首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The quest to create a human immunodeficiency virus type 1 (HIV-1) vaccine capable of eliciting broadly neutralizing antibodies against Env has been challenging. Among other problems, one difficulty in creating a potent immunogen resides in the substantial overall sequence variability of the HIV envelope protein. The membrane-proximal region (MPER) of gp41 is a particularly conserved tryptophan-rich region spanning residues 659 to 683, which is recognized by three broadly neutralizing monoclonal antibodies (bnMAbs), 2F5, Z13, and 4E10. In this study, we first describe the variability of residues in the gp41 MPER and report on the invariant nature of 15 out of 25 amino acids comprising this region. Subsequently, we evaluate the ability of the bnMAb 2F5 to recognize 31 varying sequences of the gp41 MPER at a molecular level. In 19 cases, resulting crystal structures show the various MPER peptides bound to the 2F5 Fab′. A variety of amino acid substitutions outside the 664DKW666 core epitope are tolerated. However, changes at the 664DKW666 motif itself are restricted to those residues that preserve the aspartate''s negative charge, the hydrophobic alkyl-π stacking arrangement between the β-turn lysine and tryptophan, and the positive charge of the former. We also characterize a possible molecular mechanism of 2F5 escape by sequence variability at position 667, which is often observed in HIV-1 clade C isolates. Based on our results, we propose a somewhat more flexible molecular model of epitope recognition by bnMAb 2F5, which could guide future attempts at designing small-molecule MPER-like vaccines capable of eliciting 2F5-like antibodies.Eliciting broadly neutralizing antibodies (bnAbs) against primary isolates of human immunodeficiency virus type I (HIV-1) has been identified as a major milestone to attain in the quest for a vaccine in the fight against AIDS (12, 28). These antibodies would need to interact with HIV-1 envelope glycoproteins gp41 and/or gp120 (Env), target conserved regions and functional conformations of gp41/gp120 trimeric complexes, and prevent new HIV-1 fusion events with target cells (21, 57, 70, 71). Although a humoral response generating neutralizing antibodies against HIV-1 can be detected in HIV-1-positive individuals, the titers are often very low, and virus control is seldom achieved by these neutralizing antibodies (22, 51, 52, 66, 67). The difficulty in eliciting a broad and potent neutralizing antibody response against HIV-1 is thought to reside in the high degree of genetic diversity of the virus, in the heterogeneity of Env on the surface of HIV-1, and in the masking of functional regions by conformational covering, by an extensive glycan shield, or by the ability of some conserved domains to partition to the viral membrane (24, 25, 29, 30, 38, 39, 56, 68, 69). So far, vaccine trials using as immunogens mimics of Env in different conformations have primarily elicited antibodies with only limited neutralization potency across different HIV-1 clades although recent work has demonstrated more encouraging results (4, 12, 61).The use of conserved regions on gp41 and gp120 Env as targets for vaccine design has been mostly characterized by the very few anti-HIV-1 broadly neutralizing monoclonal antibodies (bnMAbs) that recognize them: the CD4 binding-site on gp120 (bnMAb b12), a CD4-induced gp120 coreceptor binding site (bnMAbs 17b and X5), a mannose cluster on the outer face of gp120 (bnMAb 2G12), and the membrane proximal external region (MPER) of gp41 (bnMAbs 2F5, Z13 and 4E10) (13, 29, 44, 58, 73). The gp41 MPER region is a particularly conserved part of Env that spans residues 659 to 683 (HXB2 numbering) (37, 75). Substitution and deletion studies have linked this unusually tryptophan-rich region to the fusion process of HIV-1, possibly involving a series of conformational changes (5, 37, 41, 49, 54, 74). Additionally, the gp41 MPER has been implicated in gp41 oligomerization, membrane leakage ability facilitating pore formation, and binding to the galactosyl ceramide receptor on epithelial cells for initial mucosal infection mediated by transcytosis (2, 3, 40, 53, 63, 64, 72). This wide array of roles for the gp41 MPER will put considerable pressure on sequence conservation, and any change will certainly lead to a high cost in viral fitness.Monoclonal antibody 2F5 is a broadly neutralizing monoclonal anti-HIV-1 antibody isolated from a panel of sera from naturally infected asymptomatic individuals. It reacts with a core gp41 MPER epitope spanning residues 662 to 668 with the linear sequence ELDKWAS (6, 11, 42, 62, 75). 2F5 immunoglobulin G binding studies and screening of phage display libraries demonstrated that the DKW core is essential for 2F5 recognition and binding (15, 36, 50). Crystal structures of 2F5 with peptides representing its core gp41 epitope reveal a β-turn conformation involving the central DKW residues, flanked by an extended conformation and a canonical α-helical turn for residues located at the N terminus and C terminus of the core, respectively (9, 27, 45, 47). In addition to binding to its primary epitope, evidence is accumulating that 2F5 also undergoes secondary interactions: multiple reports have demonstrated affinity of 2F5 for membrane components, possibly through its partly hydrophobic flexible elongated complementarity-determining region (CDR) H3 loop, and it has also been suggested that 2F5 might interact in a secondary manner with other regions of gp41 (1, 10, 23, 32, 33, 55). Altogether, even though the characteristics of 2F5 interaction with its linear MPER consensus epitope have been described extensively, a number of questions persist about the exact mechanism of 2F5 neutralization at a molecular level.One such ambiguous area of the neutralization mechanism of 2F5 is investigated in this study. Indeed, compared to bnMAb 4E10, 2F5 is the more potent neutralizing antibody although its breadth across different HIV-1 isolates is more limited (6, 35). In an attempt to shed light on the exact molecular requirements for 2F5 recognition of its primary gp41 MPER epitope, we performed structural studies of 2F5 Fab′ with a variety of peptides. The remarkable breadth of possible 2F5 interactions reveals a somewhat surprising promiscuity of the 2F5 binding site. Furthermore, we link our structural observations with the natural variation observed within the gp41 MPER and discuss possible routes of 2F5 escape from a molecular standpoint. Finally, our discovery of 2F5''s ability to tolerate a rather broad spectrum of amino acids in its binding, a spectrum that even includes nonnatural amino acids, opens the door to new ways to design small-molecule immunogens potentially capable of eliciting 2F5-like neutralizing antibodies.  相似文献   

2.
Binding to the primary receptor CD4 induces conformational changes in the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein that allow binding to the coreceptor (CCR5 or CXCR4) and ultimately trigger viral membrane-cell membrane fusion mediated by the gp41 transmembrane envelope glycoprotein. Here we report the derivation of an HIV-1 gp120 variant, H66N, that confers envelope glycoprotein resistance to temperature extremes. The H66N change decreases the spontaneous sampling of the CD4-bound conformation by the HIV-1 envelope glycoproteins, thus diminishing CD4-independent infection. The H66N change also stabilizes the HIV-1 envelope glycoprotein complex once the CD4-bound state is achieved, decreasing the probability of CD4-induced inactivation and revealing the enhancing effects of soluble CD4 binding on HIV-1 infection. In the CD4-bound conformation, the highly conserved histidine 66 is located between the receptor-binding and gp41-interactive surfaces of gp120. Thus, a single amino acid change in this strategically positioned gp120 inner domain residue influences the propensity of the HIV-1 envelope glycoproteins to negotiate conformational transitions to and from the CD4-bound state.Human immunodeficiency virus type 1 (HIV-1), the cause of AIDS (6, 29, 66), infects target cells by direct fusion of the viral and target cell membranes. The viral fusion complex is composed of gp120 and gp41 envelope glycoproteins, which are organized into trimeric spikes on the surface of the virus (10, 51, 89). Membrane fusion is initiated by direct binding of gp120 to the CD4 receptor on target cells (17, 41, 53). CD4 binding creates a second binding site on gp120 for the chemokine receptors CCR5 and CXCR4, which serve as coreceptors (3, 12, 19, 23, 25). Coreceptor binding is thought to lead to further conformational changes in the HIV-1 envelope glycoproteins that facilitate the fusion of viral and cell membranes. The formation of an energetically stable six-helix bundle by the gp41 ectodomain contributes to the membrane fusion event (9, 10, 79, 89, 90).The energy required for viral membrane-cell membrane fusion derives from the sequential transitions that the HIV-1 envelope glycoproteins undergo, from the high-energy unliganded state to the low-energy six-helix bundle. The graded transitions down this energetic slope are initially triggered by CD4 binding (17). The interaction of HIV-1 gp120 with CD4 is accompanied by an unusually large change in entropy, which is thought to indicate the introduction of order into the conformationally flexible unliganded gp120 glycoprotein (61). In the CD4-bound state, gp120 is capable of binding CCR5 with high affinity; moreover, CD4 binding alters the quaternary structure of the envelope glycoprotein complex, resulting in the exposure of gp41 ectodomain segments (27, 45, 77, 92). The stability of the intermediate state induced by CD4 binding depends upon several variables, including the virus (HIV-1 versus HIV-2/simian immunodeficiency virus [SIV]), the temperature, and the nature of the CD4 ligand (CD4 on a target cell membrane versus soluble forms of CD4 [sCD4]) (30, 73). For HIV-1 exposed to sCD4, if CCR5 binding occurs within a given period of time, progression along the entry pathway continues. If CCR5 binding is impeded or delayed, the CD4-bound envelope glycoprotein complex decays into inactive states (30). In extreme cases, the binding of sCD4 to the HIV-1 envelope glycoproteins induces the shedding of gp120 from the envelope glycoprotein trimer (31, 56, 58). Thus, sCD4 generally inhibits HIV-1 infection by triggering inactivation events, in addition to competing with CD4 anchored in the target cell membrane (63).HIV-1 isolates vary in sensitivity to sCD4, due in some cases to a low affinity of the envelope glycoprotein trimer for CD4 and in other cases to differences in propensity to undergo inactivating conformational transitions following CD4 binding (30). HIV-1 isolates that have been passaged extensively in T-cell lines (the tissue culture laboratory-adapted [TCLA] isolates) exhibit lower requirements for CD4 than primary HIV-1 isolates (16, 63, 82). TCLA viruses bind sCD4 efficiently and are generally sensitive to neutralization compared with primary HIV-1 isolates. Differences in sCD4 sensitivity between primary and TCLA HIV-1 strains have been mapped to the major variable loops (V1/V2 and V3) of the gp120 glycoprotein (34, 42, 62, 81). Sensitivity to sCD4 has been shown to be independent of envelope glycoprotein spike density or the intrinsic stability of the envelope glycoprotein complex (30, 35).In general, HIV-1 isolates are more sensitive to sCD4 neutralization than HIV-2 or SIV isolates (4, 14, 73). The relative resistance of SIV to sCD4 neutralization can in some cases be explained by a reduced affinity of the envelope glycoprotein trimer for sCD4 (57); however, at least some SIV isolates exhibit sCD4-induced activation of entry into CD4-negative, CCR5-expressing target cells that lasts for several hours after exposure to sCD4 (73). Thus, for some primate immunodeficiency virus envelope glycoproteins, activated intermediates in the CD4-bound conformation can be quite stable.The HIV-1 envelope glycoprotein elements important for receptor binding, subunit interaction, and membrane fusion are well conserved among different viral strains (71, 91). Thus, these elements represent potential targets for inhibitors of HIV-1 entry. Understanding the structure and longevity of the envelope glycoprotein intermediates along the virus entry pathway is relevant to attempts at inhibition. For example, peptides that target the heptad repeat 1 region of gp41 exhibit major differences in potency against HIV-1 strains related to efficiency of chemokine receptor binding (20, 21), which is thought to promote the conformational transition to the next step in the virus entry cascade. The determinants of the duration of exposure of targetable HIV-1 envelope glycoprotein elements during the entry process are undefined.To study envelope glycoprotein determinants of the movement among the distinct conformational states along the HIV-1 entry pathway, we attempted to generate HIV-1 variants that exhibit improved stability. Historically, labile viral elements have been stabilized by selecting virus to replicate under conditions, such as high temperature, that typically weaken protein-protein interactions (38, 39, 76, 102). Thus, we subjected HIV-1 to repeated incubations at temperatures between 42°C and 56°C, followed by expansion and analysis of the remaining replication-competent virus fraction. In this manner, we identified an envelope glycoprotein variant, H66N, in which histidine 66 in the gp120 N-terminal segment was altered to asparagine. The resistance of HIV-1 bearing the H66N envelope glycoproteins to changes in temperature has been reported elsewhere (37). Here, we examine the effect of the H66N change on the ability of the HIV-1 envelope glycoproteins to negotiate conformational transitions, either spontaneously or in the presence of sCD4. The H66N phenotype was studied in the context of both CD4-dependent and CD4-independent HIV-1 variants.  相似文献   

3.
