ability of influenza viruses of multiple subtypes to use this tissue as a portal of entry.  相似文献   

15.
16.
H2 influenza viruses have not circulated in humans since 1968, and therefore a large segment of the population would likely be susceptible to infection should H2 influenza viruses reemerge. The development of an H2 pandemic influenza virus vaccine candidate should therefore be considered a priority in pandemic influenza preparedness planning. We selected a group of geographically and temporally diverse wild-type H2 influenza viruses and evaluated the kinetics of replication and compared the ability of these viruses to induce a broadly cross-reactive antibody response in mice and ferrets. In both mice and ferrets, A/Japan/305/1957 (H2N2), A/mallard/NY/1978 (H2N2), and A/swine/MO/2006 (H2N3) elicited the broadest cross-reactive antibody responses against heterologous H2 influenza viruses as measured by hemagglutination inhibition and microneutralization assays. These data suggested that these three viruses may be suitable candidates for development as live attenuated H2 pandemic influenza virus vaccines.Influenza pandemics occur when a novel influenza virus enters a population with little preexisting immunity (36). During the pandemics of the last century, novel influenza viruses were introduced either directly from an avian reservoir (34) or were the result of reassortment between contemporaneously circulating human, avian, and swine influenza viruses (5, 29, 36). Due to the lack of preexisting immunity to the novel virus, morbidity and mortality rates are typically higher than in epidemics caused by seasonal influenza viruses (4).Although pandemic preparedness planning has largely focused on the highly pathogenic H5 and H7 avian influenza virus subtypes, the recent emergence of the 2009 pandemic H1N1 viruses underscores the need to consider other influenza virus subtypes as well. Of the 16 hemagglutinin (HA) influenza A virus subtypes that have been identified to date, H1, H2, and H3 have been known to cause influenza pandemics (7, 27), suggesting that these viruses are capable of sustained transmission and can cause disease in humans. While the H1 and H3 subtypes have cocirculated in humans since 1977, H2 influenza viruses have not circulated in humans since 1968 (36) and therefore a large segment of the population would likely be susceptible to infection should H2 influenza viruses reemerge. The 1957 H2 pandemic virus was a reassortant that derived the HA, neuraminidase (NA), and PB1 genes from an avian virus and the remaining gene segments from the circulating H1N1 virus (15, 30). As H2 subtype viruses continue to circulate in avian reservoirs worldwide (12, 17, 18, 22, 33), they remain a potential pandemic threat. The development of an H2 influenza virus vaccine candidate should therefore be considered a priority in future pandemic influenza preparedness planning.Given the low likelihood that a previously selected vaccine virus will exactly match the pandemic virus, the ability to elicit a broadly cross-reactive antibody response to antigenically distinct viruses within a subtype is an important consideration in the selection of a pandemic influenza vaccine candidate. Previous studies have examined the ability of inactivated H2 influenza viruses to provide cross-protection against mouse-adapted variants of reassortant human viruses and an avian H2 influenza virus from 1978 (9, 14). Given the potential for live attenuated influenza virus vaccines to confer a great breadth of heterologous cross-protection (1, 2, 6, 35), we recently conducted a study evaluating cold-adapted A/Ann Arbor/6/1960 (AA CA), an H2 influenza virus used as the backbone of the seasonal live attenuated influenza A virus vaccine currently licensed in the United States (3). However, as H2 influenza virus continues to circulate widely and appear in migratory birds (10, 24, 26), in poultry markets (20), and in swine (21), with evidence of interregional gene transmission (19, 22), a more extensive evaluation of recent isolates may be warranted in the selection of a potential H2 pandemic vaccine candidate.H2 influenza viruses fall into three main lineages: a human lineage, a North American avian lineage, and a Eurasian avian lineage (29). In addition to viruses whose replicative ability in mammals has previously been established (11, 21, 23, 25), we selected a group of geographically and temporally diverse H2 influenza viruses from each lineage. We evaluated the kinetics of replication of each of these viruses in mice and ferrets and compared the abilities of these viruses to induce a broadly cross-reactive antibody response to determine which of these viruses would be suitable for further development as an H2 pandemic influenza vaccine candidate.  相似文献   

17.
