首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
2.
Wild-type measles virus (MV) isolated in B95a cells could be adapted to Vero cells after several blind passages. In this study, we have determined the complete nucleotide sequences of the genomes of the wild type (T11wild) and its Vero cell-adapted (T11Ve-23) MV strain and identified amino acid substitutions R516G, E271K, D439E and G464W (D439E/G464W), N481Y/H495R, and Y187H/L204F in the nucleocapsid, V, fusion (F), hemagglutinin (H), and large proteins, respectively. Expression of mutated H and F proteins from cDNA revealed that the H495R substitution, in addition to N481Y, in the H protein was necessary for the wild-type H protein to use CD46 efficiently as a receptor and that the G464W substitution in the F protein was important for enhanced cell-cell fusion. Recombinant wild-type MV strains harboring the F protein with the mutations D439E/G464W [F(D439E/G464W)] and/or H(N481Y/H495R) protein revealed that both mutated F and H proteins were required for efficient syncytium formation and virus growth in Vero cells. Interestingly, a recombinant wild-type MV strain harboring the H(N481Y/H495R) protein penetrated slowly into Vero cells, while a recombinant wild-type MV strain harboring both the F(D439E/G464W) and H(N481Y/H495R) proteins penetrated efficiently into Vero cells, indicating that the F(D439E/G464W) protein compensates for the inefficient penetration of a wild-type MV strain harboring the H(N481Y/H495R) protein. Thus, the F and H proteins synergistically function to ensure efficient wild-type MV growth in Vero cells.Measles virus (MV), which belongs to the genus Morbillivirus in the family Paramyxoviridae, is an enveloped virus with a nonsegmented negative-strand RNA genome. The MV genome encodes six structural proteins: the nucleocapsid (N), phosphoprotein (P), matrix (M), fusion (F), hemagglutinin (H), and large (L) proteins. The P gene also encodes two other accessory proteins, the C and V proteins. The C protein is translated from an alternative translational initiation site leading a different reading frame, and the V protein is synthesized from an edited mRNA. MV has two envelope glycoproteins, the F and H proteins. The former is responsible for envelope fusion, and the latter is responsible for receptor binding (12).Wild-type MV strains isolated in B95a cells and laboratory-adapted MV strains have distinct phenotypes (18). Wild-type MV strains can grow in B95a cells but not in Vero cells, while laboratory-adapted MV strains can grow in both B95a and Vero cells. Wild-type MV strains do not cause hemadsorption (HAd) in African green monkey red blood cells (AGM-RBC), while most of laboratory-adapted MV strains cause HAd. Importantly, wild-type MV strains are pathogenic and induce clinical signs that resemble human measles in experimentally infected monkeys while laboratory-adapted MV strains do not.One approach to identify amino acid substitutions responsible for these phenotypic differences is the comparison of a wild-type MV strain with a standard laboratory-adapted MV strain such as the Edmonston strain. With regard to the H protein, amino acid substitutions important for HAd activity and cell-cell fusion in tissue culture cells were identified by expressing the H proteins in mammalian cells (15, 21). Recently, Tahara et al. revealed that the M, H, and L proteins are responsible for efficient growth in Vero cells by constructing a series of recombinant viruses in which part of the genome of the wild-type MV was replaced with the corresponding sequences of the Edmonston strain (45, 46, 47).Another approach is the comparison of wild-type MV strains with their Vero cell-adapted MV strains. It was reported that Vero cell-adapted MV strains could be obtained by successive blind passages of wild-type MV strains in Vero cells (18, 24, 30, 43). Interestingly, in vivo and in vitro phenotypes of Vero cell-adapted MV strains were similar to those of laboratory-adapted standard MV strains (18, 19, 24, 30, 43). Comparison of the complete nucleotide sequences of the genomes of wild-type MV strains with those of Vero cell-adapted wild-type MV strains revealed amino acid substitutions in the P, C, V, M, H, and L proteins (27, 42, 48, 53).At present, these phenotypic differences are explained mainly by the receptor usage of MV. Wild-type MV strains can use signaling lymphocyte activation molecule (SLAM; also called CD150) but not CD46 as a cellular receptor, whereas laboratory-adapted MV strains can use both SLAM and CD46 as cellular receptors (7, 10, 16, 29, 56, 60).However, receptor usage per se cannot explain all of the phenotypic differences (20, 25, 48, 53). For example, recombinant Edmonston strains expressing wild-type H proteins can grow in Vero cells to some extent (17, 54). Several reports suggested the presence of the third MV receptor on Vero cells (14, 44, 54, 60). Other reports indicated the contribution of the M protein on cell-cell fusion and growth of MV in Vero cells (4, 27, 47). Recently, the unidentified epithelial cell receptor for MV was predicted in primary culture of human cells (1, 55) and several epithelial cell lines (23, 51). However, the identity of the third receptor on Vero cells and the unidentified epithelial cell receptor is not clear yet. Thus, the mechanism of Vero cell adaptation of wild-type MV is not completely understood.In order to understand the molecular mechanism of these phenotypic changes of wild-type MV strains during adaptation in Vero cells, we determined the complete nucleotide sequences of the genomes of the wild-type (T11wild) and its Vero cell-adapted (T11Ve-23) MV strains (43) and examined the effect of individual amino acid substitutions using a mammalian cell expression system and reverse genetics. We show here that previously unrecognized new amino acid substitutions in the H and F proteins are important for MV adaptation and HAd activity.  相似文献   

3.