The binding of neutralizing antibodies 2F5 and 4E10 to human immunodeficiency virus type 1 (HIV-1) gp41 involves both the viral membrane and gp41 membrane proximal external region (MPER) epitopes. In this study, we have used several biophysical tools to examine the secondary structure, orientation, and depth of immersion of gp41 MPER peptides in liposomes and to determine how the orientation of the MPER with lipids affects the binding kinetics of monoclonal antibodies (MAbs) 2F5 and 4E10. The binding of 2F5 and 4E10 both to their respective nominal epitopes and to a biepitope (includes 2F5 and 4E10 epitopes) MPER peptide-liposome conjugate was best described by a two-step encounter-docking model. Analysis of the binding kinetics and the effect of temperature on the binding stability of 2F5 and 4E10 to MPER peptide-liposome conjugates revealed that the docking of 4E10 was relatively slower and thermodynamically less favorable. The results of fluorescence-quenching and fluorescence resonance energy transfer experiments showed that the 2F5 epitope was more solvent exposed, whereas the 4E10 epitope was immersed in the polar-apolar interfacial region of the lipid bilayer. A circular dichroism spectroscopic study demonstrated that the nominal epitope and biepitope MPER peptides adopted ordered structures with differing helical contents when anchored to liposomes. Furthermore, anchoring of MPER peptides to the membrane via a hydrophobic anchor sequence was required for efficient MAb docking. These results support the model that the ability of 2F5 and 4E10 to bind to membrane lipid is required for stable docking to membrane-embedded MPER residues. These data have important implications for the design and use of peptide-liposome conjugates as immunogens for the induction of MPER-neutralizing antibodies.The two broadly neutralizing human monoclonal antibodies (MAbs) 2F5 and 4E10 target conserved core amino acid residues that lie in the membrane proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) gp41 (6, 9, 18, 25, 29). Structural studies of 2F5 and 4E10 in complex with their nominal epitope peptides led to the proposition that the long hydrophobic heavy chain CDR3 (CDR H3) loop might be involved in binding to the virion membrane due to the lack of direct contact of the tip of the CDR H3 loop with their bound epitopes (6, 25). MAbs 2F5 and 4E10 indeed were found to have enhanced binding to gp41 MPER in the presence of membrane (12, 25). Subsequent studies have revealed the lipid reactivity of both the 2F5 and 4E10 MAbs (2, 14, 23, 27), emphasizing the need to understand how MAbs 2F5 and 4E10 recognize their epitopes in the context of a membrane-gp41 MPER interface.It has been hypothesized that the ability of MAbs 2F5 and 4E10 to interact with membrane lipids is required for binding to the membrane-bound gp41 MPER region and subsequent HIV-1 neutralization (2, 14, 15). The binding of both the 2F5 and 4E10 MAbs to their epitope peptides presented on synthetic liposomes was remarkably different from that of epitope peptides alone and was best described by a two-step “encounter-docking” model (2). In this model, neutralizing MPER MAbs make an initial encounter complex, and such an interaction is associated with faster association and dissociation rates. The formation of the encounter complex induces the formation of the final “docked” complex, which is associated with slower dissociation rates and provides the stability of the overall interaction. A more recent study has also observed the same mode of interaction for MAb 4E10 when it binds to MPER peptide in liposomal form (31). The studies of Sun et al. revealed that critical residues of the 4E10 epitope may be buried in the viral membrane and that interaction of 4E10 with lipids is important in extracting the immersed residues from the lipid bilayer. Although 2F5 binding was not described in the study, the model shows that the N-terminal helix of the “L”-shaped MPER structure projects away from the membrane and that residues K665 and W666 of the core 2F5 epitope (residues DKW) are placed on the surface and in the interfacial region, respectively, of the membrane lipid (31). Thus, as for MAb 4E10, stable docking of 2F5 would also require some level of conformational rearrangement of MPER to release critical residues within the core epitope. This is consistent with binding kinetics data that showed that the final docking of MAbs 2F5 and 4E10 to MPER peptide-lipid conjugates might require conformational rearrangements (2). It is also likely that the CD4 and coreceptor-mediated triggering of HIV-1 Env (10, 28) that leads to the formation of the fusion intermediate conformation might also expose critical residues for MPER MAb binding. Both the 4E10 and 2F5 MAbs bound strongly to a recombinant trimeric gp41 intermediate design and either bound weakly or failed to bind, respectively, to the trimeric gp140 (11) and a putative prefusion-state trimeric MPER (22). However, the orientation of the MPER sequence in a viral-lipid-bound form is not known and, thus, it is possible that in the early stages of the triggered intermediate state, MPER residues may be lying in the plane of the membrane head groups and interaction of MPER MAbs with lipids and extraction of critical residues may be essential for stable docking (31).In order to gain further understanding of the binding mechanism involved in the interaction of MAbs 2F5 and 4E10 with their epitopes presented in the membrane environment, we have constructed three different novel gp41 MPER peptide-liposome conjugates, including a 2F5 nominal epitope peptide, a 4E10 nominal epitope peptide, and a peptide having sequences of epitopes for both the 2F5 and 4E10 MAbs. Unlike our previously designed constructs (2), the MPER peptides used in the current study were anchored to the liposomes by a hydrophobic sequence (YKRWIILGLNKIVRMYS), named GTH1, placed at their carboxyl termini. Using these second-generation peptide-liposome conjugates, we addressed the following questions. (i) How do MAbs 2F5 and 4E10 bind to the different peptide-liposome conjugates? (ii) How do the kinetics of MAb binding vary with temperature? (iii) How are the peptides oriented in the liposomal membrane in each construct? (iv) How does antibody binding correlate with differences in the membrane orientation of peptides? (v) Is there any difference in the secondary structures adopted by the peptides in the peptide-liposome complex?Our study of antibody interactions with their membrane-anchored epitope peptides indicates that both the 2F5 and 4E10 MAbs bind to their nominal epitope peptide-liposome conjugates with high affinity. The results of tryptophan fluorescence-quenching and fluorescence resonance energy transfer (FRET) experiments showed that the nominal 2F5 peptide is exposed on the surface of the membrane close to the polar head group, whereas the nominal 4E10 peptide is immersed in the interfacial region of the lipid bilayer. Circular dichroism (CD) spectroscopic studies revealed that the nominal epitope and biepitope peptides adopted ordered structures when anchored to the liposomal membrane. The membrane orientation data and secondary structural features of MPER peptides correlated well with antibody binding characteristics, thus suggesting that membrane-anchored MPER peptide conformations are a physiologic component of the native 2F5 and 4E10 binding epitopes in HIV-1 virions.  相似文献   

4.
