共查询到20条相似文献,搜索用时 15 毫秒
1.
James P. Kesby Jane J. Kim Miriam Scadeng Gina Woods Deborah M. Kado Jerrold M. Olefsky Dilip V. Jeste Cristian L. Achim Svetlana Semenova 《PloS one》2015,10(10)
Aging is associated with a decline in multiple aspects of cognitive function, with spatial cognition being particularly sensitive to age-related decline. Environmental stressors, such as high-fat diet (HFD) exposure, that produce a diabetic phenotype and metabolic dysfunction may indirectly lead to exacerbated brain aging and promote the development of cognitive deficits. The present work investigated whether exposure to HFD exacerbates age-related cognitive deficits in adult versus aged mice. Adult (5 months old) and aged (15 months old) mice were exposed to control diet or HFD for three months prior to, and throughout, behavioral testing. Anxiety-like behavior in the light-dark box test, discrimination learning and memory in the novel object/place recognition tests, and spatial learning and memory in the Barnes maze test were assessed. HFD resulted in significant gains in body weight and fat mass content with adult mice gaining significantly more weight and adipose tissue due to HFD than aged mice. Weight gain was attributed to food calories sourced from fat, but not total calorie intake. HFD increased fasting insulin levels in all mice, but adult mice showed a greater increase relative to aged mice. Behaviorally, HFD increased anxiety-like behavior in adult but not aged mice without significantly affecting spatial cognition. In contrast, aged mice fed either control or HFD diet displayed deficits in novel place discrimination and spatial learning. Our results suggest that adult mice are more susceptible to the physiological and anxiety-like effects of HFD consumption than aged mice, while aged mice displayed deficits in spatial cognition regardless of dietary influence. We conclude that although HFD induces systemic metabolic dysfunction in both adult and aged mice, overall cognitive function was not adversely affected under the current experimental conditions. 相似文献
2.
Prabhat Bastola Yiwen Stratton Emily Kellner Olga Mikhaylova Ying Yi Maureen A. Sartor Mario Medvedovic Jacek Biesiada Jarek Meller Maria F. Czyzyk-Krzeska 《PloS one》2013,8(7)
Von Hippel-Lindau tumor suppressor (VHL) is lost in the majority of clear cell renal cell carcinomas (ccRCC). Folliculin (FLCN) is a tumor suppressor whose function is lost in Birt-Hogg-Dubé syndrome (BHD), a disorder characterized by renal cancer of multiple histological types including clear cell carcinoma, cutaneous fibrofolliculoma, and pneumothorax. Here we explored whether there is connection between VHL and FLCN in clear cell renal carcinoma cell lines and tumors. We demonstrate that VHL regulates expression of FLCN at the mRNA and protein levels in RCC cell lines, and that FLCN protein expression is decreased in human ccRCC tumors with VHL loss, as compared with matched normal kidney tissue. Knockdown of FLCN results in increased formation of tumors by RCC cells with wild-type VHL in orthotopic xenografts in nude mice, an indication that FLCN plays a role in the tumor-suppressing activity of VHL. Interestingly, FLCN, similarly to VHL, is necessary for the activity of LC3C-mediated autophagic program that we have previously characterized as contributing to the tumor suppressing activity of VHL. The results show the existence of functional crosstalk between two major tumor suppressors in renal cancer, VHL and FLCN, converging on regulation of autophagy. 相似文献
3.
