首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Antigen B (EgAgB) is a major protein produced by the metacestode cyst of Echinococcus granulosus, the causative agent of cystic hydatid disease. This protein has been shown to play an important role in modulating host immune responses, although its precise biological function still remains unknown. It is generally accepted that EgAgB is comprised of a gene family of five subfamilies which are highly polymorphic, but the actual number of genes present is unknown.

Methodology/Principal Findings

Based on published sequences for the family, we designed specific primers for each subfamily and used PCR to amplify them from genomic DNA isolated from individual mature adult worms (MAW) taken from an experimentally infected dog in China and individual larval protoscoleces (PSC) excised from a single hydatid cyst taken from an Australian kangaroo. We then used real-time PCR to measure expression of each of the genes comprising the five EgAgB subfamilies in all life-cycle stages including the oncosphere (ONC).

Conclusions/Significance

Based on sequence alignment analysis, we found that the EgAgB gene family comprises at least ten unique genes. Each of the genes was identical in both larval and adult E. granulosus isolates collected from two geographical areas (different continents). DNA alignment comparisons with EgAgB sequences deposited in GenBank databases showed that each gene in the gene family is highly conserved within E. granulosus, which contradicts previous studies claiming significant variation and polymorphism in EgAgB. Quantitative PCR analysis revealed that the genes were differentially expressed in different life-cycle stages of E. granulosus with EgAgB3 expressed predominantly in all stages. These findings are fundamental for determining the expression and the biological function of antigen B.  相似文献   

3.
In this work CD4-knockout mice were used as a model to analyse the role of CD4+ T cells in the antibody response against Echinococcus granulosus immunization or experimental infection. Results obtained with mice immunized with protoscolex antigens indicated that these contain T-independent antigens. After infection, CD4-knockout mice and C57Bl/6 mice showed similar titres of specific antibodies indicating that T-independent antibody production was quantitatively important in early infection. We have also identified an antigenic fraction from protoscoleces (E4+) which induces CD4 T cell independent antibody response in early stages of infection.In conclusion, the results presented here directly support the existence of T-independent immunogens in E. granulosus protoscoleces and suggest that T-independent antibody response may be quantitatively important in early infection.  相似文献   

4.
5.
Reisin I.L. and Rotunno C.A. 1981. Water and electrolyte balance in protoscoleces of Echimcoccus granulosus incubated in vitro: General procedures for the determination of water, sodium, potassium and chloride in protoscoleces. International Journal for Parasitology11: 399–404. Protoscoleces of E. granulosus (sheep strain) were incubated in vitro at 37°C in Ringer Krebs solution (RKS) for up to 3 h. When they were briefly washed in sucrose 0.3 M at 4°C, the water and electrolyte contents were: 1.768 ± 0.034 mlg?1 d.w. for water content and 123 ± 2, 209 ± 2 and 78 ± 2 μmolg?1 d.w. for Na+, K+ and Cl? respectively. When protoscoleces were not washed in sucrose solution but were spun down from RKS, the K+ content suffered a very small change but larger values for Na+ and Cl+ contents were obtained. These higher Na+ and Cl? contents are attributed to the RKS ions retained in the trapping space. The steady state distribution of Na+ and K+ in the protoscoleces incubated at 37°C indicates the activity of an active transport mechanism.  相似文献   

6.
FK506 (tacrolimus) and polyketide macrolides such as rapamycin and its derivates bind to FK506-binding proteins (FKBPs). These proteins display a peptidyl-prolyl rotamase function that is believed to catalyze protein folding and they are well-validated anti-proliferative drug targets in certain pathogenic microorganisms, and their functions have been characterized in parasitic protozoa. However, much less is known in helminths and trials with rapalogs on cestoda have not yet been reported. Due to a growing need for new treatment options for human cystic echinococcosis, the in vitro efficacy of rapalogs in Echinococcus granulosus was investigated. We determined the effect of ramapycin, FK506 and everolimus against this cestode, demonstrating their protoscolicidal ability. Also, we observed synergic scolicidal actions during combined therapy with rapalogs plus cyclosporine A, proposing dual administration of drugs to improve pharmacological effects in vivo. We have identified an E. granulosus (Eg)-fkb1 gene that encodes Eg-FKBP, an archetypal protein of the FKBP family, which includes all residues implicated in the binding of pharmacological ligands, in the enzymatic activity and in interactions with possible target proteins. Levels of Eg-fkb1 mRNA are over-expressed by acid but not rapalog treatment. We also described the presence of receptor-operated calcium channels in the larval stage, suggesting that exogenous ligands may dissociate the interaction of Eg-FKBP from these intracellular channels, enhancing the activity of the Ca2+ release and interfering with their normal regulatory functions. As rapamycin sensitivity is the major criterion used to detect targets of rapamycin kinase, we identified and analyzed in silico critical residues of putative homologs in the Echinococcus genome. These preliminary results will allow us to continue subsequent studies that could reveal the precise intracellular functions of Eg-FKBP, providing greater knowledge for further identification of downstream target proteins, a promising target for chemotherapy of cystic echinococcosis.  相似文献   

7.

