首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Splicing and 3′-end processing (including cleavage and polyadenylation) of vertebrate pre-mRNAs are tightly coupled events that contribute to the extensive molecular network that coordinates gene expression. Sequences within the terminal intron of genes are essential to stimulate pre-mRNA 3′-end processing, although the factors mediating this effect are unknown. Here, we show that the pyrimidine tract of the last splice acceptor site of the human β-globin gene is necessary to stimulate mRNA 3′-end formation in vivo and binds the U2AF 65 splicing factor. Naturally occurring β-thalassaemia-causing mutations within the pyrimidine tract reduces both U2AF 65 binding and 3′-end cleavage efficiency. Significantly, a fusion protein containing U2AF 65, when tethered upstream of a cleavage/polyadenylation site, increases 3′-end cleavage efficiency in vitro and in vivo. Therefore, we propose that U2AF 65 promotes 3′-end processing, which contributes to 3′-terminal exon definition.  相似文献   

4.
5.
Induction of cell proliferation requires a concomitant increase in the synthesis of glycosylated lipids and membrane proteins, which is dependent on ER-Golgi protein transport by CopII-coated vesicles. In this process, retrograde transport of ER resident proteins from the Golgi is crucial to maintain ER integrity, and allows for anterograde transport to continue. We previously showed that expression of the CopI specific SNARE protein Use1 (Unusual SNARE in the ER 1) is tightly regulated by eIF4E-dependent translation initiation of Use1 mRNA. Here we investigate the mechanism that controls Use1 mRNA translation. The 5′UTR of mouse Use1 contains a 156 nt alternatively spliced intron. The non-spliced form is the predominantly translated mRNA. The alternatively spliced sequence contains G-repeats that bind the RNA-binding protein G-rich sequence binding factor 1 (Grsf1) in RNA band shift assays. The presence of these G-repeats rendered translation of reporter constructs dependent on the Grsf1 concentration. Down regulation of either Grsf1 or Use1 abrogated expansion of erythroblasts. The 5′UTR of human Use1 lacks the splice donor site, but contains an additional upstream open reading frame in close proximity of the translation start site. Similar to mouse Use1, also the human 5′UTR contains G-repeats in front of the start codon. In conclusion, Grsf1 controls translation of the SNARE protein Use1, possibly by positioning the 40S ribosomal subunit and associated translation factors in front of the translation start site.  相似文献   

6.
RNase J1, a ribonuclease with 5′ exonuclease and endonuclease activities, is an important factor in Bacillus subtilis mRNA decay. A model for RNase J1 endonuclease activity in mRNA turnover has RNase J1 binding to the 5′ end and tracking to a target site downstream, where it makes a decay-initiating cleavage. The upstream fragment from this cleavage is degraded by 3′ exonucleases; the downstream fragment is degraded by RNase J1 5′ exonuclease activity. Previously, ΔermC mRNA was used to show 5′-end dependence of mRNA turnover. Here we used ΔermC mRNA to probe RNase J1-dependent degradation, and the results were consistent with aspects of the model. ΔermC mRNA showed increased stability in a mutant strain that contained a reduced level of RNase J1. In agreement with the tracking concept, insertion of a strong stem–loop structure at +65 resulted in increased stability. Weakening this stem–loop structure resulted in reversion to wild-type stability. RNA fragments containing the 3′ end were detected in a strain with reduced RNase J1 expression, but were undetectable in the wild type. The 5′ ends of these fragments mapped to the upstream side of predicted stem–loop structures, consistent with an impediment to RNase J1 5′ exonuclease processivity. A ΔermC mRNA deletion analysis suggested that decay-initiating endonuclease cleavage could occur at several sites near the 3′ end. However, even in the absence of these sites, stability was further increased in a strain with reduced RNase J1, suggesting alternate pathways for decay that could include exonucleolytic decay from the 5′ end.  相似文献   

7.
8.
Alternative polyadenylation leads to mRNAs with variable 3′ ends. Since a 3′-untranslated region (3′-UTR) often contains cis elements that impact stability or localization of mRNA or translation, selection of poly(A) sites in a 3′-UTR is regulated in mammalian cells. However, the molecular basis for alternative poly(A) site selection within a 3′-UTR has been unclear. Here we show involvement of cleavage factor Im (CFIm) in poly(A) site selection within a 3′-UTR. CFIm is a heterodimeric 3′ end-processing complex, which functions to assemble other processing factors on pre-mRNA in vitro. We knocked down 25 kDa subunit of CFIm (CFIm25) in HeLa cells and analyzed alternative poly(A) site selection of TIMP-2, syndecan2, ERCC6 and DHFR genes by northern blotting. We observed changes in the distribution of mRNAs in CFIm25 depleted cells, suggesting a role for CFIm in alternative poly(A) site selection. Furthermore, tissue specific analysis demonstrated that the CFIm25 gene gave rise to 1.1, 2.0 and 4.6 kb mRNAs. The 4.6 kb mRNA was ubiquitously expressed, while the 1.1 and 2.0 kb mRNAs were expressed in a tissue specific manner. We found three likely poly(A) sites in the CFIm25 3′-UTR, suggesting alternative polyadenylation. Our results indicate that alternative poly(A) site selection is a well-regulated process in vivo.  相似文献   

