首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When Lemna minor L. is supplied with the potent inhibitor of glutamine synthetase, methionine sulfoximine, rapid changes in free amino acid levels occur. Glutamine, glutamate, asparagine, aspartate, alanine, and serine levels decline concomitantly with ammonia accumulation. However, not all free amino acid pools deplete in response to this inhibitor. Several free amino acids including proline, valine, leucine, isoleucine, threonine, lysine, phenylalanine, tyrosine, histidine, and methionine exhibit severalfold accumulations within 24 hours of methionine sulfoximine treatment. To investigate whether these latter amino acid accumulations result from de novo synthesis via a methionine sulfoximine insensitive pathway of ammonia assimilation (e.g. glutamate dehydrogenase) or from protein turnover, fronds of Lemna minor were prelabeled with [15N]H4+ prior to supplying the inhibitor. Analyses of the 15N abundance of free amino acids suggest that protein turnover is the major source of these methionine sulfoximine induced amino acid accumulations. Thus, the pools of valine, leucine, isoleucine, proline, and threonine accumulated in response to the inhibitor in the presence of [15N]H4+, are 14N enriched and are not apparently derived from 15N-labeled precursors. To account for the selective accumulation of amino acids, such as valine, leucine, isoleucine, proline, and threonine, it is necessary to envisage that these free amino acids are relatively poorly catabolized in vivo. The amino acids which deplete in response to methionine sulfoximine (i.e. glutamate, glutamine, alanine, aspartate, asparagine, and serine) are all presumably rapidly catabolized to ammonia, either in the photorespiratory pathway or by alternative routes.  相似文献   

2.
Fourteen genes encoding putative secondary amino acid transporters were identified in the genomes of Lactococcus lactis subsp. cremoris strains MG1363 and SK11 and L. lactis subsp. lactis strains IL1403 and KF147, 12 of which were common to all four strains. Amino acid uptake in L. lactis cells overexpressing the genes revealed transporters specific for histidine, lysine, arginine, agmatine, putrescine, aromatic amino acids, acidic amino acids, serine, and branched-chain amino acids. Substrate specificities were demonstrated by inhibition profiles determined in the presence of excesses of the other amino acids. Four knockout mutants, lacking the lysine transporter LysP, the histidine transporter HisP (formerly LysQ), the acidic amino acid transporter AcaP (YlcA), or the aromatic amino acid transporter FywP (YsjA), were constructed. The LysP, HisP, and FywP deletion mutants showed drastically decreased rates of uptake of the corresponding substrates at low concentrations. The same was observed for the AcaP mutant with aspartate but not with glutamate. In rich M17 medium, the deletion of none of the transporters affected growth. In contrast, the deletion of the HisP, AcaP, and FywP transporters did affect growth in a defined medium with free amino acids as the sole amino acid source. HisP was essential at low histidine concentrations, and AcaP was essential in the absence of glutamine. FywP appeared to play a role in retaining intracellularly synthesized aromatic amino acids when these were not added to the medium. Finally, HisP, AcaP, and FywP did not play a role in the excretion of accumulated histidine, glutamate, or phenylalanine, respectively, indicating the involvement of other transporters.  相似文献   

3.
4.
5.
6.
Aminooxyacetate, a known inhibitor of transaminase reactions and glycine decarboxylase, promotes rapid depletion of the free pools of serine and aspartate in nitrate grown Lemna minor L. This compound markedly inhibits the methionine sulfoximine-induced accumulation of free ammonium ions and greatly restricts the methionine sulfoximine-induced depletion of amino acids such as glutamate, alanine, and asparagine. These results suggest that glutamate, alanine, and asparagine are normally catabolized to ammonia by transaminase-dependent pathways rather than via dehydrogenase or amidohydrolase reactions. Aminooxyacetate does not inhibit the methionine sulfoximine-induced irreversible deactivation of glutamine synthetase in vivo, indicating that these effects cannot be simply ascribed to inhibition of methionine sulfoximine uptake by amino-oxyacetate. This transaminase inhibitor promotes extensive accumulation of several amino acids including valine, leucine, isoleucine, alanine, glycine, threonine, proline, phenylalanine, lysine, and tyrosine. Since the aminooxyacetate induced accumulations of valine, leucine, and isoleucine are not inhibited by the branched-chain amino acid biosynthesis inhibitor, chlorsulfuron, these amino acid accumulations most probably involve protein turnover. Depletions of soluble protein bound amino acids are shown to be approximately stoichiometric with the free amino acid pool accumulations induced by aminooxyacetate. Aminooxyacetate is demonstrated to inhibit the chlorsulfuron-induced accumulation of α-amino-n-butyrate in L. minor, supporting the notion that this amino acid is derived from transamination of 2-oxobutyrate.  相似文献   

