首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 µm. Cell enlargement was observed in vivo, producing cells up to 100 µm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3 a Δ pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection.  相似文献   

3.
4.
5.
6.
Autophagy is a process of cytoplasmic degradation of endogenous proteins and organelles. Although its primary role is protective, it can also contribute to cell death. Recently, autophagy was found to play a role in the activation of host defense against intracellular pathogens. The aims of our study was to investigate whether host cell autophagy influences Toxoplasma gondii proliferation and whether autophagy inhibitors modulate cell survival. HeLa cells were infected with T. gondii with and without rapamycin treatment to induce autophagy. Lactate dehydrogenase assays showed that cell death was extensive at 36-48 hr after infection in cells treated with T. gondii with or without rapamycin. The autophagic markers, LC3 II and Beclin 1, were strongly expressed at 18-24 hr after exposure as shown by Western blotting and RT-PCR. However, the subsequent T. gondii proliferation suppressed autophagy at 36 hr post-infection. Pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), down-regulated LC3 II and Beclin 1. The latter was also down-regulated by calpeptin, a calpain inhibitor. Monodansyl cadaverine (MDC) staining detected numerous autophagic vacuoles (AVs) at 18 hr post-infection. Ultrastructural observations showed T. gondii proliferation in parasitophorous vacuoles (PVs) coinciding with a decline in the numbers of AVs by 18 hr. FACS analysis failed to confirm the presence of cell apoptosis after exposure to T. gondii and rapamycin. We concluded that T. gondii proliferation may inhibit host cell autophagy and has an impact on cell survival.  相似文献   

7.
Host Cell Regulation of Induction of Epstein-Barr Virus   总被引:18,自引:6,他引:12  
When Epstein-Barr virus (EBV) negative cells (Raji) were treated with iododeoxyuridine, only the early antigen (EA) component was induced. There was no significant increase in EBV DNA and no virus particles were observed. Somatic-cell hybrids were prepared from the fusion of Raji and D98 cells (D98/Raji). When these cells were treated with iododeoxyuridine, early antigen EBV DNA, and virus particles were synthesized. These data suggest cellular control over the expression of the EBV genome.  相似文献   

8.
9.
Penetration of Host Cell Membranes by Adenovirus 2   总被引:12,自引:10,他引:2       下载免费PDF全文
Highly purified human adenovirus type 2 directly penetrated the plasma membranes of KB cells. The process of membrane penetration resulted in the appearance of large numbers of adenovirions free in the cytoplasm of the infected cells. The virions underwent a morphological change as they penetrated the cell surface. Penetration of the plasma membranes and the accompanying alteration in virion morphology was dependent on a function associated with the intact cells, because neither event occurred when purified virions were added to isolated cell membranes. Inactivation of the adenovirions with heat or antibodies before inoculation of the cells reduced the infectivity of the virus population and prevented the appearance of virions free in the cytoplasm. The inactivation of the virions did not significantly reduce the number of virus particles which were found in cell vacuoles and pinocytotic vesicles.  相似文献   

10.
11.
12.
13.
14.
影响T-DNA转移的寄主植物细胞因子   总被引:1,自引:0,他引:1  
在农杆菌介导的植物遗传转化过程中,寄主细胞因子参与农杆菌细胞与寄主细胞的识别与附着、毒性基因的表达以及T-DNA的跨膜运输和整合等过程.文章就这几方面的研究进展进行了综述.  相似文献   

15.
16.
17.
禽流感病毒NS1蛋白对细胞的影响   总被引:1,自引:0,他引:1  
NS1蛋白为流感病毒非结构蛋白,只在病毒侵入宿主细胞后产生.目前NS1蛋白对细胞整体水平上的作用仍不清楚,为了解NS1蛋白在病毒感染细胞中的作用,构建了重组质粒pCMV-myc-NS1并将其转染A549细胞,利用双向电泳技术检测了受NS1蛋白调控的宿主蛋白,以期从蛋白质组水平上研究禽流感病毒与宿主细胞间的相互作用.同时,还检测了转染NS1对细胞增殖和细胞周期的影响.结果显示,NS1在细胞中的表达,能够明显引起宿主细胞代谢的变化,并通过阻滞细胞周期的正常进行而减缓细胞的增殖.  相似文献   

18.
Diminutive viral RNAs recovered from tobacco leaves inoculated with 32P-TMV were investigated. At 3.5 hr after inoculation, most of the viral RNA without coat protein revealed two peaks after sucrose density gradient analysis of SDS-extract from 12,000 × g leaf pellet. The first peak appeared between bacterial ribosomal RNA of 16 S and 5 S and the second peak was around 5 S. These two peaks were digestible with RNase and they appeared as early as 5 min after inoculation. These diminutive RNAs seemed to be derived from partially uncoated parental virus by abscission of their naked RNA tails. The active formation of these diminutive RNAs and their early appearance after inoculation seemed to indicate that most of the inoculated TMV received incomplete uncoating.  相似文献   

19.
Effect of Oxygen on Host Cell Reactivation in Bacteroides fragilis   总被引:1,自引:1,他引:0       下载免费PDF全文
Host cell reactivation was induced by oxygen in Bacteroides fragilis. Chloramphenicol inhibited the induction of host cell reactivation. DNA and protein syntheses were not inhibited during oxygen-induced host cell reactivation.  相似文献   

20.
Type III secretion systems (T3SS) are nano-syringes used by a wide range of Gram-negative pathogens to promote infection by directly injecting effector proteins into targeted host cells. Translocation of effectors is triggered by host-cell contact and requires assembly of a pore in the host-cell plasma membrane, which consists of two translocator proteins. Our understanding of the translocation pore, how it is assembled in the host cell membrane and its precise role in effector translocation, is extremely limited. Here we use a genetic technique to identify protein-protein contacts between pore-forming translocator proteins, as well as the T3SS needle-tip, that are critical for translocon function. The data help establish the orientation of the translocator proteins in the host cell membrane. Analysis of translocon function in mutants that break these contacts demonstrates that an interaction between the pore-forming translocator PopD and the needle-tip is required for sensing host cell contact. Moreover, tethering PopD at a dimer interface also specifically prevents host-cell sensing, arguing that the translocation pore is actively involved in detecting host cell contact. The work presented here therefore establishes a signal transduction pathway for sensing host cell contact that is initiated by a conformational change in the translocation pore, and is subsequently transmitted to the base of the apparatus via a specific contact between the pore and the T3SS needle-tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号