首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.

[Purpose]

The purpose of this study was to investigate the effect of Sirtuin 1 (SIRT1) and General control nonderepressible 5 (GCN5) knock down on peroxisome proliferator- activated receptor gamma coactivator 1-alpha (PGC-1α) deacetylation during electrical stimulated skeletal muscle contraction.

[Methods]

Skeletal muscle primary cell were isolated from C57BL/6 mice gastrocnemius and transfected lentiviral SIRT1 and GCN5 shRNA. Knock downed muscle cell were stimulated by electrical stimulation (1Hz, 3min) and collected for PGC-1α deceatylation assays. Immunoprecipitation performed for PGC-1α deacetylation, acetyl-lysine level was measured.

[Results]

Our resulted showed SIRT1 knock down not influenced to PGC-1α deacetylation during electrical stimulation induced muscle contraction while GCN5 knock down decreased PGC-1α deacetylation significantly (p<0.05).

[Conclusion]

This study can be concluded that GCN5 is a critical factor for muscle contraction induced PGC-1α deacetylation.  相似文献   

2.

Background

Hemozoin (Hz) is a heme crystal that represents a vital pathway for heme disposal in several blood-feeding organisms. Recent evidence demonstrated that β-hematin (βH) (the synthetic counterpart of Hz) formation occurs under physiological conditions near synthetic or biological hydrophilic-hydrophobic interfaces. This seems to require a heme dimer acting as a precursor of Hz crystals that would be formed spontaneously in the absence of the competing water molecules bound to the heme iron. Here, we aimed to investigate the role of medium polarity on spontaneous βH formation in vitro.

Methodology/Principal Findings

We assessed the effect of water content on spontaneous βH formation by using the aprotic solvent dimethylsulfoxide (DMSO) and a series of polyethyleneglycols (PEGs). We observed that both DMSO and PEGs (3.350, 6.000, 8.000, and 22.000) increased the levels of soluble heme under acidic conditions. These compounds were able to stimulate the production of βH crystals in the absence of any biological sample. Interestingly, the effects of DMSO and PEGs on βH formation were positively correlated with their capacity to promote previous heme solubilization in acidic conditions. Curiously, a short chain polyethyleneglycol (PEG 300) caused a significant reduction in both soluble heme levels and βH formation. Finally, both heme solubilization and βH formation strongly correlated with reduced medium water activity provided by increased DMSO concentrations.

Conclusions

The data presented here support the notion that reduction of the water activity is an important mechanism to support spontaneous heme crystallization, which depends on the previous increase of soluble heme levels.  相似文献   

3.

Background

Mechanical strain plays a great role in growth and differentiation of osteoblast. A previous study indicated that integrin-β (β1, β5) mediated osteoblast proliferation promoted by mechanical tensile strain. However, the involvement of integrin-β in osteoblastic differentiation and extracellular matrix (ECM) formation induced by mechanical tensile strain, remains unclear.

Results

After transfection with integrin-β1 siRNA or integrin-β5 siRNA, mouse MC3T3-E1 preosteoblasts were cultured in cell culture dishes and stimulated with mechanical tensile strain of 2500 microstrain (με) at 0.5 Hz applied once a day for 1 h over 3 or 5 consecutive days. The cyclic tensile strain promoted osteoblastic differentiation of MC3T3-E1 cells. Transfection with integrin-β1 siRNA attenuated the osteoblastic diffenentiation induced by the tensile strain. By contrast, transfection with integrin-β5 siRNA had little effect on the osteoblastic differentiation induced by the strain. At the same time, the result of ECM formation promoted by the strain, was similar to the osteoblastic differentiation.

Conclusion

Integrin-β1 mediates osteoblast differentiation and osteoblastic ECM formation promoted by cyclic tensile strain, and integrin-β5 is not involved in the osteoblasts response to the tensile strain.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0014-y) contains supplementary material, which is available to authorized users.  相似文献   

4.