Background

Cystic echinococcosis is a worldwide distributed helminth zoonosis caused by the larval stage of Echinococcus granulosus. Human secondary cystic echinococcosis is caused by dissemination of protoscoleces after accidental rupture of fertile cysts and is due to protoscoleces ability to develop into new metacestodes. In the experimental model of secondary cystic echinococcosis mice react against protoscoleces producing inefficient immune responses, allowing parasites to develop into cysts. Although the chronic phase of infection has been analyzed in depth, early immune responses at the site of infection establishment, e.g., peritoneal cavity, have not been well studied. Because during early stages of infection parasites are thought to be more susceptible to immune attack, this work focused on the study of cellular and molecular events triggered early in the peritoneal cavity of infected mice.

Principal Findings

Data obtained showed disparate behaviors among subpopulations within the peritoneal lymphoid compartment. Regarding B cells, there is an active molecular process of plasma cell differentiation accompanied by significant local production of specific IgM and IgG2b antibodies. In addition, peritoneal NK cells showed a rapid increase with a significant percentage of activated cells. Peritoneal T cells showed a substantial increase, with predominance in CD4+ T lymphocytes. There was also a local increase in Treg cells. Finally, cytokine response showed local biphasic kinetics: an early predominant induction of Th1-type cytokines (IFN-γ, IL-2 and IL-15), followed by a shift toward a Th2-type profile (IL-4, IL-5, IL-6, IL-10 and IL-13).

Conclusions

Results reported here open new ways to investigate the involvement of immune effectors players in E. granulosus establishment, and also in the sequential promotion of Th1- toward Th2-type responses in experimental secondary cystic echinococcosis. These data would be relevant for designing rational therapies based on stimulation of effective responses and blockade of evasion mechanisms.  相似文献   

8.
9.

Background

Echinococcus granulosus is usually transmitted between canid definitive hosts and ungulate intermediate hosts.

Methodology/Principal Findings

Lesions found in the livers of ground squirrels, Spermophilus dauricus/alashanicus, trapped in Ningxia Hui Autonomous Region, an area in China co-endemic for both E. granulosus and E. multilocularis, were subjected to molecular genotyping for Echinococcus spp. DNA. One of the lesions was shown to be caused by E. granulosus and subsequently by histology to contain viable protoscoleces.

Conclusions/Significance

This is the first report of a natural infection of the ground squirrel with E. granulosus. This does not provide definitive proof of a cycle involving ground squirrels and dogs or foxes, but it is clear that there is active E. granulosus transmission occurring in this area, despite a recent past decline in the dog population in southern Ningxia.  相似文献   

10.
Cystic echinococcosis is a globally distributed zoonosis caused by cestodes of the Echinococcus granulosus sensu lato (s.l.) complex, with Echinococcus ortleppi mainly involved in cattle infection. Protoscoleces show high developmental plasticity, being able to differentiate into either adult worms or metacestodes within definitive or intermediate hosts, respectively. Their outermost cellular layer is called the tegument, which is important in determining the infection outcome through its immunomodulating activities. Herein, we report an in-depth characterization of the tegument of E. ortleppi protoscoleces performed through a combination of scanning and transmission electron microscopy techniques. Using electron tomography, a three-dimensional reconstruction of the tegumental cellular territories was obtained, revealing a novel structure termed the ‘tegumental vesicular body’ (TVB). Vesicle-like structures, possibly involved in endocytic/exocytic routes, were found within the TVB as well as in the parasite glycocalyx, distal cytoplasm and close inner structures. Furthermore, parasite antigens (GST-1 and AgB) were unevenly localised within tegumental structures, with both being detected in vesicles found within the TBV. Finally, the presence of host (bovine) IgG was also assessed, suggesting a possible endocytic route in protoscoleces. Our data forms the basis for a better understanding of E. ortleppi and E. granulosus s.l. structural biology.  相似文献   

