首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The automation of single particle selection and tomographic segmentation of asymmetric particles and objects is facilitated by continuing improvement of methods based on the detection of pixel discontinuity. Here, we present the new arbitrary z-crossings approach which can be employed to enhance the accuracy of edge detection algorithms that are based on the second derivative. This is demonstrated using the Laplacian of Gaussian (LoG) filter. In its normal implementation the LoG filter uses a z value of zero to define edge contours. In contrast, the arbitrary z-crossings approach allows the user to adjust z, which causes the subsequently generated contours to tend towards lighter or darker image objects, depending on the sign of z. This functionality has been coupled with an additional feature: the ability to use the major and minor axes of bounding contours to hone automated object selection. In combination, these features significantly enhance the accuracy of particle selection and the speed of tomographic segmentation. Both features have been incorporated into the software package Swarm(PS) in which parameters are automatically adjusted based on user defined target selection.  相似文献   

2.
Good segmentation of the outer bone cortex from medical images is a prerequisite for applications in the field of finite element analysis, surgical planning environments and personalised, case dependent, bone reconstruction. However, current segmentation procedures are often unsatisfactory. This study presents an automated filter procedure to generate a set of adapted contours from which a surface mesh can be deduced directly. The degree of interaction is user determined. The bone contours are extracted from the patients CT data by quick grey value segmentation. An extended filter procedure then only retains contour information representing the outer cortex as more specific internal loops and shape irregularities are removed, tailoring the image for the above-mentioned applications. The developed medical image based design methodology to convert contour sets of multiple bone types, from tibia tumour to neurocranium, is reported and discussed.  相似文献   

3.
4.
《IRBM》2014,35(1):3-10
In this paper we propose a brief survey on geometric variational approaches and more precisely on statistical region-based active contours for medical image segmentation. In these approaches, image features are considered as random variables whose distribution may be either parametric, and belongs to the exponential family, or non-parametric estimated with a kernel density method. Statistical region-based terms are listed and reviewed showing that these terms can depict a wide spectrum of segmentation problems. A shape prior can also be incorporated to the previous statistical terms. A discussion of some optimization schemes available to solve the variational problem is also provided. Examples on real medical images are given to illustrate some of the given criteria.  相似文献   

5.
We present a computerized method for the semi-automatic detection of contours in ultrasound images.The novelty of our study is the introduction of a fast and efficient image function relating to parametric active contour models.This new function is a combination of the gray-level information and first-order statistical features,called standard deviation parameters.In a comprehensive study,the developed algorithm and the efficiency of segmentation were first tested for synthetic images.Tests were also performed on breast and liver ultrasound images.The proposed method was compared with the watershed approach to show its efficiency.The performance of the segmentation was estimated using the area error rate.Using the standard deviation textural feature and a 5×5 kernel,our curve evolution was able to produce results close to the minimal area error rate(namely 8.88% for breast images and 10.82% for liver images).The image resolution was evaluated using the contrast-to-gradient method.The experiments showed promising segmentation results.  相似文献   

6.
In many biomedical applications, it is desirable to estimate the three-dimensional (3D) position and orientation (pose) of a metallic rigid object (such as a knee or hip implant) from its projection in a two-dimensional (2D) X-ray image. If the geometry of the object is known, as well as the details of the image formation process, then the pose of the object with respect to the sensor can be determined. A common method for 3D-to-2D registration is to first segment the silhouette contour from the X-ray image; that is, identify all points in the image that belong to the 2D silhouette and not to the background. This segmentation step is then followed by a search for the 3D pose that will best match the observed contour with a predicted contour. Although the silhouette of a metallic object is often clearly visible in an X-ray image, adjacent tissue and occlusions can make the exact location of the silhouette contour difficult to determine in places. Occlusion can occur when another object (such as another implant component) partially blocks the view of the object of interest. In this paper, we argue that common methods for segmentation can produce errors in the location of the 2D contour, and hence errors in the resulting 3D estimate of the pose. We show, on a typical fluoroscopy image of a knee implant component, that interactive and automatic methods for segmentation result in segmented contours that vary significantly. We show how the variability in the 2D contours (quantified by two different metrics) corresponds to variability in the 3D poses. Finally, we illustrate how traditional segmentation methods can fail completely in the (not uncommon) cases of images with occlusion.  相似文献   