Purpose

Recent reports suggest that the hypoglycaemic effects of the triterpenes involve inhibition of glucose transport in the small intestine. Therefore, the effects of Syzygium spp-derived triterpenes oleanolic acid (OA) and maslinic acid (MA) were evaluated on carbohydrate hydrolyzing enzymes in STZ-induced diabetic rats and consequences on postprandial hyperglycaemia after carbohydrate loading.

Methods

We determined using Western blot analysis the expressions of α-amylase and α-glucosidase and glucose transporters SGLT1 and GLUT2 in the small intestine intestines isolated from diabetic rats treated with OA/MA for 5 weeks. In vitro assays were used to assess the inhibitory activities of OA and MA against α-amylase, α-glucosidase and sucrase.

Results

OA and MA ameliorated postprandial hyperglycemia in carbohydrate loaded diabetic rats as indicated by the significantly small glucose area under the curve (AUC) in treated diabetic animals compared with that in untreated diabetic rats. Western blotting showed that OA and MA treatment not only down-regulated the increase of SGLT1 and GLUT2 expressions in the small intestine of STZ-induced diabetic rats, but also inhibited small intestine α-amylase, sucrase and α-glucosidase activity. IC50 values of OA against α-amylase (3.60 ± 0.18 mmol/L), α-glucosidase (12.40 ± 0.11 mmol/L) and sucrase (11.50 ± 0.13 mmol/L) did not significantly differ from those of OA and acarbose.

Conclusions

The results of suggest that OA and MA may be used as potential supplements for treating postprandial hyperglycemia.

Novelty of the Work

The present observations indicate that besides improving glucose homeostasis in diabetes, OA and MA suppress postprandial hyperglycaemia mediated in part via inhibition of carbohydrate hydrolysis and reduction of glucose transporters in the gastrointestinal tract. Inhibition of α-glucosidase and α-amylase can significantly decrease the postprandial hyperglycaemia after a mixed carbohydrate diet and therefore can be an important strategy in the management of postprandial blood glucose levels in NIDDM patients.  相似文献   

5.

Objective

Obesity is a risk factor for the development of insulin resistance and is one of the most important contributors to the pathogenesis of type2 diabetes, which acts mainly through the secretion of adipokines such as TNF-α that may influence insulin sensitivity. TNF-α affects many aspects of adipocyte function, such as adipocyte development and lipid metabolism.

Material and Methods

We demonstrated that there is a correlation between the expressions of TNF-α in retroperitoneal WAT and insulin-resistance in 8 genetically obese fa/fa rats. Treatment of animals with CL 316,243, a β3-adrenergic agonist, showed an improvement of insulin-resistance that was linked with the suppression of TNF-α mRNA expression in WAT.

Results

These results confirm the association between TNF-α expression and the insulin-resistant condition in rats. Our finding indicates that the hyperglycaemia and hyperinsulinemia induced by insulin-resistance correlated positively with the expression of TNF-α mRNA in an abdominal WAT depot.

Conclusion

We conclude that CL 316,243 possesses both anti-diabetic effects and anti-obesity effects in rodents.  相似文献   

6.

Object

Antiangiogenic treatments are beginning to give promising outcomes in many vascular diseases including tumor angiogenesis. In this current study the antiangiogenic and pro-apoptotic actions of α1(IV)NC1 and its N- and C- peptides α1S1(IV)NC1, α1S2(IV)NC1 were investigated in-vitro and in-vivo.

Study Method

Endothelial cells (ECs) were treated with α1(IV)NC1, α1S1(IV)NC1, α1S2(IV)NC1 and in-vitro proliferation, migration, tube formation and apoptotic assays were executed. FasL, Fas, Caspase-8, -3 and PARP activations were studied using immunoblotting analysis using specific antibodies. Also the in-vivo antiangiogenic and pro-apoptotic effects were tested using α1(IV)NC1 in a mice model.

