首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Hemopexin, which acts as an antioxidant by binding heme (K d < 1 pM), is synthesized by hepatic parenchymal cells, by neurons of the central and peripheral nervous systems, and by human retinal ganglia. Two key regulatory molecules, nitric oxide (·NO) and carbon monoxide (CO), both bind to heme proteins and since ferroheme–hemopexin binds CO, the possible role of heme–hemopexin in binding ·NO was investigated. ·NO binds rapidly to hemopexin-bound ferroheme as shown by characteristic changes in the Soret and visible-region absorbance spectra. Circular dichroism spectra of ·NO–ferroheme-hemopexin in the Soret region exhibit an unusual bisignate feature with a zero crossover at the absorbance wavelength maximum, showing that exciton coupling is occurring. Notably, the ·NO complex of ferroheme–hemopexin is sufficiently avid and stable to allow hemopexin to bind this molecule in vivo and, thus, hemopexin may protect against NO-mediated toxicity especially in conditions of trauma and hemolysis.  相似文献   

2.
Peroxynitrite Mediates Nitric Oxide–Induced Blood–Brain Barrier Damage   总被引:5,自引:0,他引:5  
Using the in vitro blood-brain barrier (BBB) model ECV304/C6, which consists of cocultures of human umbilical vein endothelial-like cells (ECV304) and rat glioma cells (C6), the role of peroxynitrite (OONO-) in nitric oxide (NO*)-mediated BBB disruption was evaluated. Endothelial cell cultures were exposed to NO* gas, in the presence or absence of the OONO- blocker FeTPPS. Separate exposure to NO* and OONO- resulted in endothelial cell cytotoxicity and a decline in barrier integrity. Unfortunately, FeTPPS induced significant detrimental effects on model BBB integrity at a concentration of 300 microM and above. At 250 microM (the highest concentration usable), FeTPPS displayed a trend toward prevention of NO* elicited perturbation of barrier integrity. Dichlorofluorescein diacetate is oxidized to fluorescent dichlorofluorescein by OONO- but only marginally by NO* or O2*-. We observed large and rapid increases in fluorescence in ECV304 preloaded cells following NO* exposure, which were blocked by FeTPPS. Furthermore, using an antinitrotyrosine antibody we detected the nitration of endothelial cell proteins following NO* exposure and conclude that NO*-mediated BBB dysfunction is predominantly elicited by OONO- and not NO*. Proposed mechanisms of NO*-mediated OONO- elicited barrier dysfunction and damage are discussed.  相似文献   

3.
There is a reciprocal regulation of arginase and nitric oxide synthase in l-arginine-metabolizing pathways. There are various evidences of the role of nitric oxide in several neuropsychiatric disorders including Alzheimer’s disease. However, there is no study that has investigated the role of arginase as an important part of the arginine regulatory system affecting nitric oxide synthase activity in Alzheimer’s disease. This study aims to investigate arginase, manganese (a cofactor of arginase), and total nitrite levels (a metabolite of NO) and their relationship to the arginine–NO pathway in patients with Alzheimer’s disease. Arginase activities, Mn, and total nitrite levels were measured in plasma from 47 patients with Alzheimer’s disease and 43 healthy control subjects. Plasma arginase activities and manganese were found to be significantly lower and total nitrite level higher in patients with Alzheimer’s disease compared with controls. Our results suggest that the arginine–NO pathway is involved in the pathogenesis of Alzheimer’s disease.  相似文献   

4.
To discover genes involved in nitric oxide (NO) metabolism, a genetic screen was employed to identify mutants defective in NO accumulation after treatment with the physiological inducer hydrogen peroxide. In wild-type Arabidopsis thaliana plants, NO levels increase eightfold in roots after H2O2 treatment for 30 min. A mutant defective in H2O2-induced NO accumulation was identified, and the corresponding mutation was mapped to the prohibitin gene PHB3, converting the highly conserved Gly-37 to an Asp in the protein''s SPFH domain. This point mutant and a T-DNA insertion mutant were examined for other NO-related phenotypes. Both mutants were defective in abscisic acid–induced NO accumulation and stomatal closure and in auxin-induced lateral root formation. Both mutants were less sensitive to salt stress, showing no increase in NO accumulation and less inhibition of primary root growth in response to NaCl treatment. In addition, light-induced NO accumulation was dramatically reduced in cotyledons. We found no evidence for impaired H2O2 metabolism or signaling in the mutants as H2O2 levels and H2O2-induced gene expression were unaffected by the mutations. These findings identify a component of the NO homeostasis system in plants and expand the function of prohibitin genes to include regulation of NO accumulation and NO-mediated responses.  相似文献   