Vincent Blasco-Baque Matteo Serino Jean-No?l Vergnes Elodie Riant Pascale Loubieres Jean-Fran?ois Arnal Pierre Gourdy Michel Sixou Rémy Burcelin Philippe Kemoun 《PloS one》2012,7(11)
Background
A fat-enriched diet favors the development of gram negative bacteria in the intestine which is linked to the occurrence of type 2 diabetes (T2D). Interestingly, some pathogenic gram negative bacteria are commonly associated with the development of periodontitis which, like T2D, is characterized by a chronic low-grade inflammation. Moreover, estrogens have been shown to regulate glucose homeostasis via an LPS receptor dependent immune-modulation. In this study, we evaluated whether diet-induced metabolic disease would favor the development of periodontitis in mice. In addition, the regulatory role of estrogens in this process was assessed.Methods
Four-week-old C57BL6/J WT and CD14 (part of the TLR-4 machinery for LPS-recognition) knock-out female mice were ovariectomised and subcutaneously implanted with pellets releasing either placebo or 17β-estradiol (E2). Mice were then fed with either a normal chow or a high-fat diet for four weeks. The development of diabetes was monitored by an intraperitoneal glucose-tolerance test and plasma insulin concentration while periodontitis was assessed by identification of pathogens, quantification of periodontal soft tissue inflammation and alveolar bone loss.Results
The fat-enriched diet increased the prevalence of periodontal pathogenic microbiota like Fusobacterium nucleatum and Prevotella intermedia, gingival inflammation and alveolar bone loss. E2 treatment prevented this effect and CD14 knock-out mice resisted high-fat diet-induced periodontal defects.Conclusions/Significance
Our data show that mice fed with a diabetogenic diet developed defects and microflora of tooth supporting-tissues typically associated with periodontitis. Moreover, our results suggest a causal link between the activation of the LPS pathway on innate immunity by periodontal microbiota and HFD-induced periodontitis, a pathophysiological mechanism that could be targeted by estrogens. 相似文献4.
Zhang Xiang Li Xiaoyin Sheng Zhijie Wang Shuai Li Bingyan Tao Shasha Zhang Zengli 《Biological trace element research》2020,193(2):434-444
Biological Trace Element Research - This study investigated the effects of combined exposure to low-dose cadmium and high-fat diet on femoral bone quality in male mice. Eight-week-old male SPF... 相似文献
5.
Yirong Zhu Mark D. Aupperlee Sandra Z. Haslam Richard C. Schwartz 《Translational oncology》2017,10(6):928-935
Premenopausal breast cancer is associated with increased animal fat consumption among normal-weight but not overweight women. Our previous findings in obesity-resistant BALB/c mice showed that a diet high in saturated animal fat (HFD) promotes mammary tumorigenesis in both DMBA carcinogenesis and Trp53-null transplant models. Having made these observations in BALB/c mice, which have very modest HFD weight gain, we determined the effects of HFD in FVB mice, which gain significant weight on HFD. Three-week-old FVB mice fed a low-fat diet or HFD were subjected to 7,12-dimethylbenz[a]anthracene-induced carcinogenesis. Like BALB/c mice, HFD promoted mammary tumorigenesis. Development of tumors largely occurred prior to mice becoming obese, indicating the role of animal-derived HFD rather than resulting obesity in tumor promotion. Also similar to BALB/c mice, early-occurring adenosquamous mammary tumors were abundant among HFD-fed FVB mice. Tumors from HFD mice also had increased intra-tumor M2 macrophages. Prior to tumor development, HFD accelerated normal mammary gland development and increased mammary M2 macrophages, similarly to BALB/c mice. The promotional effects of puberty-initiated HFD on carcinogen-induced mammary cancer are thus largely weight gain-independent. Like BALB/c mice, HFD promoted adenosquamous tumors, suggesting a role for early age HFD in promoting this subtype of triple negative mammary cancer. M2 macrophage recruitment was common to both mouse strains. We speculate that a similar effect of HFD on immune function may contribute to epidemiological findings of increased breast cancer risk in young, premenopausal, normal-weight women who consume a diet high in saturated animal fat. 相似文献
6.
Junyi Yang Laure B. Bindels Rafael R. Segura Munoz Inés Martínez Jens Walter Amanda E. Ramer-Tait Devin J. Rose 《PloS one》2016,11(1)
Studies have suggested links between colonic fermentation of dietary fibers and improved metabolic health. The objectives of this study were to determine if non-digestible feruloylated oligo- and polysaccharides (FOPS), a maize-derived dietary fiber, could counteract the deleterious effects of high-fat (HF) feeding in mice and explore if metabolic benefits were linked to the gut microbiota. C57BL/6J mice (n = 8/group) were fed a low-fat (LF; 10 kcal% fat), HF (62 kcal% fat), or HF diet supplemented with FOPS (5%, w/w). Pronounced differences in FOPS responsiveness were observed: four mice experienced cecal enlargement and enhanced short chain fatty acid production, indicating increased cecal fermentation (F-FOPS). Only these mice displayed improvements in glucose metabolism compared with HF-fed mice. Blooms in the gut microbial genera Blautia and Akkermansia were observed in three of the F-FOPS mice; these shifts were associated with reductions in body and adipose tissue weights compared with the HF-fed control mice. No improvements in metabolic markers or weights were detected in the four mice whose gut microbiota did not respond to FOPS. These findings demonstrate that FOPS-induced improvements in weight gain and metabolic health in mice depended on the ability of an individual’s microbiota to ferment FOPS. 相似文献
7.