Receptors (FcγRs) for the constant region of immunoglobulin G (IgG) are an important link between humoral immunity and cellular immunity. To help define the role of FcγRs in determining the fate of human immunodeficiency virus type 1 (HIV-1) immune complexes, cDNAs for the four major human Fcγ receptors (FcγRI, FcγRIIa, FcγRIIb, and FcγRIIIa) were stably expressed by lentiviral transduction in a cell line (TZM-bl) commonly used for standardized assessments of HIV-1 neutralization. Individual cell lines, each expressing a different FcγR, bound human IgG, as evidence that the physical properties of the receptors were preserved. In assays with a HIV-1 multisubtype panel, the neutralizing activities of two monoclonal antibodies (2F5 and 4E10) that target the membrane-proximal external region (MPER) of gp41 were potentiated by FcγRI and, to a lesser extent, by FcγRIIb. Moreover, the neutralizing activity of an HIV-1-positive plasma sample known to contain gp41 MPER-specific antibodies was potentiated by FcγRI. The neutralizing activities of monoclonal antibodies b12 and 2G12 and other HIV-1-positive plasma samples were rarely affected by any of the four FcγRs. Effects with gp41 MPER-specific antibodies were moderately stronger for IgG1 than for IgG3 and were ineffective for Fab. We conclude that FcγRI and FcγRIIb facilitate antibody-mediated neutralization of HIV-1 by a mechanism that is dependent on the Fc region, IgG subclass, and epitope specificity of antibody. The FcγR effects seen here suggests that the MPER of gp41 could have greater value for vaccines than previously recognized.Fc receptors (FcRs) are differentially expressed on a variety of cells of hematopoietic lineage, where they bind the constant region of antibody (Ab) and provide a link between humoral and cellular immunity. Humans possess two classes of FcRs for the constant region of IgG (FcγRs) that, when cross-linked, are distinguished by their ability to either activate or inhibit cell signaling (69, 77, 79). The activating receptors FcγRI (CD64), FcγRIIa (CD32), and FcγRIII (CD16) signal through an immunoreceptor tyrosine-based activation motif (ITAM), whereas FcγRIIb (CD32) contains an inhibitory motif (ITIM) that counters ITAM signals and B-cell receptor signals. It has been suggested that a balance between activating and inhibitory FcγRs coexpressed on the same cells plays an important role in regulating adaptive immunity (23, 68). Moreover, the inhibitory FcγRIIb, being the sole FcγR on B cells, appears to play an important role in regulating self-tolerance (23, 68). The biologic role of FcγRs may be further influenced by differences in their affinity for immunoglobulin G (IgG); thus, FcγRI is a high-affinity receptor that binds monomeric IgG (mIgG) and IgG immune complexes (IC), whereas FcγRIIa, FcγRIIb, and FcγRIIIa are medium- to low-affinity receptors that preferentially bind IgG IC (10, 49, 78). FcγRs also exhibit differences in their relative affinity for the four IgG subclasses (10), which has been suggested to influence the balance between activating and inhibitory FcγRs (67).In addition to their participation in acquired immunity, FcγRs can mediate several innate immune functions, including phagocytosis of opsonized pathogens, Ab-dependent cell cytotoxicity (ADCC), antigen uptake by professional antigen-presenting cells, and the production of inflammatory cytokines and chemokines (26, 35, 41, 48, 69). In some cases, interaction of Ab-coated viruses with FcγRs may be exploited by viruses as a means to facilitate entry into FcγR-expressing cells (2, 33, 47, 84). Several groups have reported FcγR-mediated Ab-dependent enhancement (ADE) of HIV-1 infection in vitro (47, 51, 58, 63, 94, 96), whereas other reports have implicated FcγRs in efficient inhibition of the virus in vitro (19, 21, 29, 44-46, 62, 98) and possibly as having beneficial effects against HIV-1 in vivo (5, 27, 28, 42). These conflicting results are further complicated by the fact that HIV-1-susceptible cells, such as monocytes and macrophages, can coexpress more than one FcγR (66, 77, 79).HIV-1 entry requires sequential interactions between the viral surface glycoprotein, gp120, and its cellular receptor (CD4) and coreceptor (usually CCR5 or CXCR4), followed by membrane fusion that is mediated by the viral transmembrane glycoprotein gp41 (17, 106). Abs neutralize the virus by binding either gp120 or gp41 and blocking entry into cells. Several human monoclonal Abs that neutralize a broad spectrum of HIV-1 variants have attracted considerable interest for vaccine design. Epitopes for these monoclonal Abs include the receptor binding domain of gp120 in the case of b12 (71, 86), a glycan-specific epitope on gp120 in the case of 2G12 (13, 85, 86), and two adjacent epitopes in the membrane-proximal external region (MPER) of g41 in the cases of 2F5 and 4E10 (3, 11, 38, 93). At least three of these monoclonal Abs have been shown to interact with FcRs and to mediate ADCC (42, 43).A highly standardized and validated assay for neutralizing Abs against HIV-1 that quantifies reductions in luciferase (Luc) reporter gene expression after a single round of virus infection in TZM-bl cells has been developed (60, 104). TZM-bl (also called JC53BL-13) is a CXCR4-positive HeLa cell line that was engineered to express CD4 and CCR5 and to contain integrated reporter genes for firefly Luc and Escherichia coli β-galactosidase under the control of the HIV-1 Tat-regulated promoter in the long terminal repeat terminal repeat sequence (74, 103). TZM-bl cells are permissive to infection by a wide variety of HIV-1, simian immunodeficiency virus, and human-simian immunodeficiency virus strains, including molecularly cloned Env-pseudotyped viruses. Here we report the creation and characterization of four new TZM-bl cell lines, each expressing one of the major human FcγRs. These new cell lines were used to gain a better understanding of the individual roles that FcγRs play in determining the fate of HIV-1 IC. Two FcγRs that potentiated the neutralizing activity of gp41 MPER-specific Abs were identified.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

6.
The membrane-proximal external region (MPER) of HIV-1, located at the C terminus of the gp41 ectodomain, is conserved and crucial for viral fusion. Three broadly neutralizing monoclonal antibodies (bnMAbs), 2F5, 4E10, and Z13e1, are directed against linear epitopes mapped to the MPER, making this conserved region an important potential vaccine target. However, no MPER antibodies have been definitively shown to provide protection against HIV challenge. Here, we show that both MAbs 2F5 and 4E10 can provide complete protection against mucosal simian-human immunodeficiency virus (SHIV) challenge in macaques. MAb 2F5 or 4E10 was administered intravenously at 50 mg/kg to groups of six male Indian rhesus macaques 1 day prior to and again 1 day following intrarectal challenge with SHIVBa-L. In both groups, five out of six animals showed complete protection and sterilizing immunity, while for one animal in each group a low level of viral replication following challenge could not be ruled out. The study confirms the protective potential of 2F5 and 4E10 and supports emphasis on HIV immunogen design based on the MPER region of gp41.Eliciting broadly neutralizing antibodies is an important goal of HIV vaccine design efforts, and the study of broadly neutralizing monoclonal antibodies (bnMAbs) can assist in that goal. Human bnMAbs against both gp120 and gp41 of the HIV-1 envelope spike have been described. Three bnMAbs to gp41, 2F5, 4E10, and Z13e1, have been identified and shown to recognize neighboring linear epitopes on the membrane proximal external (MPER) region of gp41 (3, 24, 25, 37, 47). In a comprehensive cross-clade neutralization study by Binley et al., 2F5 neutralized 67% and 4E10 neutralized 100% of a diverse panel of 90 primary isolates (2). Similar broad neutralization was seen against sexually transmitted isolates cloned from acutely infected patients (22). More recently, a comprehensive study showed that 2F5 neutralized 97 isolates from a 162-virus panel (60%) and that 4E10 neutralized 159 isolates (98%) (41). Although less potent, the monoclonal antibody Z13, isolated from an antibody phage display library derived from a bone marrow donor whose serum was broadly neutralizing (47), has cross-clade neutralizing activity. Z13e1 is an affinity-enhanced variant of the earlier-characterized MAb Z13 that is directed against an access-restricted epitope between and overlapping the epitopes of 2F5 and 4E10. Both MAbs 2F5 and 4E10 were originally obtained as IgG3 antibodies in hybridomas derived from peripheral blood mononuclear blood lymphocytes (PBMCs) of HIV-1-seropositive nonsymptomatic patients and were later class switched to IgG1 to enable large-scale manufacturing and to prolong in vivo half-life (3, 6, 32).Despite the interest in the MPER as a vaccine target, there is limited information on the ability of MPER antibodies to act antivirally in vivo either in established infection or prophylactically. A study using the huPBL-SCID mouse model showed limited impact from 2F5 when the antibody was administered in established infection (31). Passive administration of 2G12, 2F5, and 4E10 to a cohort of acutely and chronically infected HIV-1 patients provided little direct evidence of 2F5 or 4E10 antiviral activity, whereas the emergence of escape variants indicated unequivocally the ability of 2G12 to act antivirally (18, 39). Indirect evidence did, however, suggest that the MPER MAbs may have affected virus replication, as indicated by viral rebound suppression in a patient known to have a 2G12-resistant virus prior to passive immunization (39). Another study of 10 individuals passively administered 2G12, 2F5, and 4E10 before and after cessation of combination antiretroviral therapy (ART) showed similarly that 2G12 treatment could delay viral rebound, but antiviral activity by 2F5 and 4E10 was not clearly demonstrated (21). In prophylaxis, an early 2F5 passive transfer study with chimpanzees suggested that the antibody could delay or lower the magnitude of primary viremia following HIV-1 challenge (7). A study using gene transfer of 2F5 in a humanized SCID mouse model suggested that continuous plasma levels of approximately 1 μg/ml of 2F5 may significantly reduce viral loads in LAI- and MN-challenged mice (34). Protection studies of rhesus macaques using simian-human immunodeficiency virus SHIV89.6PD challenge did not provide definitive direct evidence for MPER antibody-mediated protection. One of three animals was protected against intravenous (i.v.) challenge when 2F5 was administered in a cocktail with HIVIG and 2G12 (19), but all three animals treated with 2F5 alone at high concentration became infected. In a vaginal challenge study with SHIV89.6PD (20), four of five animals were protected with a cocktail of HIVIG, 2F5, and 2G12, but a 2F5/2G12 combination protected only two of five animals. Further protection studies have used MPER MAbs in combination with other MAbs, leaving the individual contributions of these antibodies uncertain (1, 8).In our previous studies, we successfully used the SHIV/macaque model to demonstrate neutralizing antibody protection against mucosal challenge, and we have begun to explore how that protection is achieved (12, 30). Here, we conducted a protection study with the two broadly neutralizing MPER-directed antibodies 2F5 and 4E10. We show that the antibodies can prevent viral infection and thereby support the MPER as a vaccine target.  相似文献   

7.