5.
The transnitrosylating nitric oxide (NO) donor nitrocysteine (CysNO) induced a disulfide bond between the two regulatory RI subunits of protein kinase A (PKA). The conventional NO donor S-nitroso-N-acetylpenicillamine failed to do this, consistent with our observation that it also did not promote protein S-nitrosylation. This disulfide oxidation event activated PKA and induced vasorelaxation independently of the classical β-adrenergic or NO signaling pathway. Activation of PKA had also been anticipated to exert a positive inotropic effect on the myocardium but did not. The lack of positive inotropy was explained by CysNO concomitantly activating protein kinase G (PKG) Iα. PKG was found to exert a partial negative inotropic influence regardless of whether PKA was activated by classical β-receptor stimulation or by disulfide bond formation. This work demonstrates that NO molecules that can induce S-nitrosylation directly activate type I PKA, providing a novel cross-talk to β-adrenergic-like signaling without receptor or adenylate cyclase stimulation. However, the expected positive inotropic consequences of PKA activation by this novel mechanism are countermanded by the simultaneous dual activation of PKGIα, which is also activated by CysNO.Nitric oxide (NO) initiates cell signaling by binding and activating soluble guanylate cyclase (sGC)2 to produce the second messenger cGMP. cGMP primarily allosterically activates protein kinase G (PKG) but can also regulate other proteins. Although this NO-sGC-cGMP-PKG pathway is well defined (1), a second major mechanism of NO-dependent regulation has subsequently emerged. This involves NO covalently adducting to protein thiols, a process known as S-nitrosylation or S-nitrosation (2).Significant evidence continues to accumulate supporting protein S-nitrosylation as a fundamental regulator of protein and thus cell function (3). NO is produced in a regulated way (4), with a defined structural basis for selectivity in the proteins it covalently modifies (5, 6). Additional regulatory control can be achieved by the localization of NO synthase enzymes proximal to target proteins (6) and by reverse denitrosylation being enzymatically controlled (7). Indeed, many proteins appear to be basally S-nitrosylated, offering the potential for attenuation (8) as well as potentiation of signaling.Although stable regulatory S-nitrosylation occurs in some proteins, in others, it serves as an intermediate prior to transition to other redox states, especially disulfides (9). Previously, we searched for proteins that form interprotein disulfides in response to hydrogen peroxide (H2O2), identifying the regulatory RI subunit of protein kinase A (PKA) as such a protein (10, 11). This appears to activate the kinase (11), although the mechanism is not yet precisely defined. There is a rational structural basis for interprotein disulfide formation in PKA RI in response to H2O2. The RI dimer is held together by an N-terminal amphipathic leucine zipper in which the monomers are aligned antiparallel to each other with both Cys17 residues directly facing the corresponding Cys38 residues on the opposite chains (12). H2O2-mediated RI disulfide formation is likely via protein sulfenic acid formation by one thiol in the Cys17 and Cys38 disulfide-forming pair, prior to reduction by the other cysteine to yield the covalently conjugated dimer. Intriguingly, this pair of thiol-disulfide switches in RI is located directly on either side of the protein kinase A anchor protein-binding domain (13). This provides a rational structural basis for the PKA RI-protein kinase A anchor protein interaction being redox-modulated, as the interaction is strongly anticipated to change depending on the oxidation state of the cysteine switches, which flank the interaction locus (11).We hypothesized that NO may also be able to drive RI disulfide formation via an S-nitrosylated catalytic redox intermediate in a mechanism analogous to transient sulfenation formation during H2O2-induced covalent conjugation. This conceptual link between NO and PKA was investigated by comparing the biochemical and functional responses of cardiovascular tissue to the NO donors S-nitroso-N-acetylpenicillamine (SNAP) and nitrocysteine (CysNO). The authentic NO donor SNAP did not promote RI disulfide formation, whereas CysNO did so efficiently, consistent with its established thiol-oxidizing transnitrosylating ability. We show that disulfide-mediated activation of PKA significantly contributes to vasorelaxation induced by CysNO. However, disulfide activation of PKA failed to exert a positive inotropic influence in isolated hearts exposed to CysNO, which was difficult to reconcile with the kinase being truly activated by oxidation. Further investigations showed that this lack of positive inotropy following CysNO-induced oxidation is explained by the co-activation of PKGIα, which we demonstrated previously can be disulfide-activated (15). PKGIα serves as a master regulator of cardiac inotropy, dominating the system to prevent increases in cardiac contractility. Thus, thiol-oxidizing derivatives of NO can activate PKA and so exert β-adrenergic-like signaling, although dual activation of PKG prevents the anticipated positive inotropy.  相似文献   