7.
In this paper, we present a weighted radial edge filtering algorithm with adaptive recovery of dropout regions for the semi-automatic delineation of endocardial contours in short-axis echocardiographic image sequences. The proposed algorithm requires minimal user intervention at the end diastolic frame of the image sequence for specifying the candidate points of the contour. The region of interest is identified by fitting an ellipse in the region defined by the specified points. Subsequently, the ellipse centre is used for originating the radial lines for filtering. A weighted radial edge filter is employed for the detection of edge points. The outliers are corrected by global as well as local statistics. Dropout regions are recovered by incorporating the important temporal information from the previous frame by means of recursive least squares adaptive filter. This ensures fairly accurate segmentation of the cardiac structures for further determination of the functional cardiac parameters. The proposed algorithm was applied to 10 data-sets over a full cardiac cycle and the results were validated by comparing computer-generated boundaries to those manually outlined by two experts using Hausdorff distance (HD) measure, radial mean square error (rmse) and contour similarity index. The rmse was 1.83 mm with a HD of 5.12 ± 1.21 mm. We have also compared our results with two existing approaches, level set and optical flow. The results indicate an improvement when compared with ground truth due to incorporation of temporal clues. The weighted radial edge filtering algorithm in conjunction with adaptive dropout recovery offers semi-automatic segmentation of heart chambers in 2D echocardiography sequences for accurate assessment of global left ventricular function to guide therapy and staging of the cardiovascular diseases.  相似文献   

8.
In this paper, we present a weighted radial edge filtering algorithm with adaptive recovery of dropout regions for the semi-automatic delineation of endocardial contours in short-axis echocardiographic image sequences. The proposed algorithm requires minimal user intervention at the end diastolic frame of the image sequence for specifying the candidate points of the contour. The region of interest is identified by fitting an ellipse in the region defined by the specified points. Subsequently, the ellipse centre is used for originating the radial lines for filtering. A weighted radial edge filter is employed for the detection of edge points. The outliers are corrected by global as well as local statistics. Dropout regions are recovered by incorporating the important temporal information from the previous frame by means of recursive least squares adaptive filter. This ensures fairly accurate segmentation of the cardiac structures for further determination of the functional cardiac parameters. The proposed algorithm was applied to 10 data-sets over a full cardiac cycle and the results were validated by comparing computer-generated boundaries to those manually outlined by two experts using Hausdorff distance (HD) measure, radial mean square error (rmse) and contour similarity index. The rmse was 1.83 mm with a HD of 5.12 ± 1.21 mm. We have also compared our results with two existing approaches, level set and optical flow. The results indicate an improvement when compared with ground truth due to incorporation of temporal clues. The weighted radial edge filtering algorithm in conjunction with adaptive dropout recovery offers semi-automatic segmentation of heart chambers in 2D echocardiography sequences for accurate assessment of global left ventricular function to guide therapy and staging of the cardiovascular diseases.  相似文献   

9.
R J Watt 《Spatial Vision》1986,1(3):243-256
Experiments are described which indicate that the integration of high-precision shape information along a bright line is blocked by the presence of certain image features. All the features involved have three properties: (1) they are points where contours are not smooth (i.e. not twice differentiable) within the limits set by the finite space constants of visual processes; (2) they are all points that are emphasized in the responses of certain classes of circularly symmetric bandpass spatial filter; and (3) they are all significant for three-dimensional shape analysis. The results are interpreted as implying an inflexible segmentation of the contour image before detailed shape analysis.  相似文献   

10.
Schizosaccharomyces pombe shares many genes and proteins with humans and is a good model for chromosome behavior and DNA dynamics, which can be analyzed by visualizing the behavior of fluorescently tagged proteins in vivo. Performing a genome-wide screen for changes in such proteins requires developing methods that automate analysis of a large amount of images, the first step of which requires robust segmentation of the cell. We developed a segmentation system, PombeX, that can segment cells from transmitted illumination images with focus gradient and varying contrast. Corrections for focus gradient are applied to the image to aid in accurate detection of cell membrane and cytoplasm pixels, which is used to generate initial contours for cells. Gradient vector flow snake evolution is used to obtain the final cell contours. Finally, a machine learning-based validation of cell contours removes most incorrect or spurious contours. Quantitative evaluations show overall good segmentation performance on a large set of images, regardless of differences in image quality, lighting condition, focus condition and phenotypic profile. Comparisons with recent related methods for yeast cells show that PombeX outperforms current methods, both in terms of segmentation accuracy and computational speed.  相似文献   

