首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration.  相似文献   

2.
Ontology matching is a growing field of research that is of critical importance for the semantic web initiative. The use of background knowledge for ontology matching is often a key factor for success, particularly in complex and lexically rich domains such as the life sciences. However, in most ontology matching systems, the background knowledge sources are either predefined by the system or have to be provided by the user. In this paper, we present a novel methodology for automatically selecting background knowledge sources for any given ontologies to match. This methodology measures the usefulness of each background knowledge source by assessing the fraction of classes mapped through it over those mapped directly, which we call the mapping gain. We implemented this methodology in the AgreementMakerLight ontology matching framework, and evaluate it using the benchmark biomedical ontology matching tasks from the Ontology Alignment Evaluation Initiative (OAEI) 2013. In each matching problem, our methodology consistently identified the sources of background knowledge that led to the highest improvements over the baseline alignment (i.e., without background knowledge). Furthermore, our proposed mapping gain parameter is strongly correlated with the F-measure of the produced alignments, thus making it a good estimator for ontology matching techniques based on background knowledge.  相似文献   

3.
Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system.  相似文献   

4.
《PloS one》2016,11(4)
The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed in association with OBI. The current release of OBI is available at http://purl.obolibrary.org/obo/obi.owl.  相似文献   

5.
Cell cultures used in biomedical experiments come in the form of both sample biopsy primary cells, and maintainable immortalised cell lineages. The rise of bioinformatics and high-throughput technologies has led us to the requirement of ontology representation of cell types and cell lines. The Cell Ontology (CL) and Cell Line Ontology (CLO) have long been established as reference ontologies in the OBO framework. We have compiled a series of the challenges and the proposals of solutions in this CELLS (Cells in ExperimentaL Life Sciences) thematic series that cover the grounds of standing issues and the directions, which were discussed in the First International Workshop on CELLS at the the International Conference on Biomedical Ontology (ICBO). This workshop focused on the extension of the current CL and CLO to cover a wider set of biological questions and challenges needing semantic infrastructure for information modeling. We discussed data-driven use cases that leverage linkage of CL, CLO and other bio-ontologies. This is an established approach in data-driven ontologies such as the Experimental Factor Ontology (EFO), and the Ontology for Biomedical Investigation (OBI). The First International Workshop on CELLS at the International Conference on Biomedical Ontology has brought together experimental biologists and biomedical ontologists to discuss solutions to organizing and representing the rapidly evolving knowledge gained from experimental cells. The workshop has successfully identified the areas of challenge, and the gap in connecting the two domains of knowledge. The outcome of this workshop yielded practical implementation plans to filled in this gap.This CELLS workshop also provided a venue for panel discussions of innovative solutions as well as challenges in the development and applications of biomedical ontologies to represent and analyze experimental cell data.  相似文献   

6.
Semantic Similarity in Biomedical Ontologies   总被引:1,自引:0,他引:1  
In recent years, ontologies have become a mainstream topic in biomedical research. When biological entities are described using a common schema, such as an ontology, they can be compared by means of their annotations. This type of comparison is called semantic similarity, since it assesses the degree of relatedness between two entities by the similarity in meaning of their annotations. The application of semantic similarity to biomedical ontologies is recent; nevertheless, several studies have been published in the last few years describing and evaluating diverse approaches. Semantic similarity has become a valuable tool for validating the results drawn from biomedical studies such as gene clustering, gene expression data analysis, prediction and validation of molecular interactions, and disease gene prioritization.  相似文献   

7.
8.
OBO-Edit--an ontology editor for biologists   总被引:3,自引:0,他引:3  
OBO-Edit is an open source, platform-independent ontology editor developed and maintained by the Gene Ontology Consortium. Implemented in Java, OBO-Edit uses a graph-oriented approach to display and edit ontologies. OBO-Edit is particularly valuable for viewing and editing biomedical ontologies. Availability: https://sourceforge.net/project/showfiles.php?group_id=36855.  相似文献   