In efforts to develop AIDS vaccine components, we generated combinatorial libraries of recombinant human rhinoviruses that display the well-conserved ELDKWA epitope of the membrane-proximal external region of human immunodeficiency virus type 1 (HIV-1) gp41. The broadly neutralizing human monoclonal antibody 2F5 was used to select for viruses whose ELDKWA conformations resemble those of HIV. Immunization of guinea pigs with different chimeras, some boosted with ELDKWA-based peptides, elicited antibodies capable of neutralizing HIV-1 pseudoviruses of diverse subtypes and coreceptor usages. These recombinant immunogens are the first reported that elicit broad, albeit modest, neutralization of HIV-1 using an ELDKWA-based epitope and are among the few reported that elicit broad neutralization directed against any recombinant HIV epitope, providing a critical advance in developing effective AIDS vaccine components.The development of an AIDS vaccine is an ongoing and urgent challenge. One of the major hurdles is that the specific correlates of protection against human immunodeficiency virus (HIV) are still largely unknown. Nonetheless, most agree that the full complement of cellular and humoral components of the immune system will be needed to combat this virus. This is especially true given that the virus resides permanently in its host, infects the very cells needed to direct effective immune responses, and evades the immune system, either by changing in appearance or hiding in subcellular compartments.A broadly reactive neutralizing antibody response is likely to be critical as a first line of defense upon initial HIV exposure by aiding in the clearance of cell-free virions, targeting infected cells for destruction, and preventing viral spread through cell-to-cell transmission. The presence of inhibitory antibodies in highly exposed persistently seronegative individuals testifies to the importance of the humoral response (9, 37). Additionally, broadly neutralizing serum has been associated with healthier prognoses for infected individuals (27, 65) and may be vital for protecting offspring from their infected mothers (7, 79) and preventing superinfection by heterologous HIV strains (23, 84). Even if complete protection cannot be achieved by vaccine-derived antibodies, an early, well-poised and effective neutralizing antibody repertoire may be able to lower the set point of the viral load following the initial burst of viremia, an outcome that has been reported to translate into improved disease outcomes and reduced transmission of HIV (66, 74). Further benefits of neutralizing antibodies have been seen with passive immunization studies in macaques, in which administration of broadly neutralizing monoclonal antibodies (MAbs) has demonstrated that it is possible to provide protection from—and even sterilizing immunity against—HIV infection (5, 51, 66). There is also evidence that such antibodies may provide therapeutic benefits for chronically infected individuals, analogous to benefits realized with anti-HIV drug treatment regimens (87).Despite the promising potential of broadly neutralizing MAbs, designing immunogens that can elicit such cross-reactive neutralizing responses against HIV has been a surprisingly difficult task. Since the majority of the host''s B-cell response is directed against the envelope (Env) glycoproteins, gp120 and gp41, vaccine efforts have concentrated on these proteins and derivatives thereof in approaches ranging from the use of Env-based peptide cocktails to recombinant proteins and DNAs made with varied or consensus sequences and diverse, heterologous prime/protein boost regimens (reviewed in references 36, 58, and 70). These iterative studies have shown notable improvements in the potency and breadth of neutralizing responses induced. However, concerns exist regarding immunogens containing extraneous epitopes, as is the case with intact subunits of Env, and the nature of the immune responses they may elicit. A polyclonal burst of antibodies against a multitude of nonfunctional epitopes may include a predominance of antibodies that are (i) low affinity and/or nonfunctional (reviewed in reference 72); (ii) isolate specific (25); (iii) able to interfere with the neutralizing capabilities of otherwise-effective antibodies (via steric hindrance or by inducing various forms of B-cell pathology) (67); or (iv) directed against irrelevant epitopes instead of more conserved (and sometimes concealed) epitopes that might be able to elicit more potent and cross-reactive neutralizing responses (28, 71, 91).We have developed a system that can be used to present essentially any chosen epitope in a stable, well-exposed manner on the surface of the cold-causing human rhinovirus (HRV). HRV is itself a powerful immunogen and is able to elicit T-cell as well as serum and mucosal B-cell responses (reviewed by Couch [22]) and has minimal immunologic similarity to HIV (data not shown). Chimeric viruses displaying optimal epitopes should be able to serve as valuable components in an effective vaccine cocktail or as part of a heterologous prime/boost protocol. We have shown previously that HRV chimeric viruses displaying HIV-1 gp120 V3 loop sequences are able to elicit neutralizing responses against HIV-1 (75, 82, 83).In this study, we focused our attention on presenting part of the membrane-proximal external region (MPER) of the transmembrane glycoprotein gp41, a region of approximately 30 amino acids adjacent to the transmembrane domain (reviewed in references 59 and 97). The MPER plays an important role in the process of HIV fusion to the host cell membrane (60, 78). This region is also involved in binding to galactosylceramide, an important component of cell membranes, thus permitting CD4-independent transcytosis of the virus across epithelial cells at mucosal surfaces (1, 2). These functions likely explain this region''s sequence conservation and the efficacy of antibodies directed against the MPER (97), particularly given that an estimated 80% of HIV-1 infections are sexually transmitted at mucosal membranes. In fact, potent responses against the MPER are associated with stronger and broader neutralizing capabilities in infected individuals (68). A conserved, contiguous sequence of the MPER, the ELDKWA epitope (HIV-1 HxB2 gp41 residues 662 to 668), is recognized by the particularly broadly neutralizing human MAb 2F5 (11, 62, 85) and is highly resistant to escape mutation in the presence of 2F5 (49). 2F5 was also used in the MAb cocktails reported to confer passive, protective immunity in macaques (5, 51). In addition, infected individuals producing neutralizing antibodies directed against the ELDKWA epitope have been seen to exhibit better health (16, 29), including persistent seronegativity (8), and reduced transmission of HIV to offspring (89). While none of the vaccine-induced immune responses generated against this region has been effective thus far (19, 24, 26, 33, 35, 38, 40, 42, 44-48, 50, 53, 54, 56, 57, 61, 63, 69, 93, 96) (see Table S1 in the supplemental material), more appropriate presentations of MPER epitopes should produce valuable immunogens that can contribute to a successful vaccine.In this study, we have grafted the ELDKWA epitope onto a surface loop of HRV connected via linkers of variable lengths and sequences and selected for viruses well recognized and neutralized by MAb 2F5. In so doing, we have been able to create immunogens capable of eliciting antibodies whose activities mimic some of those of 2F5. The combinatorial libraries produced were designed to encode a large set of possible sequences and, hence, structures from which we could search for valuable conformations. This work illustrates that HRV chimeras have the potential to present selected HIV epitopes in a focused and immunogenic manner.  相似文献   

8.
HIV-1 R5 envelopes vary considerably in their capacities to exploit low CD4 levels on macrophages for infection and in their sensitivities to the CD4 binding site (CD4bs) monoclonal antibody (MAb) b12 and the glycan-specific MAb 2G12. Here, we show that nonglycan determinants flanking the CD4 binding loop, which affect exposure of the CD4bs, also modulate 2G12 neutralization. Our data indicate that such residues act via a mechanism that involves shifts in the orientation of proximal glycans, thus modulating the sensitivity of 2G12 neutralization and affecting the overall presentation and structure of the glycan shield.The trimeric envelope (Env) spikes on HIV-1 virions are comprised of gp120 and gp41 heterodimers. gp120 is coated extensively with glycans (9, 11, 15) that are believed to protect the envelope from neutralizing antibodies. The extents and locations of glycosylation are variable and evolving (15). Thus, while some glycans are conserved, others appear or disappear in a host over the course of infection. Such changes may result in exposure or protection of functional envelope sites and can result from selection by different environmental pressures in vivo, including neutralizing antibodies.We previously reported that HIV-1 R5 envelopes varied considerably in tropism and neutralization sensitivity (3, 4, 12-14). We showed that highly macrophage-tropic R5 envelopes were more frequently detected in brain than in semen, blood, and lymph node (LN) samples (12, 14). The capacity of R5 envelopes to infect macrophages correlated with their ability to exploit low levels of cell surface CD4 for infection (12, 14). Determinants within and proximal to the CD4 binding site (CD4bs) were shown to modulate macrophage infectivity (3, 4, 5, 12, 13) and presumably acted by altering the avidity of the trimer for cell surface CD4. These determinants include residues proximal to the CD4 binding loop, which is likely the first part of the CD4bs contacted by CD4 (1). We also observed that macrophage-tropic R5 envelopes were frequently more resistant to the glycan-specific monoclonal antibody (MAb) 2G12 than were non-macrophage-tropic R5 Envs (13).Here, we investigated the envelope determinants of 2G12 sensitivity by using two HIV-1 envelopes that we used previously to map macrophage tropism determinants (4), B33 from brain and LN40 from lymph node tissue of an AIDS patient with neurological complications. While B33 imparts high levels of macrophage infectivity and is resistant to 2G12, LN40 Env confers very inefficient macrophage infection and is 2G12 sensitive (12-14).  相似文献   

9.
Human immunodeficiency virus type 2 (HIV-2) infection affects about 1 to 2 million individuals, the majority living in West Africa, Europe, and India. As for HIV-1, new strategies for the prevention of HIV-2 infection are needed. Our aim was to produce new vaccine immunogens that elicit the production of broadly reactive HIV-2 neutralizing antibodies (NAbs). Native and truncated envelope proteins from the reference HIV-2ALI isolate were expressed in vaccinia virus or in bacteria. This source isolate was used due to its unique phenotype combining CD4 independence and CCR5 usage. NAbs were not elicited in BALB/c mice by single immunization with a truncated and fully glycosylated envelope gp125 (gp125t) or a recombinant polypeptide comprising the C2, V3, and C3 envelope regions (rpC2-C3). A strong and broad NAb response was, however, elicited in mice primed with gp125t expressed in vaccinia virus and boosted with rpC2-C3. Serum from these animals potently neutralized (median 50% neutralizing titer, 3,200) six of six highly divergent primary HIV-2 isolates. Coreceptor usage and the V3 sequence of NAb-sensitive isolates were similar to that of the vaccinating immunogen (HIV-2ALI). In contrast, NAbs were not reactive on three X4 isolates that displayed major changes in V3 loop sequence and structure. Collectively, our findings demonstrate that broadly reactive HIV-2 NAbs can be elicited by using a vaccinia virus vector-prime/rpC2-C3-boost immunization strategy and suggest a potential relationship between escape to neutralization and cell tropism.Human immunodeficiency virus type 2 (HIV-2) infection affects 1 to 2 million individuals, most of whom live in India, West Africa, and Europe (17). HIV-2 has diversified into eight genetic groups named A to H, of which group A is by far the most prevalent worldwide. Nucleotide sequences of Env can differ up to 21% within a particular group and by over 35% between groups.The mortality rate in HIV-2-infected patients is at least twice that of uninfected individuals (26). Nonetheless, the majority of HIV-2-infected individuals survive as elite controllers (17). In the absence of antiretroviral therapy, the numbers of infected cells (39) and viral loads (36) are much lower among HIV-2-infected individuals than among those who are HIV-1 infected. This may be related to a more effective immune response produced against HIV-2. In fact, most HIV-2-infected individuals have proliferative T-cell responses and strong cytotoxic responses to Env and Gag proteins (17, 31). Moreover, autologous and heterologous neutralizing antibodies (NAbs) are raised in most HIV-2-infected individuals (8, 32, 48, 52), and the virus seems unable to escape from these antibodies (52). As for HIV-1, the antibody specificities that mediate HIV-2 neutralization and control are still elusive. The V3 region in the envelope gp125 has been identified as a neutralizing target by some but not by all investigators (3, 6, 7, 11, 40, 47, 54). Other weakly neutralizing epitopes were identified in the V1, V2, V4, and C5 regions in gp125 and in the COOH-terminal region of the gp41 ectodomain (6, 7, 41). A better understanding of the neutralizing determinants in the HIV-2 Env will provide crucial information regarding the most relevant targets for vaccine design.The development of immunogens that elicit the production of broadly reactive NAbs is considered the number one priority for the HIV-1 vaccine field (4, 42). Most current HIV-1 vaccine candidates intended to elicit such broadly reactive NAbs are based on purified envelope constructs that mimic the structure of the most conserved neutralizing epitopes in the native trimeric Env complex and/or on the expression of wild-type or modified envelope glycoproteins by different types of expression vectors (4, 5, 29, 49, 58). With respect to HIV-2, purified gp125 glycoprotein or synthetic peptides representing selected V3 regions from HIV-2 strain SBL6669 induced autologous and heterologous NAbs in mice or guinea pigs (6, 7, 22). However, immunization of cynomolgus monkeys with a subunit vaccine consisting of gp130 (HIV-2BEN) micelles offered little protection against autologous or heterologous challenge (34). Immunization of rhesus (19, 44, 45) and cynomolgus (1) monkeys with canarypox or attenuated vaccinia virus expressing several HIV-2 SBL6669 proteins, including the envelope glycoproteins, in combination with booster immunizations with gp160, gp125, or V3 synthetic peptides, elicited a weak neutralizing response and partial protection against autologous HIV-2 challenge. Likewise, vaccination of rhesus monkeys with immunogens derived from the historic HIV-2ROD strain failed to generate neutralizing antibodies and to protect against heterologous challenge (55). Finally, baboons inoculated with a DNA vaccine expressing the tat, nef, gag, and env genes of the HIV-2UC2 group B isolate were partially protected against autologous challenge without the production of neutralizing antibodies (33). These studies illustrate the urgent need for new vaccine immunogens and/or vaccination strategies that elicit the production of broadly reactive NAbs against HIV-2. The present study was designed to investigate in the mouse model the immunogenicity and neutralizing response elicited by novel recombinant envelope proteins derived from the reference primary HIV-2ALI isolate, when administered alone or in different prime-boost combinations.  相似文献   

10.