6.
Deposits of amyloid β-peptide (Aβ) in senile plaques and cerebral blood vessels is the prominent feature of Alzheimer's disease (AD), regardless of genetic predisposition. The cellular origin of cerebral deposits of Aβ or its precise role in the neurodegenerative process has not been established. Recently we demonstrated a novel action of β-amyloid on blood vessels—vasoactivity and endothelial damage through superoxide radicals. Since endothelial dysfunction is associated with vascular degenerative diseases, we examined the direct action of Aβ on endothelial cells in culture. Cells treated with Aβ displayed characteristics of necrotic cell death which was prevented by the free radical scavenging enzyme superoxide dismutase. Stimulation of endothelial nitric oxide (NO) production by the calcium ionophore, A23187, or bradykinin was inhibited by β-amyloid. We conclude that an imbalance of NO and oxygen radicals may mediate the Aβ-induced endothelial damage on endothelial cells in culture and may also contribute to a variety of pathophysiological conditions associated with aging: hypertension, cerebral ischemia, vasospasm, or stroke.  相似文献   

7.
8.
Regulators of G protein signaling (RGS) proteins bind to the α subunits of certain heterotrimeric G proteins and greatly enhance their rate of GTP hydrolysis, thereby determining the time course of interactions among Gα, Gβγ, and their effectors. Voltage-gated N-type Ca channels mediate neurosecretion, and these Ca channels are powerfully inhibited by G proteins. To determine whether RGS proteins could influence Ca channel function, we recorded the activity of N-type Ca channels coexpressed in human embryonic kidney (HEK293) cells with G protein–coupled muscarinic (m2) receptors and various RGS proteins. Coexpression of full-length RGS3T, RGS3, or RGS8 significantly attenuated the magnitude of receptor-mediated Ca channel inhibition. In control cells expressing α1B, α2, and β3 Ca channel subunits and m2 receptors, carbachol (1 μM) inhibited whole-cell currents by ∼80% compared with only ∼55% inhibition in cells also expressing exogenous RGS protein. A similar effect was produced by expression of the conserved core domain of RGS8. The attenuation of Ca current inhibition resulted primarily from a shift in the steady state dose–response relationship to higher agonist concentrations, with the EC50 for carbachol inhibition being ∼18 nM in control cells vs. ∼150 nM in RGS-expressing cells. The kinetics of Ca channel inhibition were also modified by RGS. Thus, in cells expressing RGS3T, the decay of prepulse facilitation was slower, and recovery of Ca channels from inhibition after agonist removal was faster than in control cells. The effects of RGS proteins on Ca channel modulation can be explained by their ability to act as GTPase-accelerating proteins for some Gα subunits. These results suggest that RGS proteins may play important roles in shaping the magnitude and kinetics of physiological events, such as neurosecretion, that involve G protein–modulated Ca channels.  相似文献   

9.
10.
Excess nitric oxide (NO) deregulates cholesterol metabolism in macrophage foam cells, yet the underlying molecular mechanism is incompletely understood. To investigate the mechanism, we found that in macrophages, treatment with NO donors S-nitroso-N-acetyl-D,L-penicillamine (SNAP) or diethylenetriamine/nitric oxide induced LXRα degradation and reduced the expression of the downstream target of LXRα, ATP-binding cassette transporter A1 (ABCA1), and cholesterol efflux. In addition, SNAP induced calcium (Ca2+) influx into cells, increased calpain activity and promoted the formation of calpain-LXRα complex. Pharmacological inhibition of calpain activity reversed the SNAP-induced degradation of LXRα, down-regulation of ABCA1 and impairment of cholesterol efflux in macrophages. SNAP increased the formation of calpain-LXRα complex in a Pro-Glu-Ser-Thr (PEST) motif-dependent manner. Truncation of the PEST motif in LXRα abolished the calpain-dependent proteolysis. Removal of extracellular Ca2+ by EGTA or pharmacological inhibition of TRPV1 channel activity diminished SNAP-induced increase in intracellular Ca2+, calpain activation, LXRα degradation, ABCA1 down-regulation and impaired cholesterol efflux. In conclusion, excess NO may activate calpain via TRPV1-Ca2+ signaling and promote the recognition of calpain in the PEST motif of LXRα, thereby leading to degradation of LXRα and, ultimately, downregulated ABCA1 expression and impaired ABCA1-dependent cholesterol efflux in macrophages.  相似文献   