11.
Infection by the larval stage of the cestode Echinococcus granulosus causes a disease known as cystic echinococcosis or hydatidosis, which is one of the most widespread zoonotic infections of veterinary and medical importance. Numerous studies have shown that E. granulosus exists as a complex of strains differing in a wide variety of criteria. Ten distinct genotypes (G1–G10) have been identified with a potential impact on the pathology, epidemiology and the effect of the measures implemented for the control of hydatidosis. Our main objective was to carry out a preliminary analysis of the genotypes of E. granulosus circulating in the central inland region of Portugal.Parasite samples (hydatid cysts, n = 27) were isolated from the liver and lung of sheep and cattle. The DNA extracted from protoscoleces isolated from the fertile cysts served as a template for the PCR amplification of the part of the mitochondrial cytochrome c oxidase subunit 1 (cox1), ATP synthase F0 subunit 6 (atp6) as well as the large (rrnL/16 S) and small (rrnS/12 S) ribosomal RNA genes. Similarity searches with homologous sequences in the databanks indicated a very high similarity with references assigned to the G1, G3 and/or G1–G3 complex of Echinococcus strains. Phylogenetic analysis (Bayesian approach) supported these observations, and confirmed the assignment of all the analyzed sequences to the G1–G3 genetic cluster.  相似文献   

12.
There may exist a connection between Echinococcus granulosus infection and cancer development. Here, it is aimed to investigate specific effects of E. granulosus protoscoleces (PSCs) on the proliferation and invasion capacities of hepatocellular carcinoma (HCC) cells in vitro and ex vitro. HepG2 cells were cultured with different quantities of E. granulosus PSCs in vitro. MTT analysis was used to evaluate effects of E. granulosus PSCs on the proliferation of HepG2 cells. Besides, scratch and transwell assays were respectively used for the detection of HepG2 cells migration and invasion capacities after co-culture with E. granulosus PSCs. Then, HepG2 cells were subcutaneously transplanted into nude mice with or without E. granulosus PSCs. From the 25th day of transplantation, the volume of subcutaneous lesions was measured every four days. At the 37th day, subcutaneous lesions were removed and their weight was evaluated. H&E staining was used for detecting basic pathological changes. HepG2 cells grew well without obvious morphological changes. Proliferation rate and migration capacity of HepG2 cells were higher in the co-culture group than the control group, which was closely associated with quantities of E. granulosus PSCs and co-culture time length. Moreover, HepG2 cells co-cultured with E. granulosus PSCs had stronger invasion ability than the control HepG2 cells. Importantly, there existed significant differences in the volume and weight of subcutaneous lesions after transplanting HepG2 cells with E. granulosus PSCs than the control group. HepG2 cells were also more pathologically heterogeneous in morphology after transplantation with E. granulosus PSCs. Thus, E. granulosus PSCs may promote proliferation and invasion of HCC cells.  相似文献   

13.
14.
The indirect immunofluorescent test employing a monospecific antiserum has been used to detect the tissue localization of Echinococcus granulosus specific antigen “5.”The antigen was revealed in the inner portion of the germinal “membrane” and in the parenchyma of the protoscoleces. In these stages, it was also demonstrated fixed to the walls of some collecting ducts.It is postulated that the synthesis of the antigen “5” may occur in specialized cells of both the germinal “membrane” and the protoscoleces of the hydatid cysts.The osmoregulatory system of E. granulosus larvae seems to be involved in the transfer of the substance to the cystic cavity.  相似文献   

15.
Echinococcus granulosus is characterized by high intra-specific variability (genotypes G1–G10) and according to the new molecular phylogeny of the genus Echinococcus, the E. granulosus complex has been divided into E. granulosus sensu stricto (G1–G3), E. equinus (G4), E. ortleppi (G5), and E. canadensis (G6–G10). The molecular characterization of E. granulosus isolates is fundamental to understand the spatio-temporal epidemiology of this complex in many endemic areas with the simultaneous occurrence of different Echinococcus species and genotypes. To simplify the genotyping of the E. granulosus complex we developed a single-tube multiplex PCR (mPCR) allowing three levels of discrimination: (i) Echinococcus genus, (ii) E. granulosus complex in common, and (iii) the specific genotype within the E. granulosus complex. The methodology was established with known DNA samples of the different strains/genotypes, confirmed on 42 already genotyped samples (Spain: 22 and Bulgaria: 20) and then successfully applied on 153 unknown samples (Tunisia: 114, Algeria: 26 and Argentina: 13). The sensitivity threshold of the mPCR was found to be 5 ng Echinoccoccus DNA in a mixture of up to 1 µg of foreign DNA and the specificity was 100% when template DNA from closely related members of the genus Taenia was used. Additionally to DNA samples, the mPCR can be carried out directly on boiled hydatid fluid or on alkaline-lysed frozen or fixed protoscoleces, thus avoiding classical DNA extractions. However, when using Echinococcus eggs obtained from fecal samples of infected dogs, the sensitivity of the mPCR was low (<40%). Thus, except for copro analysis, the mPCR described here has a high potential for a worldwide application in large-scale molecular epidemiological studies on the Echinococcus genus.  相似文献   