7.
After incubation of muscle preparations with [U-14C]branched-chain amino acids or 2-oxo acids, radioactive metabolites were separated, identified and quantified. Homogenates of rat heart and skeletal muscle incubated with 4-methyl-2-oxopentanoate accumulated isovalerate, 3-hydroxyisovalerate and the corresponding carnitine esters. Incubation with 3-methyl-2-oxobutanoate resulted in the production of isobutyrate, 3-hydroxyisobutyrate and their carnitine esters. Addition of L-carnitine increased the production of the esters. The enzymes 3-methylcrotonyl-CoA carboxylase and 3-hydroxyisobutyric acid dehydrogenase apparently are inactive during incubation of muscle homogenates. With liver homogenates the degradation of both 2-oxo acids was more complete. Rat hemidiaphragms incubated with leucine, valine and isoleucine accumulated the corresponding branched-chain 2-oxo acids, fatty acids and hydroxylated fatty acids. The degradation of valine was markedly limited by the release of these metabolites. Considerable amounts (relatively smaller for valine) of radioactivity were also recovered in CO2 and glutamine and glutamate. Incubations with branched-chain 2-oxo acids gave the same radioactive products, except for glutamine and glutamate. Radioactivity was never found in lactate, pyruvate or alanine. These data indicate that the carbon-chains of amino acids entering the citric acid cycle in muscle, are not used for oxidation or for alanine synthesis, but are converted exclusively to glutamine.  相似文献   

8.
9.
The complete cDNA sequence of CPS I obtained from the liver of the hylid tree frog, Litoria caerulea, consisted of 4,485?bp which coded for 1,495 amino acids with an estimated molecular mass of 163.7?kDa. The deduced CPS I consisted of a mitochondrial targeting sequence of 33 amino acid residues, a glutaminase amidotransferase component spanning from tyrosine 95 to leucine 425, and a methylglyoxal synthetase-like component spanning from valine 441 to lysine 1566. It also comprised two cysteine residues (cysteine 1360 and cysteine 1370) that are characteristic of N-acetyl-l-glutamate dependency. Similar to the CPS I of Rana catesbeiana and Cps III of lungfishes and teleosts, it contained the Cys?CHis?CGlu catalytic triad (cysteine 304, histidine 388 and glutamate 390). All Cps III contain methionine 305 and glutamine 308, which are essential for the Cys?CHis?CGlu triad to react with glutamine, but the CPS I of R. catesbeiana contains lysine 305 and glutamate 308, and therefore cannot effectively utilize glutamine as a substrate. However, the CPS I of L. caerulea, unlike that of R. catesbeiana, contained besides glutamate 308, methionine 305 instead of lysine 305, and thus represented a transitional form between Cps III and CPS I. Indeed, CPS I of L. caerulea could utilize glutamine or NH4 + as a substrate in vitro, but the activity obtained with glutamine?+?NH4 + reflected that obtained with NH4 + alone. Furthermore, only?<5?% of the glutamine synthetase activity was present in the hepatic mitochondria, indicating that CPS I of L. caerulea did not have an effective supply of glutamine in vivo. Hence, our results confirmed that the evolution of CPS I from Cps III occurred in amphibians. Since L. caerulea contained high levels of urea in its muscle and liver, which increased significantly in response to desiccation, its CPS I had the dual functions of detoxifying ammonia to urea and producing urea to reduce evaporative water loss.  相似文献   