9.
10.
MOTIVATION: A clear understanding of functions in biology is a key component in accurate modelling of molecular, cellular and organismal biology. Using the existing biomedical ontologies it has been impossible to capture the complexity of the community's knowledge about biological functions. RESULTS: We present here a top-level ontological framework for representing knowledge about biological functions. This framework lends greater accuracy, power and expressiveness to biomedical ontologies by providing a means to capture existing functional knowledge in a more formal manner. An initial major application of the ontology of functions is the provision of a principled way in which to curate functional knowledge and annotations in biomedical ontologies. Further potential applications include the facilitation of ontology interoperability and automated reasoning. A major advantage of the proposed implementation is that it is an extension to existing biomedical ontologies, and can be applied without substantial changes to these domain ontologies. AVAILABILITY: The Ontology of Functions (OF) can be downloaded in OWL format from http://onto.eva.mpg.de/. Additionally, a UML profile and supplementary information and guides for using the OF can be accessed from the same website.  相似文献   

11.
ABSTRACT: BACKGROUND: Biomedical processes can provide essential information about the (mal-) functioning of an organism and are thus frequently represented in biomedical terminologies and ontologies, including the GO Biological Process branch. These processes often need to be described and categorised in terms of their attributes, such as rates or regularities. The adequate representation of such process attributes has been a contentious issue in bio-ontologies recently; and domain ontologies have correspondingly developed ad hoc workarounds that compromise interoperability and logical consistency. RESULTS: We present a design pattern for the representation of process attributes that is compatible with upper ontology frameworks such as BFO and BioTop. Our solution rests on two key tenets: firstly, that many of the sorts of process attributes which are biomedically interesting can be characterised by the ways that repeated parts of such processes constitute, in combination, an overall process; secondly, that entities for which a full logical definition can be assigned do not need to be treated as primitive within a formal ontology framework. We apply this approach to the challenge of modelling and automatically classifying examples of normal and abnormal rates and patterns of heart beating processes, and discuss the expressivity required in the underlying ontology representation language. We provide full definitions for process attributes at increasing levels of domain complexity. CONCLUSIONS: We show that a logical definition of process attributes is feasible, though limited by the expressivity of DL languages so that the creation of primitives is still necessary. This finding may endorse current formal upper-ontology frameworks as a way of ensuring consistency, interoperability and clarity.  相似文献   

12.
A system for "intelligent" semantic integration and querying of federated databases is being implemented by using three main components: A component which enables SQL access to integrated databases by database federation (MARGBench), an ontology based semantic metadatabase (SEMEDA) and an ontology based query interface (SEMEDA-query). In this publication we explain and demonstrate the principles, architecture and the use of SEMEDA. Since SEMEDA is implemented as 3 tiered web application database providers can enter all relevant semantic and technical information about their databases by themselves via a web browser. SEMEDA' s collaborative ontology editing feature is not restricted to database integration, and might also be useful for ongoing ontology developments, such as the "Gene Ontology" [2]. SEMEDA can be found at http://www-bm.cs.uni-magdeburg.de/semeda/. We explain how this ontologically structured information can be used for semantic database integration. In addition, requirements to ontologies for molecular biological database integration are discussed and relevant existing ontologies are evaluated. We further discuss how ontologies and structured knowledge sources can be used in SEMEDA and whether they can be merged supplemented or updated to meet the requirements for semantic database integration.  相似文献   

13.
With numerous whole genomes now in hand, and experimental data about genes and biological pathways on the increase, a systems approach to biological research is becoming essential. Ontologies provide a formal representation of knowledge that is amenable to computational as well as human analysis, an obvious underpinning of systems biology. Mapping function to gene products in the genome consists of two, somewhat intertwined enterprises: ontology building and ontology annotation. Ontology building is the formal representation of a domain of knowledge; ontology annotation is association of specific genomic regions (which we refer to simply as 'genes', including genes and their regulatory elements and products such as proteins and functional RNAs) to parts of the ontology. We consider two complementary representations of gene function: the Gene Ontology (GO) and pathway ontologies. GO represents function from the gene's eye view, in relation to a large and growing context of biological knowledge at all levels. Pathway ontologies represent function from the point of view of biochemical reactions and interactions, which are ordered into networks and causal cascades. The more mature GO provides an example of ontology annotation: how conclusions from the scientific literature and from evolutionary relationships are converted into formal statements about gene function. Annotations are made using a variety of different types of evidence, which can be used to estimate the relative reliability of different annotations.  相似文献   