9.
目的:优化5′-cDNA末端快速扩增(5′-RACE)实验平台,用于定位副溶血弧菌(VP)基因的转录起始位点。方法:提取VP的总RNA,用rDNaseⅠ消化去除可能污染的基因组DNA;利用T4 RNA连接酶将已知序列的寡核苷酸片段连接至RNA的5′端,进而将其逆转录成cDNA;以cDNA为模板,采用巢式PCR技术扩增目的基因DNA片段,并将其直接克隆入T载体;最后通过测序比对的方法确定靶基因的转录起始位点。利用引物延伸实验进一步研究VPA1027的转录起始位点,以检验5′-RACE实验结果的可靠性。结果:5′-RACE实验结果表明,VPA1027、scrG、scrA、cpsA及VPA0198的转录起始位点分别为G(-103)、G(-70)、T(-205)、C(-129)和G(-238)(翻译起始位点为+1);引物延伸结果显示,VPA1027的转录起始位点也为G(-103)。结论:优化后的5′-RACE实验可以精确定位VP基因的转录起始位点。  相似文献   

10.
11.
The mechanism of translational initiation differs between prokaryotes and eukaryotes. Prokaryotic mRNAs generally contain within their 5′-untranslated region (5′-UTR) a Shine-Dalgarno (SD) sequence that serves as a ribosome-binding site. Chloroplasts possess prokaryotic-like translation machinery, and many chloroplast mRNAs have an SD-like sequence, but its position is variable. Tobacco chloroplast atpB mRNAs contain no SD-like sequence and are U-rich in the 5′-UTR (−20 to −1 with respect to the start codon). In vitro translation assays with mutated mRNAs revealed that an unstructured sequence encompassing the start codon, the AUG codon and its context are required for translation. UV crosslinking experiments showed that a 50 kDa protein (p50) binds to the 5′-UTR. Insertion of an additional initiation region (SD-sequence and AUG) in the 5′-UTR, but not downstream, arrested translation from the authentic site; however, no inhibition was observed by inserting only an AUG triplet. We hypothesize for translational initiation of the atpB mRNA that the ribosome enters an upstream region, slides to the start codon and forms an initiation complex with p50 and other components.  相似文献   

12.
Small cytoplasmic RNA (scRNA) of Bacillus subtilis is the RNA component of the signal recognition particle. scRNA is transcribed as a 354-nt precursor, which is processed to the mature 271-nt scRNA. Previous work demonstrated the involvement of the RNase III-like endoribonuclease, Bs-RNase III, in scRNA processing. Bs-RNase III was found to cleave precursor scRNA at two sites (the 5′ and 3′ cleavage sites) located on opposite sides of the stem of a large stem-loop structure, yielding a 275-nt RNA, which was then trimmed by a 3′ exoribonuclease to the mature scRNA. Here we show that Bs-RNase III cleaves primarily at the 5′ cleavage site and inefficiently at the 3′ site. RNase J1 is responsible for much of the cleavage that releases scRNA from downstream sequences. The subsequent exonucleolytic processing is carried out largely by RNase PH.  相似文献   

13.
14.
The 5′ untranslated region of the chloroplast psbA mRNA, encoding the D1 protein, is processed in Chlamydomonas reinhardtii. Processing occurs just upstream of a consensus Shine-Dalgarno sequence and results in the removal of 54 nucleotides from the 5′ terminus, including a stem-loop element identified previously as an important structure for D1 expression. Examination of this processing event in C. reinhardtii strains containing mutations within the chloroplast or nuclear genomes that block psbA translation reveals a correlation between processing and ribosome association. Mutations within the 5′ untranslated region of the psbA mRNA that disrupt the Shine-Dalgarno sequence, acting as a ribosome binding site, preclude translation and prevent mRNA processing. Similarly, nuclear mutations that specifically affect synthesis of the D1 protein specifically affect processing of the psbA mRNA. In vitro, loss of the stem-loop element does not prohibit the binding of a message-specific protein complex required for translational activation of psbA upon illumination. These results are consistent with a hierarchical maturation pathway for chloroplast messages, mediated by nuclear-encoded factors, that integrates mRNA processing, message stability, ribosome association, and translation.  相似文献   

15.
We present a tool for the prediction of mRNA 3′-processing (cleavage and polyadenylation) sites in the yeast Saccharomyces cerevisiae, based on a discrete state-space model or hidden Markov model. Comparison of predicted sites with experimentally verified 3′-processing sites indicates good agreement. All predicted or known yeast genes were analyzed to find probable 3′-processing sites. Known alternative 3′-processing sites, both within the 3′-untranslated region and within the protein coding sequence were successfully identified, leading to the possibility of prediction of previously unknown alternative sites. The lack of an apparent 3′-processing site calls into question the validity of some predicted genes. This is specifically investigated for predicted genes with overlapping coding sequences.  相似文献   

16.
17.
18.
Guide RNAs (gRNAs), key components of the RNA editing reaction in Trypanosoma brucei, direct the insertion and deletion of uridylate (U) residues. Analyses of gRNAs reveal three functional elements. The 5′-end of the gRNA contains the anchor, which is responsible for selection and binding to the pre-edited mRNA. The second element (the guiding region) provides the information required for editing. At the 3′-end of the gRNA is a non-encoded U-tail, whose function remains unclear. However, the cleavage–ligation model for editing proposes that the U-tail binds to purine-rich regions upstream of editing sites, thereby strengthening the interaction and holding onto the 5′ cleavage product. Our previous studies demonstrated that the U-tail interacts with upstream sequences and may play roles in both stabilization and tethering. These studies also indicated that the U-tail interactions involved mRNA regions that were to be subsequently edited. This raised the question of what happens to the mRNA–U-tail interaction as editing proceeds in the 3′→5′ direction. We examined gCYb-558 and its U-tail interaction with 5′CYbUT and two partially edited 5′CYb substrates. Our results indicate that the 3′-end of the U-tail interacts with the same sequence in all three mRNAs. Predicted secondary structures using crosslinking data suggest that a similar structure is maintained as editing proceeds. These results indicate that the role of the U-tail may also involve maintenance of important secondary structure motifs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号