11.
This meeting showed how the surge of research in the field of NO biology has led to novel therapeutic approaches in multiple clinical disciplines. Some approaches have already advanced towards clinical applications. Continued research efforts will undoubtedly lead to new applications.  相似文献   

12.
To determine the roles of nitric oxide in glaucomatous injury and its regulation by δ-opioid-receptor activation, animals were treated with: 1) a selective inducible nitric oxide synthase (iNOS) inhibitor (aminoguanidine; AG; 25 mg/kg, i.p.); 2) δ-opioid-receptor agonist (SNC-121; 1 mg/kg, i.p.); or 3) with both drugs simultaneously for 7 days, once daily. The loss in retinal ganglion cell (RGC) numbers and their function in glaucomatous eyes were significantly improved in the presence of AG or SNC-121; however, we did not see any significant additive or synergistic effects when animals were treated with both drugs simultaneously. The levels of nitrate-nitrite were significantly increased in the glaucomatous retina when compared with normal retina (normal retina 86±9 vs. glaucomatous retina 174±10 mM/mg protein), which was reduced significantly when animals were treated either with SNC-121 (121±7 mM/mg protein; P<0.05) or AG (128±10 mM/mg protein; P<0.05). Additionally, SNC-121-mediated reduction in nitrate-nitrite levels was not only blocked by naltrindole (a δ-opioid-receptor antagonist), but naltrindole treatment potentiated the nitrate-nitrite production in glaucomatous retina (235±4 mM/mg protein; P<0.001). As expected, naltrindole treatment also fully-blocked SNC-121-mediated retina neuroprotection. The nitrotyrosine level in the glaucomatous retina was also increased, which was significantly reduced in the SNC-121-treated animals. Additionally, the expression level of iNOS was clearly increased over the control levels in the glaucomatous retina and optic nerves, which was also reduced by SNC-121 treatment. In conclusion, our data support the notion that nitric oxide plays a detrimental role during glaucomatous injury and inhibition of nitric oxide production provided RGC neuroprotection. Furthermore, δ-opioid receptor activation regulates the production of nitric oxide via inhibiting the activity of iNOS in the retina and optic nerve.  相似文献   

13.
14.
Bistability in apoptosis, or programmed cell death, is crucial for the healthy functioning of multicellular organisms. The aim in this study is to show the presence of bistability in a mitochondria-dependent apoptosis model under nitric oxide effects using chemical reaction network theory. The model equations are a set of coupled ordinary differential equations arising from the assumed mass action kinetics. Whether these equations have a capacity for bistability (cell survival and apoptosis) is determined using a modular approach in which the model is decomposed into modules. Each module contains only a subset of the whole model and is analyzed separately. It is seen that bistability in a module is preserved throughout the whole model after adding the remaining reactions in the pathway on these modules. It is also found that inhibitor effect of some proteins and the appearance of a reacting protein in a later stage as a product is a desired feature but not sufficient for bistability (in the absence of cooperativity effects). On the whole model, two apoptotic and two cell survival states are obtained depending on the initial cell conditions. The results suggest that the antiapoptotic effects of nitric oxide species are responsible for the bistable character of the apoptotic pathway when cooperativity is not assumed in the apoptosome formation.  相似文献   