14.
Researchers design ontologies as a means to accurately annotate and integrate experimental data across heterogeneous and disparate data- and knowledge bases. Formal ontologies make the semantics of terms and relations explicit such that automated reasoning can be used to verify the consistency of knowledge. However, many biomedical ontologies do not sufficiently formalize the semantics of their relations and are therefore limited with respect to automated reasoning for large scale data integration and knowledge discovery. We describe a method to improve automated reasoning over biomedical ontologies and identify several thousand contradictory class definitions. Our approach aligns terms in biomedical ontologies with foundational classes in a top-level ontology and formalizes composite relations as class expressions. We describe the semi-automated repair of contradictions and demonstrate expressive queries over interoperable ontologies. Our work forms an important cornerstone for data integration, automatic inference and knowledge discovery based on formal representations of knowledge. Our results and analysis software are available at http://bioonto.de/pmwiki.php/Main/ReasonableOntologies.  相似文献   

15.

Background

The Basic Formal Ontology (BFO) is a top-level formal foundational ontology for the biomedical domain. It has been developed with the purpose to serve as an ontologically consistent template for top-level categories of application oriented and domain reference ontologies within the Open Biological and Biomedical Ontologies Foundry (OBO). BFO is important for enabling OBO ontologies to facilitate in reliably communicating and managing data and metadata within and across biomedical databases. Following its intended single inheritance policy, BFO''s three top-level categories of material entity (i.e. ‘object’, ‘fiat object part’, ‘object aggregate’) must be exhaustive and mutually disjoint. We have shown elsewhere that for accommodating all types of constitutively organized material entities, BFO must be extended by additional categories of material entity.

Methodology/Principal Findings

Unfortunately, most biomedical material entities are cumulative-constitutively organized. We show that even the extended BFO does not exhaustively cover cumulative-constitutively organized material entities. We provide examples from biology and everyday life that demonstrate the necessity for ‘portion of matter’ as another material building block. This implies the necessity for further extending BFO by ‘portion of matter’ as well as three additional categories that possess portions of matter as aggregate components. These extensions are necessary if the basic assumption that all parts that share the same granularity level exhaustively sum to the whole should also apply to cumulative-constitutively organized material entities. By suggesting a notion of granular representation we provide a way to maintain the single inheritance principle when dealing with cumulative-constitutively organized material entities.

Conclusions/Significance

We suggest to extend BFO to incorporate additional categories of material entity and to rearrange its top-level material entity taxonomy. With these additions and the notion of granular representation, BFO would exhaustively cover all top-level types of material entities that application oriented ontologies may use as templates, while still maintaining the single inheritance principle.  相似文献   

16.
MOTIVATION: The recent explosion of interest in mining the biomedical literature for associations between defined entities such as genes, diseases and drugs has made apparent the need for robust methods of identifying occurrences of these entities in biomedical text. Such concept-based indexing is strongly dependent on the availability of a comprehensive ontology or lexicon of biomedical terms. However, such ontologies are very difficult and expensive to construct, and often require extensive manual curation to render them suitable for use by automatic indexing programs. Furthermore, the use of statistically salient noun phrases as surrogates for curated terminology is not without difficulties, due to the lack of high-quality part-of-speech taggers specific to medical nomenclature. RESULTS: We describe a method of improving the quality of automatically extracted noun phrases by employing prior knowledge during the HMM training procedure for the tagger. This enhancement, when combined with appropriate training data, can greatly improve the quality and relevance of the extracted phrases, thereby enabling greater accuracy in downstream literature mining tasks.  相似文献   

17.