Results

Like α1(IV)NC1, its N- and C- terminal α1S2(IV)NC1 and α1S1(IV)NC1 domains posses anti-proliferative, pro-apoptotic activity and inhibit ECs migration and tube formation in-vitro. Both α1S1(IV)NC1 and α1S2(IV)NC1 domains promote apoptosis by activating FasL and down stream apoptotic events including activation of caspase-8, -3 and PARP cleavage in a dose dependent manner in-vitro in ECs. Tumors in mice showed apoptotic TUNEL positive microvasculature upon α1(IV)NC1 treatment, indicating inhibition of tumor angiogenesis and tumor growth. Further, the antitumor activity of α1(IV)NC1 was abrogated when caspase-3 inhibitor was used. These results conform additional properties of α1(IV)NC1 as an endogenous angioinhibitor that induces apoptosis in-vitro and in-vivo by activating FasL mediated caspase-3.

Significance

α1(IV)NC1 and its N- and C- terminal α1S1(IV)NC1 and α1S2(IV)NC1 domains also posses pro-apoptotic and angioinhibitory activity in-vitro and in-vivo. α1(IV)NC1 regulates tumor angiogenesis by activating FasL mediated apoptosis in-vitro and in-vivo. These results demonstrate that α1(IV)NC1 and its peptides inhibit neo-vascular diseases.  相似文献   

7.
8.

Background

There has been no comprehensive study on biochemical characterization of insecticide resistance mechanisms in field populations of Malaysian Culex quinquefasciatus. To fill this void in the literature, a nationwide investigation was performed to quantify the enzyme activities, thereby attempting to characterize the potential resistance mechanisms in Cx. quinquefasciatus in residential areas in Malaysia.

Methodology/Principal Findings

Culex quinquefasciatus from 14 residential areas across 13 states and one federal territory were subjected to esterases, mixed function oxidases, glutathione-S-transferase and insensitive acetylcholinesterase assays. Enzyme assays revealed that α-esterases and β-esterases were elevated in 13 populations and 12 populations, respectively. Nine populations demonstrated elevated levels of mixed function oxidases and glutathione-S-transferase. Acetylcholinesterase was insensitive to propoxur in all 14 populations. Activity of α-esterases associated with malathion resistance was found in the present study. In addition, an association between the activity of α-esterases and β-esterases was also demonstrated.

Conclusions/Significance

The present study has characterized the potential biochemical mechanisms in contributing towards insecticide resistance in Cx. quinquefasciatus field populations in Malaysia. Identification of mechanisms underlying the insecticide resistance will be beneficial in developing effective mosquito control programs in Malaysia.  相似文献   

9.

Background

Tribolium castaneum (Herbst) is a major pest of stored grain-based products, and cause severe damage to cereal grains throughout the world. The present investigation was aimed to determine the pesticidal and pest repellent activities of 2α,3β,21β,23,28-penta hydroxyl 12-oleanene against T. castaneum. The compound 2α,3β,21β,23,28-penta hydroxyl 12-oleanene is a triterpenoid which was isolated from the roots of Laportea crenulata Gaud. Surface film technique was used for pesticidal screening, whereas, pest repellency property of the triterpenoid was determined by filter paper disc method.

Results

At 24 hours of exposure duration, significant mortality records (80% and 86%) were observed at doses 0.88 and 1.77 mg/cm2. No significant change in mortality records was observed when duration of exposure was increased up to 48 hours. The triterpenoid showed significant repellency activity at doses 0.47 and 0.94 mg/cm2.

Conclusion

These data suggest that the triterpenoid 2α,3β,21β,23,28-penta hydroxyl 12-oleanene possess both pesticidal and pest repellency activities against T. castaneum and can be used in controlling the pest of grain-based products.

Electronic supplementary material

The online version of this article (doi:10.1186/0717-6287-47-68) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.