15.
16.
17.
Impaired nitric oxide (NO˙)-cyclic guanosine 3'', 5''-monophosphate (cGMP) signaling has been observed in many cardiovascular disorders, including heart failure and pulmonary arterial hypertension. There are several enzymatic determinants of cGMP levels in this pathway, including soluble guanylyl cyclase (sGC) itself, the NO˙-activated form of sGC, and phosphodiesterase(s) (PDE). Therapies for some of these disorders with PDE inhibitors have been successful at increasing cGMP levels in both cardiac and vascular tissues. However, at the systems level, it is not clear whether perturbation of PDE alone, under oxidative stress, is the best approach for increasing cGMP levels as compared with perturbation of other potential pathway targets, either alone or in combination. Here, we develop a model-based approach to perturbing this pathway, focusing on single reactions, pairs of reactions, or trios of reactions as targets, then monitoring the theoretical effects of these interventions on cGMP levels. Single perturbations of all reaction steps within this pathway demonstrated that three reaction steps, including the oxidation of sGC, NO˙ dissociation from sGC, and cGMP degradation by PDE, exerted a dominant influence on cGMP accumulation relative to other reaction steps. Furthermore, among all possible single, paired, and triple perturbations of this pathway, the combined perturbations of these three reaction steps had the greatest impact on cGMP accumulation. These computational findings were confirmed in cell-based experiments. We conclude that a combined perturbation of the oxidatively-impaired NO˙-cGMP signaling pathway is a better approach to the restoration of cGMP levels as compared with corresponding individual perturbations. This approach may also yield improved therapeutic responses in other complex pharmacologically amenable pathways.  相似文献   

18.
Modulation of enzyme activity through nitrosylation has recently been identified as a new physiological activity of nitric oxide (NO). We hypothesized that NO enhances the TNF-α-induced death of retinal neurons through a suppression of nuclear factor-κB (NF-κB) by nitrosylation. In this study, cells from the RGC-5 line were exposed to different concentrations (2.0, 10, and 50 ng/ml) of TNF-α, and the degree of TNF-α-induced cell death was determined by the WST-8 assay and by flow cytometric measurements of the externalization of phosphatidylserine. The effects of etanercept, a soluble TNFR-Fc fusion protein, and S-nitroso-N-penicillamine (SNAP), an NO donor, on the toxicity were determined. Experiments were also performed to determine whether nitric oxide synthase (NOS) was associated with the toxicity of TNF-α. The activation of NF-κB was determined by the detection of the p65 subunit in the nuclear extracts. Our results showed that exposure of RGC-5 cells to different concentrations of TNF-α significantly decreased the number of living cells in a dose-dependent way. The death was partially due to apoptosis with an externalization of phosphatidylserine, and the death was suppressed by etanercept. Exposure to TNF-α increased the activation of NF-κB and the expression of iNOS. Although NF-κB inhibitors suppressed the increase of iNOS, they also potentiated the TNF-α-induced death. Both L-NAME and aminoguanidine, both NOS inhibitors, rescued the cells from death. In contrast, addition of SNAP caused nitrosylation of the inhibitory κB kinase, and suppressed the NF-κB activation and potentiated the TNF-α-induced neurotoxicity. These results indicate that NO potentiates the neurotoxicity of TNF-α by suppressing NF-κB.  相似文献   

19.

Introduction

Metabolic syndrome causes insulin resistance and is associated with risk factor clustering, thereby increasing the risk of atherosclerosis. Recently, endothelial nitric oxide synthase deficient (eNOS-/-) mice have been reported to show metabolic disorders. Interestingly, eNOS has also been reported to be expressed in non-endothelial cells including adipocytes, but the functions of eNOS in adipocytes remain unclear.

Methods and Results

The eNOS expression was induced with adipocyte differentiation and inhibition of eNOS/NO enhanced lipolysis in vitro and in vivo. Furthermore, the administration of a high fat diet (HFD) was able to induce non-alcoholic steatohepatitis (NASH) in eNOS-/- mice but not in wild type mice. A PPARγ antagonist increased eNOS expression in adipocytes and suppressed HFD-induced fatty liver changes.

Conclusions

eNOS-/- mice induce NASH development, and these findings provide new insights into the therapeutic approach for fatty liver disease and related disorders.  相似文献   

20.
The complete structure of the assembled domains of nitric oxide-sensitive guanylate cyclase (NOsGC) remains to be determined. It is also unknown how binding of NO to heme in guanylate cyclase is communicated to the catalytic domain. In the current study the conformational change of guanylate cyclase on activation by NO was studied using FRET. Endogenous tryptophan residues were used as donors, the substrate analog 2′-Mant-3′-dGTP as acceptor. The enzyme contains five tryptophan residues distributed evenly over all four functional domains. This provides a unique opportunity to detect the movement of the functional domains relative to the substrate-binding catalytic region. FRET measurements indicate that NO brings tryptophan 22 in the αB helix of the β1 heme NO binding domain and tryptophan 466 in the second short helix of the α1 coiled-coil domain closer to the catalytic domain. We propose that the respective domains act as a pair of tongs forcing the catalytic domain into the nitric oxide-activated conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号