Background  

Current efforts within the biomedical ontology community focus on achieving interoperability between various biomedical ontologies that cover a range of diverse domains. Achieving this interoperability will contribute to the creation of a rich knowledge base that can be used for querying, as well as generating and testing novel hypotheses. The OBO Foundry principles, as applied to a number of biomedical ontologies, are designed to facilitate this interoperability. However, semantic extensions are required to meet the OBO Foundry interoperability goals. Inconsistencies may arise when ontologies of properties – mostly phenotype ontologies – are combined with ontologies taking a canonical view of a domain – such as many anatomical ontologies. Currently, there is no support for a correct and consistent integration of such ontologies.  相似文献   

18.
The information explosion in biology makes it difficult for researchers to stay abreast of current biomedical knowledge and to make sense of the massive amounts of online information. Ontologies--specifications of the entities, their attributes and relationships among the entities in a domain of discourse--are increasingly enabling biomedical researchers to accomplish these tasks. In fact, bio-ontologies are beginning to proliferate in step with accruing biological data. The myriad of ontologies being created enables researchers not only to solve some of the problems in handling the data explosion but also introduces new challenges. One of the key difficulties in realizing the full potential of ontologies in biomedical research is the isolation of various communities involved: some workers spend their career developing ontologies and ontology-related tools, while few researchers (biologists and physicians) know how ontologies can accelerate their research. The objective of this review is to give an overview of biomedical ontology in practical terms by providing a functional perspective--describing how bio-ontologies can and are being used. As biomedical scientists begin to recognize the many different ways ontologies enable biomedical research, they will drive the emergence of new computer applications that will help them exploit the wealth of research data now at their fingertips.  相似文献   

19.
Hymenoptera is an extraordinarily diverse lineage, both in terms of species numbers and morphotypes, that includes sawflies, bees, wasps, and ants. These organisms serve critical roles as herbivores, predators, parasitoids, and pollinators, with several species functioning as models for agricultural, behavioral, and genomic research. The collective anatomical knowledge of these insects, however, has been described or referred to by labels derived from numerous, partially overlapping lexicons. The resulting corpus of information--millions of statements about hymenopteran phenotypes--remains inaccessible due to language discrepancies. The Hymenoptera Anatomy Ontology (HAO) was developed to surmount this challenge and to aid future communication related to hymenopteran anatomy. The HAO was built using newly developed interfaces within mx, a Web-based, open source software package, that enables collaborators to simultaneously contribute to an ontology. Over twenty people contributed to the development of this ontology by adding terms, genus differentia, references, images, relationships, and annotations. The database interface returns an Open Biomedical Ontology (OBO) formatted version of the ontology and includes mechanisms for extracting candidate data and for publishing a searchable ontology to the Web. The application tools are subject-agnostic and may be used by others initiating and developing ontologies. The present core HAO data constitute 2,111 concepts, 6,977 terms (labels for concepts), 3,152 relations, 4,361 sensus (links between terms, concepts, and references) and over 6,000 text and graphical annotations. The HAO is rooted with the Common Anatomy Reference Ontology (CARO), in order to facilitate interoperability with and future alignment to other anatomy ontologies, and is available through the OBO Foundry ontology repository and BioPortal. The HAO provides a foundation through which connections between genomic, evolutionary developmental biology, phylogenetic, taxonomic, and morphological research can be actualized. Inherent mechanisms for feedback and content delivery demonstrate the effectiveness of remote, collaborative ontology development and facilitate future refinement of the HAO.  相似文献   

20.
A scientific ontology is a formal representation of knowledge within a domain, typically including central concepts, their properties, and relations. With the rise of computers and high-throughput data collection, ontologies have become essential to data mining and sharing across communities in the biomedical sciences. Powerful approaches exist for testing the internal consistency of an ontology, but not for assessing the fidelity of its domain representation. We introduce a family of metrics that describe the breadth and depth with which an ontology represents its knowledge domain. We then test these metrics using (1) four of the most common medical ontologies with respect to a corpus of medical documents and (2) seven of the most popular English thesauri with respect to three corpora that sample language from medicine, news, and novels. Here we show that our approach captures the quality of ontological representation and guides efforts to narrow the breach between ontology and collective discourse within a domain. Our results also demonstrate key features of medical ontologies, English thesauri, and discourse from different domains. Medical ontologies have a small intersection, as do English thesauri. Moreover, dialects characteristic of distinct domains vary strikingly as many of the same words are used quite differently in medicine, news, and novels. As ontologies are intended to mirror the state of knowledge, our methods to tighten the fit between ontology and domain will increase their relevance for new areas of biomedical science and improve the accuracy and power of inferences computed across them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号