Rag2−/− γC−/− mice transplanted with human hematopoietic stem cells (DKO-hu-HSC mice) mimic aspects of human infection with human immunodeficiency virus type 1 (HIV-1), including sustained viral replication and CD4+ T-cell decline. However, the extent of HIV-1 evolution during long-term infection in these humanized mice, a key feature of the natural infection, has not been assessed fully. In this study, we examined the types of genotypic and phenotypic changes in the viral env gene that occur in the viral populations of DKO-hu-HSC mice infected with the CCR5-tropic isolate HIV-1JRCSF for up to 44 weeks. The mean rate of divergence of viral populations in mice was similar to that observed in a cohort of humans during a similar period of infection. Many amino acid substitutions were common across mice, including losses of N-linked glycosylation sites and substitutions in the CD4 binding site and in CD4-induced epitopes, indicating common selective pressures between mice. In addition, env variants evolved sensitivity to antibodies directed at V3, suggesting a more open conformation for Env. This phenotypic change was associated with increased CD4 binding efficiency and was attributed to specific amino acid substitutions. In one mouse, env variants emerged that exhibited a CXCR4-tropic phenotype. These sequences were compartmentalized in the mesenteric lymph node. In summary, viral populations in these mice exhibited dynamic behavior that included sequence evolution, compartmentalization, and the appearance of distinct phenotypic changes. Thus, humanized mice offer a useful model for studying evolutionary processes of HIV-1 in a complex host environment.Animal models of HIV-1 infection are important tools for studying transmission, replication, and pathogenesis, as well as therapeutic intervention, of HIV-1 infection. Nonhuman primates such as rhesus macaques, infected with simian or chimeric simian/human immunodeficiency viruses (SIV or SHIV, respectively), represent well-characterized and highly relevant models; however, key limitations include expense, genetic variability of the host animals, and the fact that SIV, while closely related, is distinct from HIV-1. Therefore, small animal models that support HIV-1 infection and recapitulate many aspects of the human infection have been sought using several approaches.Recent approaches have involved the use of genetically immunodeficient mice that have been reconstituted using human-derived hematopoietic stem cells (HSC) (known as humanized mice). Several models have been developed based on this approach, including Rag2−/− γC−/− (DKO) and NOD/SCID/γC−/− (NOG or NSG) mice transplanted with human HSC (DKO-hu-HSC or NOG-hu-HSC mice) (40, 92) and the NOD/SCID mouse with transplanted human fetal thymus and liver tissue in addition to HSC (62). These models all support HIV-1 infection (1, 3, 6, 30, 87, 96, 102; for a review of these models, see the work of Denton and Garcia [22]). The DKO-hu-HSC mouse lacks both recombination activating gene 2 (Rag2) and the cytokine receptor common gamma chain (γC), and as a result, it does not generate murine T, B, and natural killer (NK) cells but supports engraftment of HSC and differentiation of human myeloid and lymphoid lineages. Immune reconstitution in this model likely involves education of human T cells in the mouse thymus and dissemination of differentiated human lymphoid subsets into the peripheral blood and to multiple lymphoid tissues, including lymph nodes, spleen, and bone marrow (92). The DKO-hu-HSC mouse, along with the other humanized mouse models, has been used in studies of transmission (5, 21), pathogenesis (43), and viral inhibition (16, 21, 53, 88, 94).One important feature of HIV-1 infection is the diversification and evolution of the viral genome over the course of infection. Diversification occurs most prominently in the envelope (env) gene, which encodes the viral surface glycoprotein (Env). Env mediates viral entry into cells through attachment to the primary receptor CD4, which primes Env for engagement with a coreceptor, either CCR5 or CXCR4, triggering virion fusion with the cellular plasma membrane (54). HIV-1 infection is typically established by one or a few CCR5-tropic (R5) variants that give rise to an initially homogenous viral population, which then diversifies over the course of chronic infection (45, 84). Diversification of Env results from immune selective pressures (27), isolation in or adaptation to different cellular and anatomical compartments (20, 28, 33, 46, 51), and selection for altered CD4 affinity (72, 90, 95) and coreceptor tropism (26, 39). In many cases, during late-stage infection, variants emerge from the R5 virus population that are CXCR4 tropic (X4), an event that is often associated with accelerated CD4 T-cell loss and progression to AIDS (9, 18, 89). In an effort to determine if any of these aspects of HIV-1 evolution are exhibited in the humanized mouse model, we examined the extent of HIV-1 diversification and the types of evolutionary changes that occur in env in mice infected with CCR5-tropic HIV-1 for up to 44 weeks.Sampling of viral env variants from the peripheral blood plasma over the course of the infection revealed increasing diversity and divergence of the viral population at rates similar to those observed in natural infection. Mutations were identified that affected Env conformation and sensitivity to neutralizing antibodies, CXCR4 coreceptor use, and potential N-linked glycosylation sites. Other mutations potentially affecting the Env phenotype were identified in CD4 binding sites and CD4-induced epitopes. The patterns of substitutions indicated that certain sites were under selection, particularly in cases where the same substitution was identified in multiple mice.This study demonstrates the potential for studying HIV-1 evolution in the DKO-hu-HSC mouse model and also gives insight into the types of selective pressures driving HIV-1 env evolution in this host environment. These findings, while highlighting some of the limitations of this model, will help to inform its appropriate use for studying different aspects of HIV-1 infection, such as the evolutionary constraints placed on HIV-1 during natural infection and in the face of pharmacological and immunological inhibition.  相似文献   

18.