目的 探讨Delta-like ligand 4(Dll4)蛋白在高脂饮食喂养大鼠脂肪组织中的表达及其与脂肪组织炎症的关系.方法 将20只SPF级雄性Sprague-Dawley大鼠随机分为正常饮食组(SD,n=10)和高脂饮食组(HFD,n=10)喂养16w后,应用免疫组化及Western blot方法检测脂肪组织中Dll4及炎症通路NF-κB磷酸化、IL-6的表达.结果 免疫组化结果显示,HFD组Dll4表达量显著升高(P〈0.001);Western blot结果与免疫组化结果相一致,Dll4蛋白表达量是SD组的1.34倍(P〈0.01);磷酸化核转录因子NF-κB表达水平升高,HFD组为SD组的2.03倍(P〈0.01);HFD组炎症细胞因子IL-6水平明显升高,为SD组的3.02倍(P〈0.01).结论 高脂饮食可增加脂肪组织中Dll4蛋白表达,促进了脂肪组织中炎症的发生. 相似文献
8.
The pathophysiological mechanisms underlying the development of obesity and metabolic diseases are not well understood. To gain more insight into the genetic mediators associated with the onset and progression of diet-induced obesity and metabolic diseases, we studied the molecular changes in response to a high-fat diet (HFD) by using a mode-of-action by network identification (MNI) analysis. Oligo DNA microarray analysis was performed on visceral and subcutaneous adipose tissues and muscles of male C57BL/6N mice fed a normal diet or HFD for 2, 4, 8, and 12 weeks. Each of these data was queried against the MNI algorithm, and the lists of top 5 highly ranked genes and gene ontology (GO)-annotated pathways that were significantly overrepresented among the 100 highest ranked genes at each time point in the 3 different tissues of mice fed the HFD were considered in the present study. The 40 highest ranked genes identified by MNI analysis at each time point in the different tissues of mice with diet-induced obesity were subjected to clustering based on their temporal patterns. On the basis of the above-mentioned results, we investigated the sequential induction of distinct olfactory receptors and the stimulation of cancer-related genes during the development of obesity in both adipose tissues and muscles. The top 5 genes recognized using the MNI analysis at each time point and gene cluster identified based on their temporal patterns in the peripheral tissues of mice provided novel and often surprising insights into the potential genetic mediators for obesity progression. 相似文献
9.
Iwona Rybakowska Ewa M. Slominska Paweł Romaszko Marcin Lipiński Paulina Żukowska Ryszard T. Smolenski 《Nucleosides, nucleotides & nucleic acids》2014,33(4-6):347-352
AMP-regulated protein kinase (AMPK) is involved in numerous regulatory processes and its role in control of cardiac energy metabolism is particularly important. This activity could be affected by AMP-deaminase (AMPD) since substrate of AMPD is AMPK activator. Hearts of male mouse, fed for six weeks with normal or high-fat diet, were fractionated to enrich AMPK activity. Purified fraction was incubated with AMARA peptide for up to 5 minutes and then conversion of AMARA to pAMARA was determined by liquid chromatography—mass spectrometry (LC/MS) using mass detector. Activity of AMPK in heart was 0.038 ± 0.012 pmol/min/mg protein for mice fed high-fat diet and that was not different to control (0.032 ± 0.01 pmol/min/mg protein). We observed change in AMPD activity. It was 5.39 ± 1.5 nmol/mg tissue/min in heart of mice fed high-fat diet while in heart of mice fed low-fat diet it was 2.29 ± 0.32 nmol/mg tissue/min. Data we present indicate that while total AMPK activity is not changed decrease in AMPD activity may affect AMPK signaling in diabetic heart. 相似文献
10.