11.
The problem of automated segmenting and tracking of the outlines of cells in microscope images is the subject of active research. While great progress has been made on recognizing cells that are of high contrast and of predictable shape, many situations arise in practice where these properties do not exist and thus many interesting potential studies - such as the migration patterns of astrocytes to scratch wounds - have been relegated to being largely qualitative in nature. Here we analyse a select number of recent developments in this area, and offer an algorithm based on parametric active contours and formulated by taking into account cell movement dynamics. This Cell-Derived Active Contour (CDAC) method is compared with two state-of-the-art segmentation methods for phase-contrast microscopy. Specifically, we tackle a very difficult segmentation problem: human astrocytes that are very large, thin, and irregularly-shaped. We demonstrate quantitatively better results for CDAC as compared to similar segmentation methods, and we also demonstrate the reliable segmentation of qualitatively different data sets that were not possible using existing methods. We believe this new method will enable new and improved automatic cell migration and movement studies to be made.  相似文献   

12.
Automatic alignment (registration) of 3D images of adult fruit fly brains is often influenced by the significant displacement of the relative locations of the two optic lobes (OLs) and the center brain (CB). In one of our ongoing efforts to produce a better image alignment pipeline of adult fruit fly brains, we consider separating CB and OLs and align them independently. This paper reports our automatic method to segregate CB and OLs, in particular under conditions where the signal to noise ratio (SNR) is low, the variation of the image intensity is big, and the relative displacement of OLs and CB is substantial.We design an algorithm to find a minimum-cost 3D surface in a 3D image stack to best separate an OL (of one side, either left or right) from CB. This surface is defined as an aggregation of the respective minimum-cost curves detected in each individual 2D image slice. Each curve is defined by a list of control points that best segregate OL and CB. To obtain the locations of these control points, we derive an energy function that includes an image energy term defined by local pixel intensities and two internal energy terms that constrain the curve’s smoothness and length. Gradient descent method is used to optimize this energy function. To improve both the speed and robustness of the method, for each stack, the locations of optimized control points in a slice are taken as the initialization prior for the next slice. We have tested this approach on simulated and real 3D fly brain image stacks and demonstrated that this method can reasonably segregate OLs from CBs despite the aforementioned difficulties.  相似文献   

13.
For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting in larger multidimensional datasets, imaging software must adapt. ImageJ is an open‐source image analysis software platform that has aided researchers with a variety of image analysis applications, driven mainly by engaged and collaborative user and developer communities. The close collaboration between programmers and users has resulted in adaptations to accommodate new challenges in image analysis that address the needs of ImageJ's diverse user base. ImageJ consists of many components, some relevant primarily for developers and a vast collection of user‐centric plugins. It is available in many forms, including the widely used Fiji distribution. We refer to this entire ImageJ codebase and community as the ImageJ ecosystem. Here we review the core features of this ecosystem and highlight how ImageJ has responded to imaging technology advancements with new plugins and tools in recent years. These plugins and tools have been developed to address user needs in several areas such as visualization, segmentation, and tracking of biological entities in large, complex datasets. Moreover, new capabilities for deep learning are being added to ImageJ, reflecting a shift in the bioimage analysis community towards exploiting artificial intelligence. These new tools have been facilitated by profound architectural changes to the ImageJ core brought about by the ImageJ2 project. Therefore, we also discuss the contributions of ImageJ2 to enhancing multidimensional image processing and interoperability in the ImageJ ecosystem.  相似文献   

14.
BACKGROUND: Measurement of muscle fiber size and determination of size distribution is important in the assessment of neuromuscular disease. Fiber size estimation by simple inspection is inaccurate and subjective. Manual segmentation and measurement are time-consuming and tedious. We therefore propose an automated image analysis method for objective, reproducible, and time-saving measurement of muscle fibers in routinely hematoxylin-eosin stained cryostat sections. METHODS: The proposed segmentation technique makes use of recent advances in level set based segmentation, where classical edge based active contours are extended by region based cues, such as color and texture. Segmentation and measurement are performed fully automatically. Multiple morphometric parameters, i.e., cross sectional area, lesser diameter, and perimeter are assessed in a single pass. The performance of the computed method was compared to results obtained by manual measurement by experts. RESULTS: The correct classification rate of the computed method was high (98%). Segmentation and measurement results obtained manually or automatically did not reveal any significant differences. CONCLUSIONS: The presented region based active contour approach has been proven to accurately segment and measure muscle fibers. Complete automation minimizes user interaction, thus, batch processing, as well as objective and reproducible muscle fiber morphometry are provided.  相似文献   