Background

Lungs of cystic fibrosis (CF) patients are chronically infected with Pseudomonas aeruginosa. Increased airway constriction has been reported in CF patients but underplaying mechanisms have not been elucidated. Aim: to examine the effect of P. aeruginosa LPS on airway constriction in CF mice and the implication in this process of cytosolic phospholipase A2α (cPLA2α), an enzyme involved in arachidonic acid (AA) release.

Methods

Mice were instilled intra-nasally with LPS. Airway constriction was assessed using barometric plethysmograph. MIP-2, prostaglandin E2 (PGE2), leukotrienes and AA concentrations were measured in BALF using standard kits and gas chromatography.

Results

LPS induced enhanced airway constriction and AA release in BALF of CF compared to littermate mice. This was accompanied by increased levels of PGE2, but not those of leukotrienes. However, airway neutrophil influx and MIP-2 production remained similar in both mouse strains. The cPLA2α inhibitor arachidonyl trifluoro-methyl-ketone (ATK), but not aspirin which inhibit PGE2 synthesis, reduced LPS-induced airway constriction. LPS induced lower airway constriction and PGE2 production in cPLA2α -/- mice compared to corresponding littermates. Neither aspirin nor ATK interfered with LPS-induced airway neutrophil influx or MIP-2 production.

Conclusions

CF mice develop enhanced airway constriction through a cPLA2α-dependent mechanism. Airway inflammation is dissociated from airway constriction in this model. cPLA2α may represent a suitable target for therapeutic intervention in CF. Attenuation of airway constriction by cPLA2α inhibitors may help to ameliorate the clinical status of CF patients.  相似文献   

12.

Background

Organophosphates (OPs) are neurotoxic compounds for which current methods of elimination are unsatisfactory; thus bio-remediation is considered as a promising alternative. Here we provide the structural and enzymatic characterization of the recently identified enzyme isolated from Pseudomonas pseudoalcaligenes dubbed OPHC2. OPHC2 belongs to the metallo-β-lactamase superfamily and exhibits an unusual thermal resistance and some OP degrading abilities.

Principal findings

The X-ray structure of OPHC2 has been solved at 2.1 Å resolution. The enzyme is roughly globular exhibiting a αβ/βα topology typical of the metallo-β-lactamase superfamily. Several structural determinants, such as an extended dimerization surface and an intramolecular disulfide bridge, common features in thermostable enzymes, are consistent with its high Tm (97.8°C). Additionally, we provide the enzymatic characterization of OPHC2 against a wide range of OPs, esters and lactones.

Significance

OPHC2 possesses a broad substrate activity spectrum, since it hydrolyzes various phosphotriesters, esters, and a lactone. Because of its organophosphorus hydrolase activity, and given its intrinsic thermostability, OPHC2 is an interesting candidate for the development of an OPs bio-decontaminant. Its X-ray structure shed light on its active site, and provides key information for the understanding of the substrate binding mode and catalysis.  相似文献   

13.

Background

The intratracheal instillation of Pseudomonas aeruginosa entrapped in agar beads in the mouse lung leads to chronic lung infection in susceptible mouse strains. As the infection generates a strong inflammatory response with some lung edema, we tested if it could modulate the expression of genes involved in lung liquid clearance, such as the α, β and γ subunits of the epithelial sodium channel (ENaC) and the catalytic subunit of Na+-K+-ATPase.

Methods

Pseudomonas aeruginosa entrapped in agar beads were instilled in the lung of resistant (BalB/c) and susceptible (DBA/2, C57BL/6 and A/J) mouse strains. The mRNA expression of ENaC and Na+-K+-ATPase subunits was tested in the lung by Northern blot following a 3 hours to 14 days infection.

Results

The infection of the different mouse strains evoked regulation of α and β ENaC mRNA. Following Pseudomonas instillation, the expression of αENaC mRNA decreased to a median of 43% on days 3 and 7 after infection and was still decreased to a median of 45% 14 days after infection (p < 0.05). The relative expression of βENaC mRNA was transiently increased to a median of 241%, 24 h post-infection before decreasing to a median of 43% and 54% of control on days 3 and 7 post-infection (p < 0.05). No significant modulation of γENaC mRNA was detected although the general pattern of expression of the subunit was similar to α and β subunits. No modulation of α1Na+-K+-ATPase mRNA, the catalytic subunit of the sodium pump, was recorded. The distinctive expression profiles of the three subunits were not different, between the susceptible and resistant mouse strains.