Brian W. Parks Elizabeth Nam Elin Org Emrah Kostem Frode Norheim Simon T. Hui Calvin Pan Mete Civelek Christoph D. Rau Brian J. Bennett Margarete Mehrabian Luke K. Ursell Aiqing He Lawrence W. Castellani Bradley Zinker Mark Kirby Thomas A. Drake Christian A. Drevon Aldons J. Lusis 《Cell metabolism》2013,17(1):141-152
Highlights? Detailed analysis of diet-induced obesity in more than 100 inbred mouse strains ? Identification of 11 genetic loci associated with obesity and dietary responsiveness ? Significant overlap between mouse loci with human GWAS loci for obesity ? Strain-specific shifts in gut microbiota composition in response to dietary intervention 相似文献
11.
Norihiro Imai Michitaka Suzuki Kazuhiko Hayashi Masatoshi Ishigami Yoshiki Hirooka Takaya Abe Go Shioi Hidemi Goto Toyoshi Fujimoto 《PloS one》2015,10(5)
We showed previously that UBXD8 plays a key role in proteasomal degradation of lipidated ApoB in hepatocarcinoma cell lines. In the present study, we aimed to investigate the functions of UBXD8 in liver in vivo. For this purpose, hepatocyte-specific UBXD8 knockout (UBXD8-LKO) mice were generated. They were fed with a normal or high-fat diet, and the phenotypes were compared with those of littermate control mice. Hepatocytes obtained from UBXD8-LKO and control mice were analyzed in culture. After 26 wk of a high-fat diet, UBXD8-LKO mice exhibited macrovesicular steatosis in the periportal area and microvesicular steatosis in the perivenular area, whereas control mice exhibited steatosis only in the perivenular area. Furthermore, UBXD8-LKO mice on a high-fat diet had significantly lower concentrations of serum triglyceride and VLDL than control mice. A Triton WR-1339 injection study revealed that VLDL secretion from hepatocytes was reduced in UBXD8-LKO mice. The decrease of ApoB secretion upon UBXD8 depletion was recapitulated in cultured primary hepatocytes. Accumulation of lipidated ApoB in lipid droplets was observed only in UBXD8-null hepatocytes. The results showed that depletion of UBXD8 in hepatocytes suppresses VLDL secretion, and could lead to periportal steatosis when mice are fed a high-fat diet. This is the first demonstration that an abnormality in the intracellular ApoB degradation mechanism can cause steatosis, and provides a useful model for periportal steatosis, which occurs in several human diseases. 相似文献
12.
Periodical change in carcass composition of young chicks was determined after switching over the lipogenic diet to the lipolytic diet or vice versa. It was found that change in carcass fat level is rapid and reversible. When the lipolytic diet is switched to the lipogenic diet, carcass fat increases gradually and reaches to an apparent equilibrium after 12 days with fiducial limits from 17 to 9 days. When the lipogenic diet is switched to the lipolytic diet, carcass fat decreases to reach to an apparent equilibrium after 7 days. The lipolytic or lipogenic effect of diet is not simply due to the change in supply of dietary energy to the chicks. 相似文献
13.
Yusuke Takagi Keita Kinoshita Nobuaki Ozaki Yusuke Seino Yoshiharu Murata Yoshiharu Oshida Yoshitaka Hayashi 《PloS one》2015,10(9)
Homozygous glucagon-GFP knock-in mice (Gcggfp/gfp) lack proglucagon derived-peptides including glucagon and GLP-1, and are normoglycemic. We have previously shown that Gcggfp/gfp show improved glucose tolerance with enhanced insulin secretion. Here, we studied glucose and energy metabolism in Gcggfp/gfp mice fed a high-fat diet (HFD). Male Gcggfp/gfp and Gcggfp/+ mice were fed either a normal chow diet (NCD) or an HFD for 15–20 weeks. Regardless of the genotype, mice on an HFD showed glucose intolerance, and Gcggfp/gfp mice on HFD exhibited impaired insulin secretion whereas Gcggfp/+ mice on HFD exhibited increased insulin secretion. A compensatory increase in β-cell mass was observed in Gcggfp/+mice on HFD, but not in Gcggfp/gfp mice on the same diet. Weight gain was significantly lower in Gcggfp/gfp mice than in Gcggfp/+mice. Oxygen consumption was enhanced in Gcggfp/gfp mice compared to Gcggfp/+ mice on an HFD. HFD feeding significantly increased uncoupling protein 1 mRNA expression in brown adipose and inguinal white adipose tissues of Gcggfp/gfp mice, but not of Gcggfp/+mice. Treatment with the glucagon-like peptide-1 receptor agonist liraglutide (200 mg/kg) improved glucose tolerance in Gcggfp/gfp mice and insulin content in Gcggfp/gfp and Gcggfp/+ mice was similar after liraglutide treatment. Our findings demonstrate that Gcggfp/gfp mice develop diabetes upon HFD-feeding in the absence of proglucagon-derived peptides, although they are resistant to diet-induced obesity. 相似文献
14.