We previously reported that CD4C/human immunodeficiency virus (HIV)Nef transgenic (Tg) mice, expressing Nef in CD4+ T cells and cells of the macrophage/dendritic cell (DC) lineage, develop a severe AIDS-like disease, characterized by depletion of CD4+ T cells, as well as lung, heart, and kidney diseases. In order to determine the contribution of distinct populations of hematopoietic cells to the development of this AIDS-like disease, five additional Tg strains expressing Nef through restricted cell-specific regulatory elements were generated. These Tg strains express Nef in CD4+ T cells, DCs, and macrophages (CD4E/HIVNef); in CD4+ T cells and DCs (mCD4/HIVNef and CD4F/HIVNef); in macrophages and DCs (CD68/HIVNef); or mainly in DCs (CD11c/HIVNef). None of these Tg strains developed significant lung and kidney diseases, suggesting the existence of as-yet-unidentified Nef-expressing cell subset(s) that are responsible for inducing organ disease in CD4C/HIVNef Tg mice. Mice from all five strains developed persistent oral carriage of Candida albicans, suggesting an impaired immune function. Only strains expressing Nef in CD4+ T cells showed CD4+ T-cell depletion, activation, and apoptosis. These results demonstrate that expression of Nef in CD4+ T cells is the primary determinant of their depletion. Therefore, the pattern of Nef expression in specific cell population(s) largely determines the nature of the resulting pathological changes.The major cell targets and reservoirs for human immunodeficiency virus type 1 (HIV-1)/simian immunodeficiency virus (SIV) infection in vivo are CD4+ T lymphocytes and antigen-presenting cells (macrophages and dendritic cells [DC]) (21, 24, 51). The cell specificity of these viruses is largely dependent on the expression of CD4 and of its coreceptors, CCR5 and CXCR-4, at the cell surface (29, 66). Infection of these immune cells leads to the severe disease, AIDS, showing widespread manifestations, including progressive immunodeficiency, immune activation, CD4+ T-cell depletion, wasting, dementia, nephropathy, heart and lung diseases, and susceptibility to opportunistic pathogens, such as Candida albicans (1, 27, 31, 37, 41, 82, 93, 109). It is reasonable to assume that the various pathological changes in AIDS result from the expression of one or many HIV-1/SIV proteins in these immune target cells. However, assigning the contribution of each infected cell subset to each phenotype has been remarkably difficult, despite evidence that AIDS T-cell phenotypes can present very differently depending on the strains of infecting HIV-1 or SIV or on the cells targeted by the virus (4, 39, 49, 52, 72). For example, the T-cell-tropic X4 HIV strains have long been associated with late events and severe CD4+ T-cell depletion (22, 85, 96). However, there are a number of target cell subsets expressing CD4 and CXCR-4, and identifying which one is responsible for this enhanced virulence has not been achieved in vivo. Similarly, the replication of SIV in specific regions of the thymus (cortical versus medullary areas), has been associated with very different outcomes but, unfortunately, the critical target cells of the viruses were not identified either in these studies (60, 80). The task is even more complex, because HIV-1 or SIV can infect several cell subsets within a single cell population. In the thymus, double (CD4 CD8)-negative (DN) or triple (CD3 CD4 CD8)-negative (TN) T cells, as well as double-positive (CD4+ CD8+) (DP) T cells, are infectible by HIV-1 in vitro (9, 28, 74, 84, 98, 99, 110) and in SCID-hu mice (2, 5, 91, 94). In peripheral organs, gut memory CCR5+ CD4+ T cells are primarily infected with R5 SIV, SHIV, or HIV, while circulating CD4+ T cells can be infected by X4 viruses (13, 42, 49, 69, 70, 100, 101, 104). Moreover, some detrimental effects on CD4+ T cells have been postulated to originate from HIV-1/SIV gene expression in bystander cells, such as macrophages or DC, suggesting that other infected target cells may contribute to the loss of CD4+ T cells (6, 7, 32, 36, 64, 90).Similarly, the infected cell population(s) required and sufficient to induce the organ diseases associated with HIV-1/SIV expression (brain, heart, and kidney) have not yet all been identified. For lung or kidney disease, HIV-specific cytotoxic CD8+ T cells (1, 75) or infected podocytes (50, 95), respectively, have been implicated. Activated macrophages have been postulated to play an important role in heart disease (108) and in AIDS dementia (35), although other target cells could be infected by macrophage-tropic viruses and may contribute significantly to the decrease of central nervous system functions (11, 86, 97), as previously pointed out (25).Therefore, because of the widespread nature of HIV-1 infection and the difficulty in extrapolating tropism of HIV-1/SIV in vitro to their cell targeting in vivo (8, 10, 71), alternative approaches are needed to establish the contribution of individual infected cell populations to the multiorgan phenotypes observed in AIDS. To this end, we developed a transgenic (Tg) mouse model of AIDS using a nonreplicating HIV-1 genome expressed through the regulatory sequences of the human CD4 gene (CD4C), in the same murine cells as those targeted by HIV-1 in humans, namely, in immature and mature CD4+ T cells, as well as in cells of the macrophage/DC lineages (47, 48, 77; unpublished data). These CD4C/HIV Tg mice develop a multitude of pathologies closely mimicking those of AIDS patients. These include a gradual destruction of the immune system, characterized among other things by thymic and lymphoid organ atrophy, depletion of mature and immature CD4+ T lymphocytes, activation of CD4+ and CD8+ T cells, susceptibility to mucosal candidiasis, HIV-associated nephropathy, and pulmonary and cardiac complications (26, 43, 44, 57, 76, 77, 79, 106). We demonstrated that Nef is the major determinant of the HIV-1 pathogenicity in CD4C/HIV Tg mice (44). The similarities of the AIDS-like phenotypes of these Tg mice to those in human AIDS strongly suggest that such a Tg mouse approach can be used to investigate the contribution of distinct HIV-1-expressing cell populations to their development.In the present study, we constructed and characterized five additional mouse Tg strains expressing Nef, through distinct regulatory elements, in cell populations more restricted than in CD4C/HIV Tg mice. The aim of this effort was to assess whether, and to what extent, the targeting of Nef in distinct immune cell populations affects disease development and progression.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1) can disseminate between CD4+ T cells via diffusion-limited cell-free viral spread or by directed cell-cell transfer using virally induced structures termed virological synapses. Although T-cell virological synapses have been well characterized, it is unclear whether this mode of viral spread is susceptible to inhibition by neutralizing antibodies and entry inhibitors. We show here that both cell-cell and cell-free viral spread are equivalently sensitive to entry inhibition. Fluorescence imaging analysis measuring virological synapse lifetimes and inhibitor time-of-addition studies implied that inhibitors can access preformed virological synapses and interfere with HIV-1 cell-cell infection. This concept was supported by electron tomography that revealed the T-cell virological synapse to be a relatively permeable structure. Virological synapse-mediated HIV-1 spread is thus efficient but is not an immune or entry inhibitor evasion mechanism, a result that is encouraging for vaccine and drug design.As with enveloped viruses from several viral families, the human immunodeficiency virus type 1 (HIV-1) can disseminate both by fluid-phase diffusion of viral particles and by directed cell-cell transfer (39). The primary target cell for HIV-1 replication in vivo is the CD4+ T-cell (13), which is infectible by CCR5-tropic (R5) and CXCR4-tropic (X4) viral variants (29). R5 HIV-1 is the major transmitted viral phenotype and dominates the global pandemic, whereas X4 virus is found later in infection in ca. 50% of infected individuals, and its presence indicates a poor disease progression prognosis (23). Cell-cell HIV-1 transfer between T cells is more efficient than diffusion-limited spread (8, 16, 32, 38), although recent estimates for the differential range from approximately 1 (42) to 4 (6) orders of magnitude. Two structures have been proposed to support contact-mediated intercellular movement of HIV-1 between T cells: membrane nanotubes (33, 43) and macromolecular adhesive contacts termed virological synapses (VS) (15, 17, 33). VS appear to be the dominant structure involved in T-cell-T-cell spread (33), and both X4 (17) and R5 HIV-1 (6, 15, 42) can spread between T cells via this mechanism.VS assembly and function are dependent on HIV-1 envelope glycoprotein (Env) engaging its primary cellular receptor CD4 (2, 6, 17). This interaction recruits more CD4 and coreceptor to the site of cell-cell contact in an actin-dependent manner (17). Adhesion molecules cluster at the intercellular junction and are thought to stabilize the VS (18). In parallel, viral Env and Gag are recruited to the interface by a microtubule-dependent mechanism (19), where polarized viral budding may release virions into the synaptic space across which the target cell is infected (17). The precise mechanism by which HIV-1 subsequently enters the target T-cell cytoplasm remains unclear: by fusion directly at the plasma membrane, fusion from within an endosomal compartment, or both (4, 6, 15, 25, 34).Viruses from diverse families including herpesviruses (9), poxviruses (22) and hepatitis C virus (44) evade neutralizing antibody attack by direct cell-cell spread, since the tight junctions across which the these viruses move are antibody impermeable. It has been speculated that transfer of HIV-1 across VS may promote evasion from immune or therapeutic intervention with the inference that the junctions formed in retroviral VS may be nonpermissive to antibody entry (39). However, available evidence regarding whether neutralizing antibodies (NAb) and other entry inhibitors can inhibit HIV-1 cell-cell spread is inconsistent (25). An early analysis suggested that HIV-1 T-cell-T-cell spread is relatively resistant to neutralizing monoclonal antibodies (NMAb) (12). A later study agreed with this conclusion by demonstrating a lack of permissivity of HIV-1 T-cell-T-cell spread, measured by transfer of viral Gag, to interference with viral fusion using a gp41-specific NMAb and a peptidic fusion inhibitor (6). In contrast, another analysis reported that anti-gp41-specific NMAb interfered effectively with HIV-1 spread between T cells (26). Inhibitors of the HIV-1 surface glycoprotein (gp120)-CD4 or gp120-CXCR4 interaction reduced X4 HIV-1 VS assembly and viral transfer if applied prior to mixing of infected and receptor-expressing target cells (17, 19), but the effect of these inhibitors has not been tested on preformed VS. Thus, the field is currently unclear on whether direct T-cell-T-cell infectious HIV-1 spread is susceptible or not to antibody and entry inhibitor-mediated disruption of VS assembly, and the related question, whether the VS is permeable to viral entry inhibitors, including NAb. Addressing these questions is of central importance to understanding HIV-1 pathogenesis and informing future drug and vaccine design.Since estimates reported in the literature of the relative efficiency of direct HIV-1 T-cell-T-cell spread compared to cell-free spread vary by approximately 3 orders of magnitude (6, 38, 42), and the evidence for the activity of viral entry inhibitors on cell-cell spread is conflicting, we set out to quantify the efficiency of infection across the T-cell VS and analyze the susceptibility of this structure to NAb and viral entry inhibitors. Assays reporting on events proximal to productive infection show that the R5 HIV-1 T-cell VS is approximately 1 order of magnitude more efficient than cell-free virus infection, and imaging analyses reveal that the VS assembled by HIV-1 is most likely permeable to inhibitors both during, and subsequent to, VS assembly. Thus, we conclude that the T-cell VS does not provide a privileged environment allowing HIV-1 escape from entry inhibition.