4.
Antibodies against the extracellular virion (EV or EEV) form of vaccinia virus are an important component of protective immunity in animal models and likely contribute to the protection of immunized humans against poxviruses. Using fully human monoclonal antibodies (MAbs), we now have shown that the protective attributes of the human anti-B5 antibody response to the smallpox vaccine (vaccinia virus) are heavily dependent on effector functions. By switching Fc domains of a single MAb, we have definitively shown that neutralization in vitro—and protection in vivo in a mouse model—by the human anti-B5 immunoglobulin G MAbs is isotype dependent, thereby demonstrating that efficient protection by these antibodies is not simply dependent on binding an appropriate vaccinia virion antigen with high affinity but in fact requires antibody effector function. The complement components C3 and C1q, but not C5, were required for neutralization. We also have demonstrated that human MAbs against B5 can potently direct complement-dependent cytotoxicity of vaccinia virus-infected cells. Each of these results was then extended to the polyclonal human antibody response to the smallpox vaccine. A model is proposed to explain the mechanism of EV neutralization. Altogether these findings enhance our understanding of the central protective activities of smallpox vaccine-elicited antibodies in immunized humans.The smallpox vaccine, live vaccinia virus (VACV), is frequently considered the gold standard of human vaccines and has been enormously effective in preventing smallpox disease. The smallpox vaccine led to the worldwide eradication of the disease via massive vaccination campaigns in the 1960s and 1970s, one of the greatest successes of modern medicine (30). However, despite the efficacy of the smallpox vaccine, the mechanisms of protection remain unclear. Understanding those mechanisms is key for developing immunologically sound vaccinology principles that can be applied to the design of future vaccines for other infectious diseases (3, 101).Clinical studies of fatal human cases of smallpox disease (variola virus infection) have shown that neutralizing antibody titers were either low or absent in patient serum (24, 68). In contrast, neutralizing antibody titers for the VACV intracellular mature virion (MV or IMV) were correlated with protection of vaccinees against smallpox (68). VACV immune globulin (VIG) (human polyclonal antibodies) is a promising treatment against smallpox (47), since it was able to reduce the number of smallpox cases ∼80% among variola-exposed individuals in four case-controlled clinical studies (43, 47, 52, 53, 69). In animal studies, neutralizing antibodies are crucial for protecting primates and mice against pathogenic poxviruses (3, 7, 17, 21, 27, 35, 61, 66, 85).The specificities and the functions of protective antipoxvirus antibodies have been areas of intensive research, and the mechanics of poxvirus neutralization have been debated for years. There are several interesting features and problems associated with the antibody response to variola virus and related poxviruses, including the large size of the viral particles and the various abundances of many distinct surface proteins (18, 75, 91, 93). Furthermore, poxviruses have two distinct virion forms, intracellular MV and extracellular enveloped virions (EV or EEV), each with a unique biology. Most importantly, MV and EV virions share no surface proteins (18, 93), and therefore, there is no single neutralizing antibody that can neutralize both virion forms. As such, an understanding of virion structure is required to develop knowledge regarding the targets of protective antibodies.Neutralizing antibodies confer protection mainly through the recognition of antigens on the surface of a virus. A number of groups have discovered neutralizing antibody targets of poxviruses in animals and humans (3). The relative roles of antibodies against MV and EV in protective immunity still remain somewhat unclear. There are compelling data that antibodies against MV (21, 35, 39, 66, 85, 90, 91) or EV (7, 16, 17, 36, 66, 91) are sufficient for protection, and a combination of antibodies against both targets is most protective (66). It remains controversial whether antibodies to one virion form are more important than those to the other (3, 61, 66). The most abundant viral particles are MV, which accumulate in infected cells and are released as cells die (75). Neutralization of MV is relatively well characterized (3, 8, 21, 35). EV, while less abundant, are critical for viral spread and virulence in vivo (93, 108). Neutralization of EV has remained more enigmatic (3).B5R (also known as B5 or WR187), one of five known EV-specific proteins, is highly conserved among different strains of VACV and in other orthopoxviruses (28, 49). B5 was identified as a protective antigen by Galmiche et al., and the available evidence indicated that the protection was mediated by anti-B5 antibodies (36). Since then, a series of studies