10.
11.
12.
The cotyledons of castor bean (Ricinus communis L.) act as absorption organs for amino acids, which are supplied to the medium. The analysis of the sieve-tube sap, which exudes from the cut hypocotyl, demonstrated the ability of the cotyledons to load particular amino acids into the phloem and to reject the loading of others. The sieve-tube sap of cotyledons, which were embedded in the endosperm, contained 150 mM amino acids, with 50 mM glutamine as the major amino acid, and 10–15 mM each of valine, isoleucine, lysine and arginine. Removal of the endosperm led to a drastic decline in the amino-acid content of sieve-tube sap down to 16 mM. Addition of single amino acid species to the medium increased the amino acid concentration in the sieve-tube sap in specific manner: glutamine caused the largest increase (up to 140 mM in exudate), glutamate and alanine smaller increases (up to 60 mM), and arginine the smallest. In addition, the amino acid composition of the sieve-tube sap changed, for instance, glutamine or alanine readily appeared in the sieve-tube sap upon incubation in glutamine or alanine, respectively, whereas glutamate was hardly discernible even in the case of incubation with glutamate; arginine was loaded into the sieve tubes only reluctantly. In general, glutamine and alanine accumulated four- to tenfold in the sieve tubes. The uptake of amino acids and of sucrose into the sieve tubes was interdependent: the loading of sucrose strongly reduced the amino acid concentration in the sieve-tube exudate and loading of amino acids decreased the sucrose concentration. Comparison of the concentrations of various amino acids on their way from the endosperm via the cotyledon-endosperm interface, through the cotyledons and into the sieve tubes showed that glutamine, valine, isoleucine and lysine are accumulated on this pathway, whereas glutamate and arginine are more concentrated in the cotyledons than in the sieve tubes. Obviously the phloem-loading system has a transport specificity different from that of the amino acid uptake system of the cotyledon in general and it strongly discriminates between amino acids within the cotyledons.  相似文献   

13.
The Arabidopsis thaliana accession Shahdara (Sha) differs from Landsberg erecta (Ler) and other accessions in its responses to drought and low water potential including lower levels of proline accumulation. However, Sha maintained greater seedling root elongation at low water potential and a higher NADP/NADPH ratio than Ler. Profiling of major amino acids and organic acids found that Sha had reduced levels of all glutamate family amino acids metabolically related to proline, but increased levels of aspartate‐derived amino acids (particularly isoleucine), leucine and valine at low water potential. Although Sha is known for its different abiotic stress response, RNA sequencing and co‐expression clustering found that Sha differed most from Ler in defence/immune response and reactive oxygen‐related gene expression. HVA22B and Osmotin34 were two of the relatively few abiotic stress‐associated genes differentially expressed between Ler and Sha. Insensitivity to exogenous glutamine and a different expression profile of glutamate receptors were further factors that may underlie the differing metabolism and low water potential phenotypes of Sha. These data define the unique environmental adaptation and differing metabolism of Sha including differences in defence gene expression, and will facilitate further analysis of Sha natural variation to understand metabolic regulation and abiotic/biotic stress interaction.  相似文献   

14.
15.
Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. While recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To investigate approaches to decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in an essentially wild type strain of C. thermocellum. Deletion of glnA reduced levels of secreted valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine levels indicative of nitrogen-rich conditions. We propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.  相似文献   

16.
1. Factors regulating the release of alanine and glutamine in vivo were investigated in starved rats by removing the liver from the circulation and monitoring blood metabolite changes for 30 min. 2. Alanine and glutamine were the predominant amino acids released into the circulation in this preparation. 3. Dichloroacetate, an activator of pyruvate dehydrogenase, inhibited net alanine release: it also interfered with the metabolism of the branched-chain amino acids valine, leucine and isoleucine. 4. L-Cycloserine, an inhibitor of alanine aminotransferase, decreased alanine accumulation by 80% after functional hepatectomy, whereas methionine sulphoximine, an inhibitor of glutamine synthetase, decreased glutamine accumulation by the same amount. 5. It was concluded that: (a) the alanine aminotransferase and the glutamine synthetase pathways respectively were responsible for 80% of the alanine and glutamine released into the circulation by the extrasplanchnic tissues, and extrahepatic proteolysis could account for a maximum of 20%; (b) alanine formation by the peripheral tissues was dependent on availability of pyruvate and not of glutamate; (c) glutamate availability could influence glutamine formation subject, possibly, to renal control.  相似文献   