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) Nef interferes with the endocytic machinery to modulate the cell surface expression of CD4. However, the basal trafficking of CD4 is governed by different rules in the target cells of HIV-1: whereas CD4 is rapidly internalized from the cell surface in myeloid cells, CD4 is stabilized at the plasma membrane through its interaction with the p56lck kinase in lymphoid cells. In this study, we showed that Nef was able to downregulate CD4 in both lymphoid and myeloid cell lines but that an increase in the internalization rate of CD4 could be observed only in lymphoid cells. Expression of p56lck in nonlymphoid CD4-expressing cells restores the ability of Nef in order to increase the internalization rate of CD4. Concurrent with this observation, the expression of a p56lck-binding-deficient mutant of CD4 in lymphoid cells abrogates the Nef-induced acceleration of CD4 internalization. We also show that the expression of Nef causes a decrease in the association of p56lck with cell surface-expressed CD4. Regardless of the presence of p56lck, the downregulation of CD4 by Nef was followed by CD4 degradation. Our results imply that Nef uses distinct mechanisms to downregulate the cell surface expression levels of CD4 in either lymphoid or myeloid target cells of HIV-1.Besides proteins that are essential for proper virus processing and assembly, the genomes of primate lentiviruses such as human immunodeficiency virus type 1 (HIV-1) encode auxiliary proteins that modulate viral infectivity. The 27-kDa auxiliary protein Nef is a key element in the progression of primary HIV-1 infection toward AIDS. Cases of patients infected with HIV-1 strains harboring a deletion in the nef gene or a defective nef allele have been reported. Some of these patients exhibit asymptomatic or slow progression toward the disease (6, 17, 37). In vitro, Nef facilitates viral replication and enhances the infectivity of viral particles (13, 47, 69). The mechanisms involved in the Nef-induced increase of viral infectivity remain elusive; however, it is a multifactorial process related to the ability of Nef to alter the trafficking of host cell proteins.Indeed, the most documented effect of Nef during the course of viral infection is its ability to disturb the clathrin-dependent trafficking machinery involved in the transport of transmembrane proteins through endosomal compartments. This leads to the modulation of the level of cell surface expression for some receptors, including CD4, which is the primary receptor of HIV-1 (35) and major histocompatibility complex class I (reviewed in references 22 and 27). The downregulation of CD4, which results in the impairment of the immunological synapse (72) and the downregulation of major histocompatibility complex class I molecules (reviewed in reference 16), is believed to contribute to the escape of HIV-1-infected cells from immunosurveillance. Moreover, the downregulation of CD4 helps avoid superinfection of cells, which would be deleterious to the virus (reviewed in reference 21), and has a direct impact on viral fitness by allowing better incorporation of the functional envelope in viral particles produced from CD4-expressing cells (3, 36, 53).Nef-induced cell surface downregulation of CD4 is efficient in all CD4-expressing cells and depends on the integrity of a di-Leu motif at position 164/165 of the C-terminal flexible loop of HIV-1 Nef (2, 9, 25). This di-Leu motif allows for the interaction with clathrin-associated adaptor protein (AP) complexes that participate in the clathrin-dependent vesicular transport within the endocytic pathway. The AP type 2 (AP-2) complex is localized at the plasma membrane and is essential to the assembly and function of clathrin-coated pits involved in the internalization of receptors from the cell surface (59). The interaction of Nef with AP-2 is well delineated and has been proposed to enhance the targeting of CD4 to clathrin-coated pits and its internalization (10, 12, 26, 32, 39).Helper T lymphocytes are the predominant cell type that expresses CD4; however, CD4 is also present at the surfaces of monocytes and macrophages (70), where its function is yet to be elucidated. Whereas cell surface CD4 is rapidly internalized in myeloid cells, CD4 is stabilized at the plasma membrane in lymphoid cells through its interaction with the Src family protein tyrosine kinase p56lck. Cys residues located at positions 420/422 in the CD4 cytoplasmic tail are essential to the constitutive association with p56lck (73). Besides its role in signal transduction, this interaction also correlates with an accumulation of CD4 in lipid rafts and enhanced exclusion of CD4 from clathrin-coated pits (50).In T cells, treatment with phorbol esters such as phorbol 12-myristate 13-acetate (PMA) provokes the phosphorylation of Ser residues found in the cytoplasmic tail of CD4. This correlates with a decreased association of p56lck with CD4 and the internalization of the receptor (24, 32-34, 41, 45, 48, 52, 56, 61, 66-68). Nef-induced CD4 downregulation is known to be independent of Ser phosphorylation (20) and is therefore governed by mechanisms different from those involved in PMA-induced CD4 downregulation. However, the Leu-based sorting motif in the CD4 cytoplasmic tail is critical for both PMA and Nef-induced CD4 downregulation (2, 5, 24, 31, 56, 60, 68), thus indicating that despite being different, the mechanisms involved in Nef- and PMA-induced CD4 downregulation partially overlap.In the present study, we investigated whether the mechanisms used by Nef to downregulate CD4 are cell type-dependent processes. We looked at the trafficking and steady-state expression of CD4 in the main target cells of HIV-1, CD4-positive T lymphocytes, and cells of the monocyte/macrophage lineage. Our results demonstrate that the presence of p56lck has a direct impact on the mechanisms used by Nef to downregulate CD4 from the cell surface of T lymphocytes. They also reveal that Nef uses distinct pathways to decrease levels of cell surface expression of CD4 in lymphoid or myeloid target cells of HIV-1.  相似文献   

13.
14.
15.
16.
Highly active antiretroviral therapy (HAART) can reduce human immunodeficiency virus type 1 (HIV-1) viremia to clinically undetectable levels. Despite this dramatic reduction, some virus is present in the blood. In addition, a long-lived latent reservoir for HIV-1 exists in resting memory CD4+ T cells. This reservoir is believed to be a source of the residual viremia and is the focus of eradication efforts. Here, we use two measures of population structure—analysis of molecular variance and the Slatkin-Maddison test—to demonstrate that the residual viremia is genetically distinct from proviruses in resting CD4+ T cells but that proviruses in resting and activated CD4+ T cells belong to a single population. Residual viremia is genetically distinct from proviruses in activated CD4+ T cells, monocytes, and unfractionated peripheral blood mononuclear cells. The finding that some of the residual viremia in patients on HAART stems from an unidentified cellular source other than CD4+ T cells has implications for eradication efforts.Successful treatment of human immunodeficiency virus type 1 (HIV-1) infection with highly active antiretroviral therapy (HAART) reduces free virus in the blood to levels undetectable by the most sensitive clinical assays (18, 36). However, HIV-1 persists as a latent provirus in resting, memory CD4+ T lymphocytes (6, 9, 12, 16, 48) and perhaps in other cell types (45, 52). The latent reservoir in resting CD4+ T cells represents a barrier to eradication because of its long half-life (15, 37, 40-42) and because specifically targeting and purging this reservoir is inherently difficult (8, 25, 27).In addition to the latent reservoir in resting CD4+ T cells, patients on HAART also have a low amount of free virus in the plasma, typically at levels below the limit of detection of current clinical assays (13, 19, 35, 37). Because free virus has a short half-life (20, 47), residual viremia is indicative of active virus production. The continued presence of free virus in the plasma of patients on HAART indicates either ongoing replication (10, 13, 17, 19), release of virus after reactivation of latently infected CD4+ T cells (22, 24, 31, 50), release from other cellular reservoirs (7, 45, 52), or some combination of these mechanisms. Finding the cellular source of residual viremia is important because it will identify the cells that are still capable of producing virus in patients on HAART, cells that must be targeted in any eradication effort.Detailed analysis of this residual viremia has been hindered by technical challenges involved in working with very low concentrations of virus (13, 19, 35). Recently, new insights into the nature of residual viremia have been obtained through intensive patient sampling and enhanced ultrasensitive sequencing methods (1). In a subset of patients, most of the residual viremia consisted of a small number of viral clones (1, 46) produced by a cell type severely underrepresented in the peripheral circulation (1). These unique viral clones, termed predominant plasma clones (PPCs), persist unchanged for extended periods of time (1). The persistence of PPCs indicates that in some patients there may be another major cellular source of residual viremia (1). However, PPCs were observed in a small group of patients who started HAART with very low CD4 counts, and it has been unclear whether the PPC phenomenon extends beyond this group of patients. More importantly, it has been unclear whether the residual viremia generally consists of distinct virus populations produced by different cell types.Since the HIV-1 infection in most patients is initially established by a single viral clone (23, 51), with subsequent diversification (29), the presence of genetically distinct populations of virus in a single individual can reflect entry of viruses into compartments where replication occurs with limited subsequent intercompartmental mixing (32). Sophisticated genetic tests can detect such population structure in a sample of viral sequences (4, 39, 49). Using two complementary tests of population structure (14, 43), we analyzed viral sequences from multiple sources within individual patients in order to determine whether a source other than circulating resting CD4+ T cells contributes to residual viremia and viral persistence. Our results have important clinical implications for understanding HIV-1 persistence and treatment failure and for improving eradication strategies, which are currently focusing only on the latent CD4+ T-cell reservoir.  相似文献   

17.
Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1). With its unique specificity for domain 2 of CD4, this antibody potently and broadly blocks HIV-1 infection in vitro by inhibiting a postbinding step required for viral entry but without interfering with major histocompatibility complex class II (MHC-II)-mediated immune function. In clinical trials, ibalizumab has demonstrated anti-HIV-1 activity in patients without causing immunosuppression. Thus, a characterization of the ibalizumab epitope was conducted in an attempt to gain insight into the underlying mechanism of its antiviral activity as well as its safety profile. By studying mouse/human chimeric CD4 molecules and site-directed point mutants of CD4, amino acids L96, P121, P122, and Q163 in domain 2 were found to be important for ibalizumab binding, with E77 and S79 in domain 1 also contributing. All these residues appear to cluster on the interface between domains 1 and 2 of human CD4 on a surface opposite the site where gp120 and the MHC-II molecule bind on domain 1. Separately, the epitope of M-T441, a weakly neutralizing mouse monoclonal antibody that competes with ibalizumab, was localized entirely within domain 2 on residues 123 to 125 and 138 to 140. The results reported herein not only provide an appreciation for why ibalizumab has not had significant adverse immunological consequences in infected patients to date but also raise possible steric hindrance mechanisms by which this antibody blocks HIV-1 entry into a CD4-positive cell.The human immunodeficiency virus type 1 (HIV-1) epidemic continues to spread at the alarming rate of approximately 2.5 million new cases per year, despite intensive efforts from the scientific community. A safe and effective HIV-1 vaccine would be a key weapon to fight this epidemic; however, vaccine development has not yet proven successful. The extraordinary diversity of the virus, its capacity to evade adaptive immune responses, and the inability to induce broadly neutralizing antibodies against HIV-1 represent unprecedented challenges for vaccine development (3). Alternatively, the strategy of preexposure prophylaxis (PrEP) with antiretroviral drugs or even virus-specific immunoglobulins (Igs) (11) is gaining traction. Protection of rhesus macaques from challenge with simian immunodeficiency virus (SIV) has been observed after passive administration of anti-gp120 or anti-gp41 monoclonal antibodies, such as b12, 2G12, 2F5, and 4E10 (2, 20). However, the application of these antibodies as PrEP has been hindered due to their lack of potency or breadth or both. To this end, PrEP strategies could also consider antibodies to CCR5 (13) or CD4 (8, 12, 14), which have potent and broad inhibitory activities against HIV-1 without unwanted side effects.The CD4 molecule, a cell surface glycoprotein found primarily on T lymphocytes, is the primary receptor for the HIV-1 envelope gp160 glycoprotein (7, 18). A member of the immunoglobulin superfamily (19), CD4 consists of an extracellular segment composed of four tandem immunoglobulin-like domains (D1, D2, D3, and D4), a single transmembrane span, and a short C-terminal cytoplasmic tail (15, 24). It is worth noting that both human major histocompatibility complex (MHC) class II (26) and HIV-1 gp120 (16, 24) bind to the same surface on the first domain (D1) of the CD4 molecule.Ibalizumab (formerly known as TNX-355) is a humanized IgG4 monoclonal antibody that blocks HIV-1 entry by binding to human CD4 (8, 12, 14, 33). It was engineered from its mouse progenitor (5A8) by grafting the mouse complementary-determining region (CDR) onto a human IgG4 construct (4, 5). The IgG4 isotype was chosen to minimize the chances for CD4+ T-cell depletion by antibody- and complement-dependent cytotoxicity mediated by binding to Fc receptors. Ibalizumab or 5A8 blocks CD4-dependent virus entry and inhibits a broad spectrum of both laboratory-adapted and clinical HIV-1 isolates, including CCR5-tropic and CXCR4-tropic strains from multiple subtypes, with 50% inhibitory concentrations (IC50s) of 0.0004 to 0.152 μg/ml (4, 5). In vivo, treatment with ibalizumab prominently reduced plasma viremia in rhesus macaques infected with SIV, because this monoclonal antibody has equal affinity for rhesus CD4 (22, 23). In HIV-1 patients, single as well as multiple doses of ibalizumab resulted in substantial reductions (∼10-fold) in viral loads and increases in CD4+ T-cell counts without evidence of serious adverse effects or immunologic impairments (12, 14).Efforts were made years ago to delineate the antibody binding site of 5A8 on human CD4 (hCD4) (5). Two stretches, amino acids (aa) 121 to 124 and aa 127 to 134, in domain 2 (D2) were found to be critical for binding. Since then, however, little work has been done to fine-map this epitope, and whether other parts of hCD4 are involved in the binding of this antibody has remained unexplored. The fact that an anti-hCD4-D2 antibody can noncompetitively, yet potently, block HIV-1 entry is intriguing, as viral gp120 binds to D1 of hCD4 (16, 24). Therefore, to gain a better understanding of the mechanism by which ibalizumab inhibits HIV-1 infection while avoiding undesired side effects, we sought to fine-map the epitope of this unique monoclonal antibody.  相似文献   

18.
Most antibodies are multivalent, with the potential to bind with high avidity. However, neutralizing antibodies commonly bind to virions monovalently. Bivalent binding of a monoclonal antibody (MAb) to a virion has been documented only in a single case. Thus, the role of high avidity in antibody-mediated neutralization of viruses has not been defined clearly. In this study, we demonstrated that when an artificial 2F5 epitope was inserted in the gp120 V4 region so that an HIV-1 envelope glycoprotein (Env) trimer contains a natural 2F5 epitope in the gp41 membrane-proximal envelope region (MPER) and an artificially engineered 2F5 epitope in the gp120 V4 region, bivalent 2F5 IgG achieved greatly enhanced neutralization efficiency, with a 50% inhibitory concentration (IC50) decrease over a 2-log scale. In contrast, the monovalent 2F5 Fab fragment did not exhibit any appreciable change in neutralization efficiency in the same context. These results demonstrate that bivalent binding of 2F5 IgG to a single HIV-1 Env trimer results in dramatic enhancement of neutralization, probably through an increase in binding avidity. Furthermore, we demonstrated that bivalent binding of MAb 2F5 to the V4 region and MPER of an HIV-1 Env trimer can be achieved only in a specific configuration, providing an important insight into the structure of a native/infectious HIV-1 Env trimer. This specific binding configuration also establishes a useful standard that can be applied to evaluate the biological relevance of structural information on the HIV-1 Env trimer.Immunoglobulin molecules have multiple binding paratopes for antigens; for example, those for IgG1 are bivalent and those for IgM are dodecavalent. It is obvious that multivalent binding is required for the distinct mechanism of neutralization by cross-linking multiple virions to form virus aggregates (reviewed in references 7 and 67). Despite the potential of antibodies for multivalent binding, structural evidence indicates that neutralizing antibodies often bind to an individual virion in a monovalent fashion (19, 20, 27, 29, 50, 53; reviewed in references 12 and 22). Bivalent binding of an antibody to a virion has been documented with clear structural evidence in only one case, in which monoclonal antibodies (MAbs) 17-IA and 8F5 bind to virions of human rhinovirus 14 (HRV14) and HRV2 (19, 43). Even in this unique case, binding bivalency appears to contribute to the neutralization potency of 17-IA but not to that of 8F5 (19, 42, 43). Moreover, these MAbs bind to two hydrophobic canyon structures formed by viral proteins VP1 and VP2 and not to antigenic epitopes within individual viral capsid protomers; thus, this case may represent an exception to the common form of antibody/antigen interactions in which the antibodies bind to individual antigens. Therefore, it is not clear what role antibody-binding multivalency plays in antibody-mediated neutralization of viruses at the level of interaction between antibody molecules and individual virions.The binding affinity of an antibody to its target is defined by intrinsic affinity and avidity (reviewed in reference 16). Intrinsic affinity is the force of monovalent binding between an antibody paratope and an antigenic epitope, often measured by binding a Fab fragment to an antigen. Avidity is the additive or synergistic force of engaging multiple antibody paratope/antigen epitope pairs between one antibody and one antigen. In other words, avidity is a functional consequence of antibody-binding multivalency. The effect of avidity on affinity is readily demonstrated in biochemical reactions such as enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), in which high-density antigenic sites are available without distinct spatial restrictions. It is commonly assumed that both affinity and avidity have functional consequences in antibody-mediated neutralization of viruses (reviewed in references 7 and 67). At the level of individual virions, the contribution of antibody-binding avidity to neutralization efficiency is often based on two types of experiments. In one, results from a side-by-side comparison between an antibody and its Fab fragment are often reported as evidence supporting a role of antibody-binding multivalency in virus neutralization. However, the interpretation of this type of experiment is complicated by the size difference between an antibody and a Fab fragment, since steric hindrance is a major mechanism of neutralization (reviewed in references 6 and 23). In a second type of experiment, a correlation between neutralization efficiency and the ability of the antibody/virus complex to resist chemical stress without dissociation in the presence of a high concentration of salt in solution is interpreted to support a contributing effect from antibody-binding avidity to neutralization efficiency (2, 21, 36, 49, 51). Data from this type of experiment are limited mostly to measuring binding affinity that is below the affinity required for virus neutralization. Furthermore, these studies often do not distinguish between avidity effects caused by an antibody binding to two (or more) epitopes on one antigen or to multiple epitopes from different molecules on the virion. Therefore, like the situation with antibody-binding multivalency, it remains unclear whether binding avidity contributes to antibody-mediated neutralization of viruses at the level of individual virions.The envelope glycoproteins (Envs) of human immunodeficiency virus type 1 (HIV-1) exist on the virion or cell surface as trimers of gp120 and gp41 heterodimers (13, 30, 62, 65). High-resolution structural information for a native HIV-1 Env trimer is critically important for understanding the function of HIV-1 Envs as well as for guiding the development of an effective immunogen to elicit broad and potent neutralizing antibody responses. X-ray crystal structures of the gp41 ectodomain fragments in the postfusion conformation have been resolved; however, a high-resolution structure of gp41 in the prefusion conformation is still unavailable and likely will be more informative for understanding the function of HIV-1 Env trimers (9, 47, 52). Two X-ray crystal structures of the gp120 core in both the CD4-liganded and unliganded conformations have been solved, but the biological meanings of these structures, especially how they are related to the native, functional Env trimer, are still being debated (10, 26). Several low-resolution structures of the Env trimers from HIV-1 or the closely related simian immunodeficiency virus (SIV) have been determined using cryoelectron microscopy (cryo-EM) tomography (4, 30, 62, 64, 65, 66). The predicted structures for the Env trimer are in general quite different between the two studies, and the difference is particularly dramatic around the gp41 membrane-proximal external region (MPER). A high-resolution structure of the native HIV-1 Env trimer is needed to resolve these differences. In the meantime, a distinctive standard needs to be developed for evaluating the biological relevance of structural information of an HIV-1 Env trimer.Our previous studies of the stoichiometry of antibody-mediated neutralization of HIV-1 Env indicated that MAbs b12, 2G12, and 2F5 neutralize by a stoichiometry designated T=1, i.e., one antibody binds to and neutralizes one HIV-1 Env trimer (57). Furthermore, when an artificial epitope (FLAG) was inserted in the V4 region of HIV-1 gp120, an epitope-specific anti-FLAG MAb achieved neutralization by the mechanism of steric hindrance (37, 61). Using the well-defined 2F5 neutralizing epitope as a model system (35, 39, 45), we constructed HIV-1 Env proteins carrying one 2F5 epitope in the gp120 V4 region and another 2F5 epitope in the gp41 MPER. Here, we investigated whether binding bivalency leads to enhancement in neutralization efficiency. By studying the detailed requirement for binding bivalency, we also probed the structure of the native, functional HIV-1 Env trimer, aiming to establish a standard that can be employed to evaluate the biological relevance of structural information on the HIV-1 Env trimer.  相似文献   

19.