Conclusions

These results show that Pseudomonas infection, by modulating ENaC subunit expression, could influence edema formation and clearance in infected lungs.  相似文献   

14.

Objective

To generate high-resolution maps of the viscoelastic properties of human brain parenchyma for presurgical quantitative assessment in glioblastoma (GB).

Methods

Twenty-two GB patients underwent routine presurgical work-up supplemented by additional multifrequency magnetic resonance elastography. Two three-dimensional viscoelastic parameter maps, magnitude |G*|, and phase angle φ of the complex shear modulus were reconstructed by inversion of full wave field data in 2-mm isotropic resolution at seven harmonic drive frequencies ranging from 30 to 60 Hz.

Results

Mechanical brain maps confirmed that GB are composed of stiff and soft compartments, resulting in high intratumor heterogeneity. GB could be easily differentiated from healthy reference tissue by their reduced viscous behavior quantified by φ (0.37±0.08 vs. 0.58±0.07). |G*|, which in solids more relates to the material''s stiffness, was significantly reduced in GB with a mean value of 1.32±0.26 kPa compared to 1.54±0.27 kPa in healthy tissue (P = 0.001). However, some GB (5 of 22) showed increased stiffness.

Conclusion

GB are generally less viscous and softer than healthy brain parenchyma. Unrelated to the morphology-based contrast of standard magnetic resonance imaging, elastography provides an entirely new neuroradiological marker and contrast related to the biomechanical properties of tumors.  相似文献   

15.

Background

The vast majority of the population around the world has always used medicinal plants as first source of health care to fight infectious and non infectious diseases. Most of these medicinal plants may have scientific evidence to be considered in general practice.

Objective

The aim of this work was to investigate the antioxidant capacities and anti-inflammatory activities of ethanol extracts of leaves of Cassia alata, Eleusine indica, Carica papaya, Eremomastax speciosa and the stem bark of Polyscias fulva, collected in Cameroon.

Methods

Chemiluminescence was used to analyze the antioxidant activities of plant extracts against hydrogen peroxide or superoxide anion. Comet assays were used to analyze the protection against antioxidant-induced DNA damage induced in white blood cells after treating with hydrogen peroxide. Flow cytometry was used to measure γδ T cells proliferation and anti-inflammatory activity of γδ T cells and of immature dendritic cells (imDC) in the presence of different concentrations of plant extracts.

Results

Ethanol extracts showed strong antioxidant properties against both hydrogen peroxide and superoxide anion. Cassia alata showed the highest antioxidant activity. The effect of plant extracts on γδ T cells and imDC was evidenced by the dose dependent reduction in TNF-α production in the presence of Cassia alata, Carica papaya, Eremomastax speciosa Eleusine indica, and Polyscias fulva. γδ T cells proliferation was affected to the greatest extent by Polyscias fulva.

Conclusion

These results clearly show the antioxidant capacity and anti-inflammatory activities of plant extracts collected in Cameroon. These properties of leaves and stem bark extracts may contribute to the value for these plants in traditional medicine and in general medical practice.  相似文献   

16.

Aims

Oxidative stress and apoptosis are among the earliest lesions of diabetic retinopathy. This study sought to examine the anti-oxidative and anti-apoptotic effects of α-melanocyte-stimulating hormone (α-MSH) in early diabetic retinas and to explore the underlying mechanisms in retinal vascular endothelial cells.

