首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Although the role of the cytoplasmic tail of the cation-independent mannose 6-phosphate receptor (CIMPR) has been well established in the receptor trafficking, that of the luminal domain is still controversial. We noticed that the peripheral distribution of GFP, fused to the transmembrane and cytoplasmic domains of CIMPR (G-CIMPR-tail), was distinct from that of endogenous CIMPR or of GFP fused to the full-length CIMPR (G-CIMPR-full). By live-cell imaging, trans-Golgi-network (TGN)-derived transport carriers containing G-CIMPR-full more frequently stopped and overlapped with transferrin-containing endosomes in the peripheral region than those containing G-CIMPR-tail. G-CIMPR-full was recycled back to the perinuclear TGN more slowly than that for G-CIMPR-tail, evidenced by fluorescence recovery after photobleaching analysis. Moreover, endogenous CIMPR and G-CIMPR-full, but not GFP-CIMPR-tail, drastically altered the characteristic distribution after treatment with chloroquine. A mutant receptor, G-CIMPR-full R/A, that cannot recognize the mannose 6-phosphate (M6P)-signal, behaved similarly to G-CIMPR-full, indicating that these differences are not attributable to the M6P-ligands binding situation. Interestingly, we also found that U18666A treatment was able to discriminate the M6P-ligand binding-dependent trafficking of CIMPR. Based on these findings, we propose that the CIMPR luminal domain is required for tight interaction with endocytic compartments, and retention by them, and that there are additional transport steps, in which the binding to M6P-ligands is involved.  相似文献   

6.
Cytokinesis partitions the cytoplasm of a parent cell into two daughter cells and is essential for the completion of cell division. The final step of cytokinesis in animal cells is abscission, which is a process leading to the physical separation of two daughter cells. Abscission requires membrane traffic and microtubule disassembly at a specific midbody region called the secondary ingression. Here, we report that WD repeat-containing protein 5 (WDR5), a core subunit of COMPASS/MLL family histone H3 lysine 4 methyltransferase (H3K4MT) complexes, resides at the midbody and associates with a subset of midbody regulatory proteins, including PRC1 and CYK4/MKLP1. Knockdown of WDR5 impairs abscission and increases the incidence of multinucleated cells. Further investigation revealed that the abscission delay is primarily due to slower formation of secondary ingressions in WDR5 knockdown cells. Consistent with these defects, midbody microtubules in WDR5 knockdown cells also display enhanced resistance to depolymerization by nocodazole. Recruitment of WDR5 to the midbody dark zone appears to require integrity of the WDR5 central arginine-binding cavity, as mutations that disrupt histone H3 and MLL1 binding to this pocket also abolish the midbody localization of WDR5. Taken together, these data suggest that WDR5 is specifically targeted to the midbody in the absence of chromatin and that it promotes abscission, perhaps by facilitating midbody microtubule disassembly.  相似文献   

7.
8.
WD repeat-containing protein 5 (WDR5) is a common component of mammalian mixed lineage leukemia methyltransferase family members and is important for histone H3 lysine 4 methylation (H3K4me), which has been implicated in control of activation of cell lineage genes during embryogenesis. However, WDR5 has not been considered to play a specific regulatory role in epigenetic programming of cell lineage because it is ubiquitously expressed. Previous work from our laboratory showed the appearance of histone H3K4me within smooth muscle cell (SMC)-marker gene promoters during the early stages of development of SMC from multipotential embryonic cells but did not elucidate the underlying mechanisms that mediate SMC-specific and locus-selective H3K4me. Results presented herein show that knockdown of WDR5 significantly decreased SMC-marker gene expression in cultured SMC differentiation systems and in Xenopus laevis embryos in vivo. In addition, we showed that WDR5 complexes within SMC progenitor cells contained H3K4 methyltransferase enzymatic activity and that knockdown of WDR5 selectively decreased H3K4me1 and H3K4me3 enrichment within SMC-marker gene promoter loci. Moreover, we present evidence that it is recruited to these gene promoter loci through interaction with a SMC-selective pituitary homeobox 2 (Pitx2). Taken together, studies provide evidence for a novel mechanism for epigenetic control of SMC-marker gene expression during development through interaction of WDR5, homeodomain proteins, and chromatin remodeling enzymes.  相似文献   

9.
Histones are subject to a wide variety of post-translational modifications that play a central role in gene activation and silencing. We have used histone modification-specific antibodies to demonstrate that two histone modifications involved in gene activation, histone H3 acetylation and H3 lysine 4 methylation, are functionally linked. This interaction, in which the extent of histone H3 acetylation determines both the abundance and the "degree" of H3K4 methylation, plays a major role in the epigenetic response to histone deacetylase inhibitors. A combination of in vivo knockdown experiments and in vitro methyltransferase assays shows that the abundance of H3K4 methylation is regulated by the activities of two opposing enzyme activities, the methyltransferase MLL4, which is stimulated by acetylated substrates, and a novel and as yet unidentified H3K4me3 demethylase.  相似文献   