have examined B5 as a potential recombinant vaccine antigen or as a target of therapeutic monoclonal antibodies (MAbs) (1, 2, 7, 17, 40, 46, 66, 91, 110). It is known that humans immunized with the smallpox vaccine make antibodies against B5 (5, 22, 62, 82). It is also known that animals receiving the smallpox vaccine generate antibodies against B5 (7, 20, 27, 70). Furthermore, previous neutralization assays have indicated that antibodies generated against B5 are primarily responsible for neutralization of VACV EV (5, 83). Recently Chen at al. generated chimpanzee-human fusion MAbs against B5 and showed that the MAbs can protect mice from lethal challenge with virulent VACV (17). We recently reported, in connection with a study using murine monoclonal antibodies, that neutralization of EV is highly complement dependent and the ability of anti-B5 MAbs to protect in vivo correlated with their ability to neutralize EV in a complement-dependent manner (7).The focus of the study described here was to elucidate the mechanisms of EV neutralization, focusing on the human antibody response to B5. Our overall goal is to understand underlying immunobiological and virological parameters that determine the emergence of protective antiviral immune responses in humans.  相似文献   

5.
6.
7.
Measles remains a major cause of child mortality, in part due to an inability to vaccinate young infants with the current live attenuated virus vaccine (LAV). To explore new approaches to infant vaccination, chimeric Venezuelan equine encephalitis/Sindbis virus (VEE/SIN) replicon particles were used to express the hemagglutinin (H) and fusion (F) proteins of measles virus (MV). Juvenile rhesus macaques vaccinated intradermally with a single dose of VEE/SIN expressing H or H and F proteins (VEE/SIN-H or VEE/SIN-H+F, respectively) developed high titers of MV-specific neutralizing antibody and gamma-interferon (IFN-γ)-producing T cells. Infant macaques vaccinated with two doses of VEE/SIN-H+F also developed neutralizing antibody and IFN-γ-producing T cells. Control animals were vaccinated with LAV or with a formalin-inactivated measles vaccine (FIMV). Neutralizing antibody remained above the protective level for more than 1 year after vaccination with VEE/SIN-H, VEE/SIN-H+F, or LAV. When challenged with wild-type MV 12 to 17 months after vaccination, all vaccinated juvenile and infant monkeys vaccinated with VEE/SIN-H, VEE/SIN-H+F, and LAV were protected from rash and viremia, while FIMV-vaccinated monkeys were not. Antibody was boosted by challenge in all groups. T-cell responses to challenge were biphasic, with peaks at 7 to 25 days and at 90 to 110 days in all groups, except for the LAV group. Recrudescent T-cell activity coincided with the presence of MV RNA in peripheral blood mononuclear cells. We conclude that VEE/SIN expressing H or H and F induces durable immune responses that protect from measles and offers a promising new approach for measles vaccination. The viral and immunological factors associated with long-term control of MV replication require further investigation.Measles remains a major cause of child mortality despite the availability of a safe and effective live attenuated virus vaccine (LAV). Recent efforts to improve routine vaccination and implement national immunization days have moved measles control toward the World Health Organization''s goal of a 90% reduction in mortality by 2010 compared to 2000 (7). One persistent impediment to measles control in many countries remains the inability to successfully immunize young infants due to the immaturity of the immune system and interference of maternal antibodies with immune responses to LAV (1, 15, 65).Because the decrease in maternal antibody varies from one infant to another, many children in areas with high measles virus (MV) transmission rates are at risk of acquiring measles prior to vaccination (3, 5, 12). Immaturity also affects the quality and quantity of antibody produced in response to the current vaccine, with lower levels of neutralizing antibody and deficient avidity and isotype maturation in younger than in older infants (15, 16, 37, 59). As a result, the recommended age for vaccination is generally 9 months in developing countries to balance the risk of infection with the likelihood of response to the vaccine (24).A vaccine that could be given to children under the age of 6 months would improve measles control by allowing delivery with other infant vaccines and by closing the window of susceptibility prior to delivery of the current vaccine. Increasing the dose of LAV improved the antibody responses in young infants but resulted in an unexpected increase in mortality for girls, so this is not an acceptable approach to lowering the age of vaccination (18, 26, 29). Experience with a formalin-inactivated measles vaccine (FIMV) in the 1960s also led to unexpected complications. FIMV provided only short-term protection, and vaccinated individuals were at risk for more severe disease (atypical measles) upon infection