Deanna M. Arble Joseph Bass Aaron D. Laposky Martha H. Vitaterna Fred W. Turek 《Obesity (Silver Spring, Md.)》2009,17(11):2100-2102
Studies of body weight regulation have focused almost entirely on caloric intake and energy expenditure. However, a number of recent studies in animals linking energy regulation and the circadian clock at the molecular, physiological, and behavioral levels raise the possibility that the timing of food intake itself may play a significant role in weight gain. The present study focused on the role of the circadian phase of food consumption in weight gain. We provide evidence that nocturnal mice fed a high‐fat diet only during the 12‐h light phase gain significantly more weight than mice fed only during the 12‐h dark phase. A better understanding of the role of the circadian system for weight gain could have important implications for developing new therapeutic strategies for combating the obesity epidemic facing the human population today. 相似文献
15.
Wei Feng Bo Liu Di Liu Tomoka Hasegawa Wei Wang Xiuchun Han Jian Cui Yimin Kimimitsu Oda Norio Amizuka Minqi Li 《The journal of histochemistry and cytochemistry》2016,64(1):42-53
In this study, we aimed to evaluate the influence of diet-induced obesity on IL-6 deficiency-induced bone remodeling abnormality. Seven-week-old IL-6-/- mice and their wild type (WT) littermates were fed a standard diet (SD) or high-fat diet (HFD) for 25 weeks. Lipid formation and bone metabolism in mice tibiae were investigated by histochemical analysis. Both IL-6-/- and WT mice fed the HFD showed notable body weight gain, thickened cortical bones, and adipose accumulation in the bone marrow. Notably, the HFD normalized the bone phenotype of IL-6-/- mice to that of their WT counterpart, as characterized by a decrease in bone mass and the presence of an obliquely arranged, plate-like morphology in the trabecular bone. Alkaline phosphatase and osteocalcin expressions were attenuated in both genotypes after HFD feeding, especially for the IL-6-/- mice. Meanwhile, tartrate-resistant acid phosphatase staining was inhibited, osteoclast apoptosis rate down-regulated (revealed by TUNEL assay), and the proportion of cathepsin K (CK)-positive osteoclasts significantly increased in IL-6-/- mice on a HFD as compared with IL-6-/- mice on standard chow. Our results demonstrate that HFD-induced obesity reverses IL-6 deficiency-associated bone metabolic disorders by suppressing osteoblast activity, upregulating osteoclastic activity, and inhibiting osteoclast apoptosis. 相似文献
16.
《Bioscience, biotechnology, and biochemistry》2013,77(11):2294-2297
We investigated the effects of non-pungent pepper powder fermented by Bacillus licheniformis SK1230 on the fat accumulation in mice. Four weeks of feeding a high-fat diet with fermented pepper powder resulted in a significantly decreased hepatic total-lipid level and increased serum HDL-cholesterol, and tended to lower the fat weight. These results suggest that fermented pepper powder inhibited fat accumulation and improved lipid metabolism in mice fed the high-fat diet. 相似文献
17.