15.
Amoeboid cell motility is essential for a wide range of biological processes including wound healing, embryonic morphogenesis, and cancer metastasis. It relies on complex dynamical patterns of cell shape changes that pose long-standing challenges to mathematical modeling and raise a need for automated and reproducible approaches to extract quantitative morphological features from image sequences. Here, we introduce a theoretical framework and a computational method for obtaining smooth representations of the spatiotemporal contour dynamics from stacks of segmented microscopy images. Based on a Gaussian process regression we propose a one-parameter family of regularized contour flows that allows us to continuously track reference points (virtual markers) between successive cell contours. We use this approach to define a coordinate system on the moving cell boundary and to represent different local geometric quantities in this frame of reference. In particular, we introduce the local marker dispersion as a measure to identify localized membrane expansions and provide a fully automated way to extract the properties of such expansions, including their area and growth time. The methods are available as an open-source software package called AmoePy, a Python-based toolbox for analyzing amoeboid cell motility (based on time-lapse microscopy data), including a graphical user interface and detailed documentation. Due to the mathematical rigor of our framework, we envision it to be of use for the development of novel cell motility models. We mainly use experimental data of the social amoeba Dictyostelium discoideum to illustrate and validate our approach.  相似文献   

16.
Intensity inhomogeneity causes many difficulties in image segmentation and the understanding of magnetic resonance (MR) images. Bias correction is an important method for addressing the intensity inhomogeneity of MR images before quantitative analysis. In this paper, a modified model is developed for segmenting images with intensity inhomogeneity and estimating the bias field simultaneously. In the modified model, a clustering criterion energy function is defined by considering the difference between the measured image and estimated image in local region. By using this difference in local region, the modified method can obtain accurate segmentation results and an accurate estimation of the bias field. The energy function is incorporated into a level set formulation with a level set regularization term, and the energy minimization is conducted by a level set evolution process. The proposed model first appeared as a two-phase model and then extended to a multi-phase one. The experimental results demonstrate the advantages of our model in terms of accuracy and insensitivity to the location of the initial contours. In particular, our method has been applied to various synthetic and real images with desirable results.  相似文献   

17.
Characterizing cytoarchitecture is crucial for understanding brain functions and neural diseases. In neuroanatomy, it is an important task to accurately extract cell populations'' centroids and contours. Recent advances have permitted imaging at single cell resolution for an entire mouse brain using the Nissl staining method. However, it is difficult to precisely segment numerous cells, especially those cells touching each other. As presented herein, we have developed an automated three-dimensional detection and segmentation method applied to the Nissl staining data, with the following two key steps: 1) concave points clustering to determine the seed points of touching cells; and 2) random walker segmentation to obtain cell contours. Also, we have evaluated the performance of our proposed method with several mouse brain datasets, which were captured with the micro-optical sectioning tomography imaging system, and the datasets include closely touching cells. Comparing with traditional detection and segmentation methods, our approach shows promising detection accuracy and high robustness.  相似文献   

18.
The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non‐invasive determination of these characteristics. We present an image‐processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (<1 s per 1,208 × 960 pixels image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source‐code for MATLAB and ImageJ is freely available under a permissive open‐source license. Biotechnol. Bioeng. 2014;111: 504–517. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
This protocol presents a method to perform quantitative, single-cell in situ analyses of protein expression to study lineage specificationin mouse preimplantation embryos. The procedures necessary for embryo collection, immunofluorescence, imaging on a confocal microscope, and image segmentation and analysis are described. This method allows quantitation of the expression of multiple nuclear markers and the spatial (XYZ) coordinates of all cells in the embryo. It takes advantage of MINS, an image segmentation software tool specifically developed for the analysis of confocal images of preimplantation embryos and embryonic stem cell (ESC) colonies. MINS carries out unsupervised nuclear segmentation across the X, Y and Z dimensions, and produces information on cell position in three-dimensional space, as well as nuclear fluorescence levels for all channels with minimal user input. While this protocol has been optimized for the analysis of images of preimplantation stage mouse embryos, it can easily be adapted to the analysis of any other samples exhibiting a good signal-to-noise ratio and where high nuclear density poses a hurdle to image segmentation (e.g., expression analysis of embryonic stem cell (ESC) colonies, differentiating cells in culture, embryos of other species or stages, etc.).  相似文献   

20.
Image segmentation is a critical step in digital picture analysis, especially for that of tissue sections. As the morphology of the cell nuclei provides important biological information, their segmentation is of particular interest. The known segmentation methods are not adequate for segmenting cell nuclei of tissue sections; the reason for this lies in the optical properties of their images. We have developed new gradient methods of segmentation of previously presegmented images by taking these properties into account and by using the approximately circular shape of the cell nuclei as a priori information. In our first technique, the segment method, the images of the nuclei are divided into eight segments, special gradient filters being defined for each segment. This has enabled us to improve the gradient image. After searching for local maxima, the contours of nuclei can be found. In the second method, the method of transformation into the polar coordinate system (PCS), the a priori information serves to define a circular direction field for gradient computation and contour finding. In contrast with the first method, which offers a rapid, general idea about the nuclear shape, the PCS method permits precise segmentation and morphological analysis of the cell nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号