16.
17.
Cystic hydatid disease in humans is caused by the zoonotic parasite Echinococcus granulosus. As an aid to control transmission of the parasite, a vaccine has been produced for prevention of infection in the parasite’s natural animal intermediate hosts. The vaccine utilizes the recombinant oncosphere protein, EG95. An investigation into the genetic variability of EG95 was undertaken in this study to assess potential antigenic variability in E. granulosus with respect to this host-protective protein. Gene-specific PCR conditions were first established to preferentially amplify the EG95 vaccine-encoding gene (designated eg95-1) from the E. granulosus genome that also contains several other EG95-related genes. The optimized PCR conditions were used to amplify eg95-1 from several parasite isolates in order to determine the protein-coding sequence of the gene. An identical eg95-1 gene was amplified from parasites showing a G1 or G2 genotype of E. granulosus. However, from isolates having a G6 or G7 genotype, a gene was amplified which had substantial nucleotide substitutions (encoding amino acid substitutions) compared with the eg95 gene family members. The amino acid substitutions of EG95 in the G6/G7 genotypes may affect the antigenicity/efficacy of the EG95 recombinant antigen against parasites of these genotypes. These findings indicate that characterization of eg95 gene family members in other strains/isolates of E. granulosus may provide valuable information about the potential for the EG95 hydatid vaccine to be effective against E. granulosus strains other than the G1 genotype.  相似文献   

18.
The tapeworm Echinococcus granulosus is responsible for cystic echinococcosis (CE), a cosmopolitan disease which imposes a significant burden on the health and economy of affected communities. Little is known about the molecular mechanisms whereby E. granulosus is able to survive in the hostile mammalian host environment, avoiding attack by host enzymes and evading immune responses, but protease inhibitors released by the parasite are likely implicated. We identified two nucleotide sequences corresponding to secreted single domain Kunitz type protease inhibitors (EgKIs) in the E. granulosus genome, and their cDNAs were cloned, bacterially expressed and purified. EgKI-1 is highly expressed in the oncosphere (egg) stage and is a potent chymotrypsin and neutrophil elastase inhibitor that binds calcium and reduced neutrophil infiltration in a local inflammation model. EgKI-2 is highly expressed in adult worms and is a potent inhibitor of trypsin. As powerful inhibitors of mammalian intestinal proteases, the EgKIs may play a pivotal protective role in preventing proteolytic enzyme attack thereby ensuring survival of E. granulosus within its mammalian hosts. EgKI-1 may also be involved in the oncosphere in host immune evasion by inhibiting neutrophil elastase and cathepsin G once this stage is exposed to the mammalian blood system. In light of their key roles in protecting E. granulosus from host enzymatic attack, the EgKI proteins represent potential intervention targets to control CE. This is important as new public health measures against CE are required, given the inefficiencies of available drugs and the current difficulties in its treatment and control. In addition, being a small sized highly potent serine protease inhibitor, and an inhibitor of neutrophil chemotaxis, EgKI-1 may have clinical potential as a novel anti-inflammatory therapeutic.  相似文献   

19.
Basic aspects of the generation, structure and function of Echinococcus granulosus protoscoleces are unknown. We review the work done on the structure and ultrastructure of the E. granulosus protoscolex and provide new data together with a comprehensive view of this form of the parasite. The surface, as observed by scanning electron microscopy, tightly correlates with five cellular territories characterized in the interior using light and transmission electron microscopy as well as a histochemical technique. Three of these territories are surrounded by a basal lamina that is also present in the internal side of the tegument, suggesting a complex internal organization. These cellular territories correlate with the expression of specific genes and the regionalization of DNA synthesis in protoscoleces. Additionally, a proposal to explain movements of the body of this form of the parasite in relation to the neck or to the germinal layer of the hydatid cyst is provided.  相似文献   

20.
Kassis A. I. and Tanner C. E. 1976. The role of complement in hydatid disease: in vitro studies. International Journal for Parasitology6: 25–35. Fresh sera from normal humans, guinea pigs, sheep, cotton rats, B10.D2/n Sn mice or infected cotton rats lyse viable protoscoleces of Echinococcus granulosus and E. multilocularis in vitro. This protoscolecidal activity can be abolished by heating at 56°C, EDTA or incubating with cobra venom factor, suggesting that complement proteins participate in this lytic process. Crude unfiltered hydatid fluid, as well as complement-lysed dead protoscoleces, are anticomplementary in vitro and, as such, probably protect viable protoscoleces in vivo against the action of complement. This anticomplementary activity was found to be associated with the calcareous corpuscles. A hypothesis is presented which relates these in vitro findings to the development of the parasite in vivo. It is suggested that the use of formalin during surgery to kill the parasite should be replaced by fresh serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号