The Drosophila humoral innate immune response fights infection by producing antimicrobial peptides (AMPs) through the microbe-specific activation of the Toll or the Imd signaling pathway. Upon systemic infection, the production of AMPs is both positively and negatively regulated to reach a balanced immune response required for survival. Here, we report the function of the dRYBP (drosophila Ring and YY1 Binding Protein) protein, which contains a ubiquitin-binding domain, in the Imd pathway. We have found that dRYBP contributes to the negative regulation of AMP production: upon systemic infection with Gram-negative bacteria, Diptericin expression is up-regulated in the absence of dRYBP and down-regulated in the presence of high levels of dRYBP. Epistatic analyses using gain and loss of function alleles of imd, Relish, or skpA and dRYBP suggest that dRYBP functions upstream or together with SKPA, a member of the SCF-E3-ubiquitin ligase complex, to repress the Imd signaling cascade. We propose that the role of dRYBP in the regulation of the Imd signaling pathway is to function as a ubiquitin adaptor protein together with SKPA to promote SCF-dependent proteasomal degradation of Relish. Beyond the identification of dRYBP as a novel component of Imd pathway regulation, our results also suggest that the evolutionarily conserved RYBP protein may be involved in the human innate immune response. 相似文献
18.
19.
Sebastián D. Calligaris Manuel Lecanda Felipe Solis Marcelo Ezquer Jaime Gutiérrez Enrique Brandan Andrea Leiva Luis Sobrevia Paulette Conget 《PloS one》2013,8(4)
Background/Aim
Hypercaloric diet ingestion and sedentary lifestyle result in obesity. Metabolic syndrome is a cluster of clinical features secondary to obesity, considered as a pre-diabetic condition and recognized as an independent risk factor for cardiovascular diseases. To better understand the relationship between obesity, metabolic syndrome and cardiovascular disease as well as for the development of novel therapeutic strategies, animal models that reproduce the etiology, course and outcomes of these pathologies are required. The aim of this work was to characterize the long-term effects of high-fat diet-induced obesity on the mice cardiovascular system, in order to make available a new animal model for diabetic cardiomyopathy.Methods/Results
Male C57BL/6 mice were fed with a standardized high-fat diet (obese) or regular diet (normal) for 16 months. Metabolic syndrome was evaluated testing plasma glucose, triglycerides, cholesterol, insulin, and glucose tolerance. Arterial pressure was measured using a sphygmomanometer (non invasive method) and by hemodynamic parameters (invasive method). Cardiac anatomy was described based on echocardiography and histological studies. Cardiac function was assessed by cardiac catheterization under a stress test. Cardiac remodelling and metabolic biomarkers were assessed by RT-qPCR and immunoblotting. As of month eight, the obese mice were overweight, hyperglycaemic, insulin resistant, hyperinsulinemic and hypercholesterolemic. At month 16, they also presented normal arterial pressure but altered vascular reactivity (vasoconstriction), and cardiac contractility reserve reduction, heart mass increase, cardiomyocyte hypertrophy, cardiac fibrosis, and heart metabolic compensations. By contrast, the normal mice remained healthy throughout the study.Conclusions
Mice fed with a high-fat diet for prolonged time recapitulates the etiology, course and outcomes of the early phases of human diabetic cardiomyopathy. 相似文献20.
Rostislav Chudnovskiy Airlia Thompson Kevin Tharp Marc Hellerstein Joseph L. Napoli Andreas Stahl 《PloS one》2014,9(10)
To determine the metabolic effects of grapefruit juice consumption we established a model in which C57Bl/6 mice drank 25–50% sweetened GFJ, clarified of larger insoluble particles by centrifugation (cGFJ), ad libitum as their sole source of liquid or isocaloric and sweetened water. cGFJ and control groups consumed similar amounts of liquids and calories. Mice fed a high-fat diet and cGFJ experienced a 18.4% decrease in weight, a 13–17% decrease in fasting blood glucose, a three-fold decrease in fasting serum insulin, and a 38% decrease in liver triacylglycerol values, compared to controls. Mice fed a low-fat diet that drank cGFJ experienced a two-fold decrease in fasting insulin, but not the other outcomes observed with the high-fat diet. cGFJ consumption decreased blood glucose to a similar extent as the commonly used anti-diabetic drug metformin. Introduction of cGFJ after onset of diet-induced obesity also reduced weight and blood glucose. A bioactive compound in cGFJ, naringin, reduced blood glucose and improved insulin tolerance, but did not ameliorate weight gain. These data from a well-controlled animal study indicate that GFJ contains more than one health-promoting neutraceutical, and warrant further studies of GFJ effects in the context of obesity and/or the western diet. 相似文献