Direct cell-to-cell spread of human immunodeficiency virus type 1 (HIV-1) between T cells at the virological synapse (VS) is an efficient mechanism of viral dissemination. Tetherin (BST-2/CD317) is an interferon-induced, antiretroviral restriction factor that inhibits nascent cell-free particle release. The HIV-1 Vpu protein antagonizes tetherin activity; however, whether tetherin also restricts cell-cell spread is unclear. We performed quantitative cell-to-cell transfer analysis of wild-type (WT) or Vpu-defective HIV-1 in Jurkat and primary CD4+ T cells, both of which express endogenous levels of tetherin. We found that Vpu-defective HIV-1 appeared to disseminate more efficiently by cell-to-cell contact between Jurkat cells under conditions where tetherin restricted cell-free virion release. In T cells infected with Vpu-defective HIV-1, tetherin was enriched at the VS, and VS formation was increased compared to the WT, correlating with an accumulation of virus envelope proteins on the cell surface. Increasing tetherin expression with type I interferon had only minor effects on cell-to-cell transmission. Furthermore, small interfering RNA (siRNA)-mediated depletion of tetherin decreased VS formation and cell-to-cell transmission of both Vpu-defective and WT HIV-1. Taken together, these data demonstrate that tetherin does not restrict VS-mediated T cell-to-T cell transfer of Vpu-defective HIV-1 and suggest that under some circumstances tetherin might promote cell-to-cell transfer, either by mediating the accumulation of virions on the cell surface or by regulating integrity of the VS. If so, inhibition of tetherin activity by Vpu may balance requirements for efficient cell-free virion production and cell-to-cell transfer of HIV-1 in the face of antiviral immune responses.Human immunodeficiency virus type 1 can disseminate between and within hosts by cell-free infection or by direct cell-cell spread. Cell-cell spread of HIV-1 between CD4+ T cells is an efficient means of viral dissemination (65) and has been estimated to be several orders of magnitude more rapid than cell-free virus infection (6, 8, 41, 64, 74). Cell-cell transmission of HIV-1 takes place at the virological synapse (VS), a multimolecular structure that forms at the interface between an HIV-1-infected T cell and an uninfected target T cell during intercellular contact (27). Related structures that facilitate cell-cell spread of HIV-1 between dendritic cells and T cells (42) and between macrophages and T cells (16, 17) and for cell-cell spread of the related retrovirus human T-cell leukemia virus type 1 (HTLV-1) (24) have also been described. Moreover, more long-range cell-cell transfer can occur via cellular projections, including filopodia (71) and membrane nanotubes (75). The VS is initiated by binding of the HIV-1 envelope glycoprotein (Env), which is expressed on the surfaces of infected T cells, to HIV-1 entry receptors (CD4 and either CXCR4 or CCR5) present on the target cell membrane (6, 22, 27, 41, 61, 73). Interactions between LFA-1 and ICAM-1 and ICAM-3 further stabilize the conjugate interface and, together with Env receptor binding, help trigger the recruitment of viral proteins, CD4/coreceptor, and integrins to the contact site (27, 28, 61). The enrichment of viral and cellular proteins at the VS is an active process, dependent on cytoskeletal remodeling, and in the infected T cell both the actin and tubulin network regulate polarization of HIV-1 proteins at the cell-cell interface, thus directing HIV-1 assembly and egress toward the engaged target cell (27, 29). Virus is transferred by budding into the synaptic cleft, and virions subsequently attach to the target cell membrane to mediate entry, either by fusion at the plasma membrane or possibly following endocytic uptake (2, 22). In this way, the VS promotes more rapid infection kinetics and may enhance HIV-1 pathogenesis in vivo.Cells have evolved a number of barriers to resist invading microorganisms. One mechanism that appears to be particularly important in counteracting HIV-1 infection is a group of interferon-inducible, innate restriction factors that includes TRIM5α, APOBEC3G, and tetherin (38, 49, 69, 79). Tetherin (BST-2/CD317) is a host protein expressed by many cell types, including CD4+ T cells, that acts at a late stage of the HIV-1 life cycle to trap (or “tether”) mature virions at the plasma membranes of virus-producing cells, thereby inhibiting cell-free virus release (49, 56, 81). This antiviral activity of tetherin is not restricted to HIV-1, and tetherin can also inhibit the release of other enveloped viruses from infected cells (31, 40, 54, 62). What the cellular function of tetherin is besides its antiviral activity is unclear, but because expression is upregulated following alpha/beta interferon (IFN-α/β) treatment (1) and tetherin can restrict a range of enveloped viruses, tetherin has been postulated to be a broad-acting mediator of the innate immune defense against enveloped viruses.To circumvent restriction of particle release, HIV-1 encodes the 16-kDa accessory protein Vpu, which antagonizes tetherin and restores normal virus budding (47, 78). The molecular mechanisms by which Vpu does this are not entirely clear, but evidence suggests that Vpu may exert its antagonistic function by downregulating tetherin from the cell surface, trapping it in the trans-Golgi network (10) and targeting it for degradation by the proteasome (12, 39, 81) or lysosome (9, 25, 44); however, degradation of tetherin may be dispensable for Vpu activity (13), and in HIV-1-infected T cells, surface downregulation of tetherin has been reported to be minor (45), suggesting that global removal of tetherin from the plasma membrane may not be necessary to antagonize its function.Tetherin-mediated restriction of HIV-1 and antagonism by Vpu have been the focus of much research, and inhibition of cell-free virus infection has been well documented (33, 47-49, 77, 81, 82). In contrast, less studied is the impact of tetherin on direct cell-cell dissemination. For example, it is not clear if tetherin-mediated restriction inhibits T cell-T cell spread as efficiently as cell-free release or whether tetherin affects VS formation. To address these questions, we analyzed Vpu+ and Vpu viruses for their ability to spread directly between Jurkat T cells and primary CD4+ T cells in the presence or absence of endogenous tetherin. Our data suggest that tetherin does not restrict HIV-1 in the context of cell-to-cell transmission of virus between T cells expressing endogenous tetherin. Interestingly, we also that observed that Vpu-defective virus may disseminate more efficiently by cell-cell spread at the VS. We postulate that cell-cell spread may favor viral pathogenesis by allowing HIV-1 to disseminate in the presence of tetherin during an interferon-producing innate response.  相似文献   

20.
During untreated human immunodeficiency virus type 1 (HIV-1) infection, virus-specific CD8+ T cells partially control HIV replication in peripheral lymphoid tissues, but host mechanisms of HIV control in the central nervous system (CNS) are incompletely understood. We characterized HIV-specific CD8+ T cells in cerebrospinal fluid (CSF) and peripheral blood among seven HIV-positive antiretroviral therapy-naïve subjects. All had grossly normal brain magnetic resonance imaging and spectroscopy and normal neuropsychometric testing. Frequencies of epitope-specific CD8+ T cells by direct tetramer staining were on average 2.4-fold higher in CSF than in blood (P = 0.0004), while HIV RNA concentrations were lower. Cells from CSF were readily expanded ex vivo and responded to a broader range of HIV-specific human leukocyte antigen class I restricted optimal peptides than did expanded cells from blood. HIV-specific CD8+ T cells, in contrast to total CD8+ T cells, in CSF and blood were at comparable maturation states, as assessed by CD45RO and CCR7 staining. The strong relationship between higher T-cell frequencies and lower levels of viral antigen in CSF could be the result of increased migration to and/or preferential expansion of HIV-specific T cells within the CNS. This suggests an important role for HIV-specific CD8+ T cells in control of intrathecal viral replication.Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) early during primary infection (21, 30, 35), and proviral DNA persists in the brain throughout the course of HIV-1 disease (7, 25, 29, 47, 77, 83). Limited data from human and nonhuman primate studies suggest that little or no viral replication occurs in the brain during chronic, asymptomatic infection, based on the absence of demonstrable viral RNA or proteins (8, 85). In contrast, cognitive impairment affects approximately 40% of patients who progress to advanced AIDS without highly active antiretroviral therapy (21, 30, 35, 65). During HIV-associated dementia, there is active HIV-1 replication in the brain (23, 52, 61, 81), and viral sequence differences between cerebrospinal fluid (CSF) and peripheral tissues suggest distinct anatomic compartments of replication (18, 19, 22, 53, 75, 76, 78). Host mechanisms that control viral replication in the CNS during chronic, asymptomatic HIV-1 infection are incompletely understood.Anti-HIV CD8+ T cells are present in blood and peripheral tissues throughout the course of chronic HIV-1 infection (2, 14). Multiple lines of evidence support a critical role for these cells in controlling HIV-1 replication. During acute HIV-1 infection, the appearance of CD8+ T-cell responses correlates temporally with a decline in viremia (11, 43), and a greater proliferative capacity of peripheral blood HIV-specific CD8+ T cells correlates with better control of viremia (36, 54). In addition, the presence of certain major histocompatibility complex class I human leukocyte antigen (HLA) alleles, notably HLA-B*57, predicts slower progression to AIDS and death during chronic, untreated HIV-1 infection (55, 62). Finally, in the simian immunodeficiency virus (SIV) model, macaques depleted of CD8+ T cells experience increased viremia and rapid disease progression (39, 51, 67).Little is known regarding the role of intrathecal anti-HIV CD8+ T cells in HIV neuropathogenesis. Nonhuman primate studies have identified SIV-specific CD8+ T cells in the CNS early after infection (16, 80). Increased infiltration of SIV antigen-specific CD8+ T cells and cytotoxic T lymphocytes has been detected only in CSF of slow progressors without neurological symptoms (72). In chronically infected macaques with little or no SIV replication in the brain, the frequency of HIV-specific T cells was higher in CSF than in peripheral blood but did not correlate with the level of plasma viremia or CD4+ T-cell counts (56). Although intrathecal anti-HIV CD8+ T cells may help control viral replication, a detrimental role in the neuropathogenesis of HIV-1 has also been postulated (38). Immune responses contribute to neuropathogenesis in models of other infectious diseases, and during other viral infections cytotoxic T lymphocytes can worsen disease through direct cytotoxicity or release of inflammatory cytokines such as gamma interferon (IFN-γ) (3, 17, 31, 37, 42, 44, 71).We tested the hypothesis that quantitative and/or qualitative differences in HIV-specific CD8+ T-cell responses are present in CSF compared to blood during chronic, untreated HIV-1 infection. We characterized HIV-specific CD8+ T-cell responses in CSF among seven antiretroviral therapy-naïve adults with chronic HIV-1 infection, relatively high peripheral blood CD4+ T-cell counts, and low plasma HIV-1 RNA concentrations. We show that among these HIV-positive individuals with no neurological symptoms and with little or no HIV-1 RNA in CSF, frequencies of HIV-specific T cells are significantly higher in CSF than in blood. These CSF cells are at a state of differentiation similar to that of T cells in blood and are functionally competent for expansion and IFN-γ production. The higher frequency of functional HIV-specific CD8+ T cells in CSF, in the context of low or undetectable virus in CSF, suggests that these cells play a role in the control of intrathecal viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号