Methods

Sprague-Dawley rats were injected intravenously with streptozocin to induce diabetes. The diabetic rats were injected intravitreally with α-MSH or saline. At week 5 after diabetes, the retinas were analyzed for reactive oxygen species (ROS) and gene expression. One week later, the retinas were processed for terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and transmission electron microscopy. Retinal vascular endothelial cells were stimulated by high glucose (HG) with or without α-MSH. The expression of Forkhead box O genes (Foxos) was examined through real-time PCR. The Foxo4 gene was overexpressed in endothelial cells by transient transfection prior to α-MSH or HG treatment, and oxidative stress and apoptosis were analyzed through CM-H2DCFDA and annexin-V assays, respectively.

Results

In diabetic retinas, the levels of H2O2 and ROS and the total anti-oxidant capacity were normalized, the apoptotic cell number was reduced, and the ultrastructural injuries were ameliorated by α-MSH. Treatment with α-MSH also corrected the aberrant changes in eNOS, iNOS, ICAM-1, and TNF-α expression levels in diabetic retinas. Furthermore, α-MSH inhibited Foxo4 up-regulation in diabetic retinas and in endothelial cells exposed to HG, whereas Foxo4 overexpression abrogated the anti-oxidative and anti-apoptotic effects of α-MSH in HG-stimulated retinal vascular endothelial cells.

Conclusions

α-MSH normalized oxidative stress, reduced apoptosis and ultrastructural injuries, and corrected gene expression levels in early diabetic retinas. The protective effects of α-MSH in retinal vascular endothelial cells may be mediated through the inhibition of Foxo4 up-regulation induced by HG. This study suggests an α-MSH-mediated potential intervention approach to early diabetic retinopathy and a novel regulatory mechanism involving Foxo4.  相似文献   

17.

Objective

To down-regulate expression of mRNA for the platelet-derived growth factor receptor (PDGFR)-α, block the signalling pathway of PDGF and its receptor, and study their influence on fibroblast transdifferentiation to myofibroblasts in systemic sclerosis (SSc).

Methods

Fibroblasts from skin lesions of SSc patients and health adult controls were cultured in vitro, and α-smooth muscle actin (α-SMA) expression was determined by immunocytochemistry. Both groups of fibroblasts were stimulated with PDGF-AA, transforming growth factor β1 (TGF-β1), and costimulated with PDGF-AA and TGF-β1, then PDGFR-α and α-SMA mRNA and protein expression were detected with RT-PCR and WB respectively. Three pairs of siRNAs targeting different PDGFR-α mRNA sequences were synthesized for RNAi. SSc and control fibroblasts were transfected with PDGFR-α siRNA; stimulated with PDGF-AA; and assessed for PDGFR-α and α-SMA mRNA and protein expression.

Results

Although the fibroblasts from both groups had similar morphology, the SSc skin lesions had significantly more myofibroblasts than control skin lesions. PDGF-AA stimulation, TGF-β1 stimulation, and costimulation significantly up-regulated PDGFR-α and α-SMA mRNA and protein expression in SSc fibroblasts compared to control (P<0.05), and costimulation had the strongest effects (P<0.05). All three pairs of siRNAs suppressed PDGFR-α mRNA and protein expression (P<0.05), but siRNA1495 had the highest gene-silencing efficiency (P<0.05). PDGFR-α siRNA attenuated the effects of PDGF-AA through up-regulating PDGFR-α and α-SMA mRNA and protein expression and inhibiting fibroblast transdifferentiation to myofibroblasts in SSc (P<0.05).

Conclusions

PDGFR-α over-expression in SSc fibroblasts bound PDGF-AA more efficiently and promoted fibroblast transdifferentiation, which was enhanced by TGF-β1. PDGFR-α siRNA down-regulated PDGFR-α expression, blocked binding to PDGF-AA, and inhibited fibroblast transdifferentiation to myofibroblasts.  相似文献   

18.
19.

Background and Aims

Nitric oxide-independent soluble guanylyl cyclase (sGC) activators reactivate the haem-oxidized enzyme in vascular diseases. This study was undertaken to investigate the anti-platelet mechanisms of the haem-independent sGC activator BAY 60-2770 in human washed platelets. The hypothesis that sGC oxidation potentiates the anti-platelet activities of BAY 60-2770 has been tested.