10.
11.
Methylation of histone H3 at lysine 4 (H3K4) is a conserved feature of active chromatin catalyzed by methyltransferases of the SET1-family (SET1A, SET1B, MLL1, MLL2, MLL3 and MLL4 in humans). These enzymes participate in diverse gene regulatory networks with a multitude of known biological functions, including direct involvement in several human disease states. Unlike most lysine methyltransferases, SET1-family enzymes are only fully active in the context of a multi-subunit complex, which includes a protein module comprised of WDR5, RbBP5, ASH2L and DPY-30 (WRAD). These proteins bind in close proximity to the catalytic SET domain of SET1-family enzymes and stimulate H3K4 methyltransferase activity. The mechanism by which WRAD promotes catalysis involves elements of allosteric control and possibly the utilization of a second H3K4 methyltransferase active site present within WRAD itself. WRAD components also engage in physical interactions that recruit SET1-family proteins to target sites on chromatin. Here, the known molecular mechanisms through which WRAD enables the function of SET1-related enzymes will be reviewed.  相似文献   

12.
13.
14.
15.
16.
The mixed lineage leukemia protein-1 (MLL1), as a lysine methyltransferase, predominantly regulates the methylation of histone H3 lysine 4 (H3K4) and functions in hematopoietic stem cell (HSC) self-renewal. MLL1 gene fuses with partner genes that results in the generation of MLL1 fusion proteins (MLL1-FPs), which are frequently detected in acute leukemia. In the progress of leukemogenesis, a great deal of proteins cooperate with MLL1 to form multiprotein complexes serving for the dysregulation of H3K4 methylation, the overexpression of homeobox (HOX) cluster genes, and the consequent generation of leukemia. Hence, disrupting the interactions between MLL1 and the reciprocal proteins has been considered to be a new treatment strategy for leukemia. Here, we reviewed potential protein-protein interactions (PPIs) between MLL1 and its reciprocal proteins, and summarized the inhibitors to target MLL1 PPIs. The druggability of MLL1 PPIs for leukemia were also discussed.  相似文献   

17.
18.
Olivier Binda 《Epigenetics》2013,8(5):457-463
Lysine methylation of histones and non-histone proteins has emerged in recent years as a posttranslational modification with wide-ranging cellular implications beyond epigenetic regulation. The molecular interactions between lysine methyltransferases and their substrates appear to be regulated by posttranslational modifications surrounding the lysine methyl acceptor. Two very interesting examples of this cross-talk between methyl-lysine sites are found in the SET (Su(var)3–9, Enhancer-of-zeste, Trithorax) domain-containing lysine methyltransferases SET7 and SETDB1, whereby the histone H3 trimethylated on lysine 4 (H3K4me3) modification prevents methylation by SETDB1 on H3 lysine 9 (H3K9) and the histone H3 trimethylated on lysine 9 (H3K9me3) modification prevents methylation by SET7 on H3K4. A similar cross-talk between posttranslational modifications regulates the functions of non-histone proteins such as the tumor suppressor p53 and the DNA methyltransferase DNMT1. Herein, in cis effects of acetylation, phosphorylation, as well as arginine and lysine methylation on lysine methylation events will be discussed.  相似文献   

19.
20.
Setd8 is the sole histone methyltransferase in mammals capable of monomethylating histone H4 lysine 20 (H4K20me1). Setd8 is expressed at significantly higher levels in erythroid cells than any other cell or tissue type, suggesting that Setd8 has an erythroid-cell-specific function. To test this hypothesis, stable Setd8 knockdown was established in extensively self-renewing erythroblasts (ESREs), a well-characterized, nontransformed model of erythroid maturation. Knockdown of Setd8 resulted in impaired erythroid maturation characterized by a delay in hemoglobin accumulation, larger mean cell area, persistent ckit expression, incomplete nuclear condensation, and lower rates of enucleation. Setd8 knockdown did not alter ESRE proliferation or viability or result in accumulation of DNA damage. Global gene expression analyses following Setd8 knockdown demonstrated that in erythroid cells, Setd8 functions primarily as a repressor. Most notably, Gata2 expression was significantly higher in knockdown cells than in control cells and Gata2 knockdown rescued some of the maturation impairments associated with Setd8 disruption. Setd8 occupies critical regulatory elements in the Gata2 locus, and knockdown of Setd8 resulted in loss of H4K20me1 and gain of H4 acetylation at the Gata2 1S promoter. These results suggest that Setd8 is an important regulator of erythroid maturation that works in part through repression of Gata2 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号