17.
Glutamine is considered a nonessential amino acid; however, it becomes conditionally essential during critical illness when consumption exceeds production. Glutamine may modulate the heat shock/stress response, an important adaptive cellular response for survival. Glutamine increases heat induction of heat shock protein (Hsp) 25 in both intestinal epithelial cells (IEC-18) and mesenchymal NIH/3T3 cells, an effect that is neither glucose nor serum dependent. Neither arginine, histidine, proline, leucine, asparagine, nor tyrosine acts as physiological substitutes for glutamine for heat induction of Hsp25. The lack of effect of these amino acids was not caused by deficient transport, although some amino acids, including glutamate (a major direct metabolite of glutamine), were transported poorly by IEC-18 cells. Glutamate uptake could be augmented in a concentration- and time-dependent manner by increasing either media concentration and/or duration of exposure. Under these conditions, glutamate promoted heat induction of Hsp25, albeit not as efficiently as glutamine. Further evidence for the role of glutamine conversion to glutamate was obtained with the glutaminase inhibitor 6-diazo-5-oxo-L-norleucine (DON), which inhibited the effect of glutamine on heat-induced Hsp25. DON inhibited phosphate-dependent glutaminase by 75% after 3 h, decreasing cell glutamate. Increased glutamine/glutamate conversion to glutathione was not involved, since the glutathione synthesis inhibitor, buthionine sulfoximine, did not block glutamine’s effect on heat induction of Hsp25. A large drop in ATP levels did not appear to account for the diminished Hsp25 induction during glutamine deficiency. In summary, glutamine is an important amino acid, and its requirement for heat-induced Hsp25 supports a role for glutamine supplementation to optimize cellular responses to pathophysiological stress. IEC-18; NIH/3T3; glutaminase; 6-diazo-5-oxo-L-norleucine; glutathione  相似文献   

18.
Excitatory amino acids have been implicated in the production of calcium mediated neuronal death following central nervous system ischemia. We have used microdialysis to investigate changes in the extracellular concentrations of amino acids in the spinal cord after aortic occlusion in the rabbit. Glutamate, aspartate, glutamine, asparagine, glycine, taurine, valine, and leucine were measured in the micordialysis perfusate by high pressure liquid chromatography. The concentrations of glutamate, glycine, and taurine were significantly higher during ischemia and reperfusion than controls. Delayed elevations in the concentrations of asparagine and valine were also detected. The elevation of glutamate is consistent with the hypothesis that excitotoxins may mediate neuronal damage in the ischemic spinal cord. Increased extracellular concentrations of asparagine and valine may reflect preferential use of amino acids for energy metabolism under ischemic conditions. The significance of increased concentrations of inhibitory amino acid neurotransmitters is unclear.  相似文献   

19.
Cerebral cortex tissue was obtained at autopsy from neonatal Poll Hereford calves with clinically confirmed maple syrup urine disease (MSUD), neonatal Holstein-Friesian calves with clinically confirmed citrullinemia, and matched controls. From this, synaptosomes were prepared for studies of neurotransmitter amino acid uptake and stimulus-induced release, and synaptic plasma membranes were obtained for studies of associated postsynaptic receptor binding sites. As well as having abnormal brain tissue concentrations of the pathognomic plasma amino acids (markedly increased levels of the branched-chain compounds valine, isoleucine, and leucine in MSUD; marked elevation of citrulline levels in citrullinemia), both groups of diseased animals showed reduced brain tissue concentrations of each of the transmitter amino acids glutamate, aspartate, and gamma-aminobutyric acid (GABA). Nontransmitter amino acids were generally unaffected in either disease. Citrullinemic calves showed a marked increase in brain glutamine concentration; in calves with MSUD, the glutamine concentration was raised, but to a much lesser extent. The Na(+)-dependent synaptosomal uptake of both glutamate and GABA was markedly reduced (to less than 50% of control values in both cases) in citrullinemic calves but was unaltered in calves with MSUD. Whereas synaptosomes from normal calves showed the expected stimulus-coupled release of transmitter amino acids, especially glutamate and aspartate, and no response to stimulus of nontransmitter amino acids, there was no increased release of transmitter amino acids in response to depolarization in synaptosomes from citrullinemic calves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号