19.
20.
Accurate indicators of fecal pollution are needed in order to minimize public health risks associated with wastewater contamination in recreational waters. However, the bacterial indicators currently used for monitoring water quality do not correlate with the presence of pathogens. Here we demonstrate that the plant pathogen Pepper mild mottle virus (PMMoV) is widespread and abundant in wastewater from the United States, suggesting the utility of this virus as an indicator of human fecal pollution. Quantitative PCR was used to determine the abundance of PMMoV in raw sewage, treated wastewater, seawater exposed to wastewater, and fecal samples and/or intestinal homogenates from a wide variety of animals. PMMoV was present in all wastewater samples at concentrations greater than 1 million copies per milliliter of raw sewage. Despite the ubiquity of PMMoV in human feces, this virus was not detected in the majority of animal fecal samples tested, with the exception of chicken and seagull samples. PMMoV was detected in four out of six seawater samples collected near point sources of secondary treated wastewater off southeastern Florida, where it co-occurred with several other pathogens and indicators of fecal pollution. Since PMMoV was not found in nonpolluted seawater samples and could be detected in surface seawater for approximately 1 week after its initial introduction, the presence of PMMoV in the marine environment reflects a recent contamination event. Together, these data demonstrate that PMMoV is a promising new indicator of fecal pollution in coastal environments.Existing wastewater treatment practices are not always effective at removing the large number of pathogens (bacteria, protists, and viruses) present in human feces (17, 42, 47-49, 51). Therefore, wastewater discharges into the environment can have a negative impact on human health. Recreational waters throughout the United States are monitored for the presence of fecal pollution as a means of limiting public exposure to pathogens in areas impacted by wastewater discharges (44). The presence of pathogenic viruses in aquatic environments is an important parameter to consider in the evaluation of water quality. However, the bacterial indicators currently used to detect fecal contamination, such as fecal coliforms and enterococci, often do not correlate with the presence of feces-associated viruses and other pathogens (5, 10, 26, 33, 37, 51). In response, several researchers have proposed the use of viral indicators as a more effective method for monitoring wastewater contamination and the associated risks to public health (11, 14, 31).To date, the majority of the proposed viral indicators of fecal pollution are enteric viruses transmitted via the fecal-oral route (4). Enteric viruses present in raw sewage (including members of the families Adenoviridae, Caliciviridae, Picornaviridae, and Reoviridae and of the genus Anellovirus) have been used in several previous studies to identify fecal pollution in the environment (7, 8, 11, 12, 13, 18, 19, 27, 28, 32-36, 38, 50, 51). Of the enteric viruses that have been used as indicators, only the adenoviruses were ubiquitously found in raw sewage samples collected throughout the United States (41). Picobirnaviruses and Torque teno virus are abundant in raw sewage from some regions and thus have also been proposed as indicator viruses (15, 41). However, one potential problem with the use of human viruses as indicators is that their abundance in wastewater depends on the degree of infection and shedding in the human population at any given time.In addition to viruses infecting humans, other viruses shed in feces may be useful for indicating wastewater pollution. The plant pathogen Pepper mild mottle virus (PMMoV) was the most abundant virus found in a metagenomic survey of RNA viruses from human feces (52). PMMoV is a positive-sense, single-stranded RNA virus that belongs to the Tobamovirus genus and infects hot, bell, and ornamental peppers (Capsicum spp.) (9). The nonenveloped, rod-shaped PMMoV virions are extremely stable (9) and have been demonstrated to retain their infectivity for plants after passage through the human gut (52). PMMoV originates from processed pepper products (e.g., hot sauce and curry) and is excreted in human feces at concentrations of 1 million to 1 billion viruses per g (dry weight) (52). Since the presence of PMMoV in human feces is dietary in origin, this plant pathogen may be more abundant in the healthy human population than viruses that cause human disease.This study analyzed the presence of PMMoV in raw sewage and treated wastewater samples collected from wastewater treatment facilities throughout the coastal United States. To determine if PMMoV is a human-specific indicator useful for tracking the source of fecal pollution, fecal samples from numerous animals were tested for this virus. Finally, the presence of PMMoV in marine environments exposed to wastewater was determined and compared to that of other microbial indicators. The results of this work demonstrate that PMMoV is a promising indicator of fecal pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号