Methods

Human washed platelet aggregation and adhesion assays, as well as flow cytometry for αIIbβ3 integrin activation and Western blot for α1 and β1 sGC subunits were performed. Intracellular calcium levels were monitored in platelets loaded with a fluorogenic calcium-binding dye (FluoForte).

Results

BAY 60-2770 (0.001–10 µM) produced significant inhibition of collagen (2 µg/ml)- and thrombin (0.1 U/ml)-induced platelet aggregation that was markedly potentiated by the sGC inhibitor ODQ (10 µM). In fibrinogen-coated plates, BAY 60-2770 significantly inhibited platelet adhesion, an effect potentiated by ODQ. BAY 60-2770 increased the cGMP levels and reduced the intracellular Ca2+ levels, both of which were potentiated by ODQ. The cell-permeable cGMP analogue 8-Br-cGMP (100 µM) inhibited platelet aggregation and Ca2+ levels in an ODQ-insensitive manner. The cAMP levels remained unchanged by BAY 60-2770. Collagen- and thrombin-induced αIIbβ3 activation was markedly inhibited by BAY 60-2770 that was further inhibited by ODQ. The effects of sodium nitroprusside (3 µM) were all prevented by ODQ. Incubation with ODQ (10 µM) significantly reduced the protein levels of α1 and β1 sGC subunits, which were prevented by BAY 60-2770.

Conclusion

The inhibitory effects of BAY 60-2770 on aggregation, adhesion, intracellular Ca2+ levels and αIIbβ3 activation are all potentiated in haem-oxidizing conditions. BAY 60-2770 prevents ODQ-induced decrease in sGC protein levels. BAY 60-2770 could be of therapeutic interest in cardiovascular diseases associated with thrombotic complications.  相似文献   

20.

Background

Oxaloacetate decarboxylase (OAD) is a member of the Na+ transport decarboxylase enzyme family found exclusively in anaerobic bacteria. OAD of Vibrio cholerae catalyses a key step in citrate fermentation, converting the chemical energy of the decarboxylation reaction into an electrochemical gradient of Na+ ions across the membrane, which drives endergonic membrane reactions such as ATP synthesis, transport and motility. OAD is a membrane-bound enzyme composed of α, β and γ subunits. The α subunit contains the carboxyltransferase catalytic site.

Methodology/Principal Findings

In this report, spectroscopic techniques were used to probe oxomalonate (a competitive inhibitor of OAD with respect to oxaloacetate) and Na+ effects on the enzyme tryptophan environment and on the secondary structure of the OAD complex, as well as the importance of each subunit in the catalytic mechanism. An intrinsic fluorescence approach, Red Edge Excitation Shift (REES), indicated that solvent molecule mobility in the vicinity of OAD tryptophans was more restricted in the presence of oxomalonate. It also demonstrated that, although the structure of OAD is sensitive to the presence of NaCl, oxomalonate was able to bind to the enzyme even in the absence of Na+. REES changes due to oxomalonate binding were also observed with the αγ and α subunits. Infrared spectra showed that OAD, αγ and α subunits have a main component band centered between 1655 and 1650 cm−1 characteristic of a high content of α helix structures. Addition of oxomalonate induced a shift of the amide-I band of OAD toward higher wavenumbers, interpreted as a slight decrease of β sheet structures and a concomitant increase of α helix structures. Oxomalonate binding to αγand α subunits also provoked secondary structure variations, but these effects were negligible compared to OAD complex.

Conclusion

Oxomalonate binding affects the tryptophan environment of the carboxyltransferase subunit, whereas Na+ alters the tryptophan environment of the β subunit, consistent with the function of these subunits within the enzyme complex. Formation of a complex between OAD and its substrates elicits structural changes in the α-helical as well as β-strand secondary structure elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号