with wild-type MV (14, 36, 54). Therefore, other strategies are necessary for development of a vaccine for young infants.One particularly promising approach for delivery of vaccine antigens is the use of alphavirus replicon particles (55). Alphaviruses are small positive-strand RNA viruses with the nonstructural replicase proteins encoded in the 5′ two-thirds of the genome and the structural proteins in the 3′ one-third. A subgenomic promoter is used to synthesize an abundant, smaller RNA from which the structural proteins are translated (61). Replicons contain the nonstructural protein genes, the 5′ and 3′ end cis-active replication sequences, and the subgenomic promoter that directs expression of a heterologous gene rather than the viral structural proteins. The replicon RNA can be packaged into virus-like particles by providing the structural proteins in trans using transient transfection (6, 33) or with stable packaging cell lines (51) and can be engineered for efficient delivery to antigen-presenting cells (17). Advantages include high-level expression of the vaccine antigen (68), stimulation of innate immunity (25, 31, 32, 64), and general lack of preexisting immunity in the human population.MV encodes six structural proteins of which two, hemagglutinin (H) and fusion (F), are surface glycoproteins involved in attachment and entry. Antibodies that inhibit MV infection in neutralization assays are directed primarily against the H protein, which also contains important CD8+ T-cell epitopes (39, 41). Nonhuman primates, particularly rhesus macaques, develop a disease similar to that of humans and offer the opportunity for assessing both protection from wild-type MV challenge and priming for enhanced disease after immunization with new experimental vaccines (2, 48, 50, 66). Because protection from measles correlates best with the quality and quantity of neutralizing antibodies at the time of exposure (9, 50), most experimental vaccines have used H alone or H and F for induction of MV protective immunity (44, 50, 65, 70).Alphaviruses that have been used for construction of replicon particle vaccines include Sindbis virus (SINV) (6, 68), Semliki Forest virus (33), and Venezuelan equine encephalitis virus (VEEV) (53). Each of the alphavirus vectors studied has its own advantages and disadvantages. For instance, VEEV replicon particles have high levels of gene expression (47), but vaccine production is disadvantaged by the requirement for biosafety level 3 manufacturing. SINV replicon particles avoid the safety concerns of VEEV, but expression levels are lower. Previous studies of a SINV-based replicon particle vaccine expressing MV H (SIN-H) in macaques showed good induction of neutralizing antibody and T-cell responses and protection from rash (44). However, vaccinated monkeys developed viremias after challenge, indicating that they were not protected from infection. In this study, we sought to improve the alphavirus replicon particle approach to vaccination for measles by using a chimeric VEE/SIN vaccine (47) expressing both the MV H and F proteins.  相似文献   

8.
The signaling lymphocytic activation molecule (SLAM; CD150) is the immune cell receptor for measles virus (MV). To assess the importance of the SLAM-MV interactions for virus spread and pathogenesis, we generated a wild-type IC-B MV selectively unable to recognize human SLAM (SLAM-blind). This virus differs from the fully virulent wild-type IC-B strain by a single arginine-to-alanine substitution at amino acid 533 of the attachment protein hemagglutinin and infects cells through SLAM about 40 times less efficiently than the isogenic wild-type strain. Ex vivo, this virus infects primary lymphocytes at low levels regardless of SLAM expression. When a group of six rhesus monkeys (Macaca mulatta) was inoculated intranasally with the SLAM-blind virus, no clinical symptoms were documented. Only one monkey had low-level viremia early after infection, whereas all the hosts in the control group had high viremia levels. Despite minimal, if any, viremia, all six hosts generated neutralizing antibody titers close to those of the control monkeys while MV-directed cellular immunity reached levels at least as high as in wild-type-infected monkeys. These findings prove formally that efficient SLAM recognition is necessary for MV virulence and pathogenesis. They also suggest that the selectively SLAM-blind wild-type MV can be developed into a vaccine vector.Measles virus (MV) is an enveloped virus with a negative-sense RNA genome (2). It is still a major cause of death in children of developing countries, mainly due to opportunistic secondary infections facilitated by MV-induced immune suppression (12, 29). Transient but severe immune suppression is explained at least in part by the rapid spread of MV infection in immune cells (6, 37, 41). MV targets immune cells through its hemagglutinin (H) that binds cellular receptors and triggers the other glycoprotein F to fuse cellular membranes (22).Two MV receptors have been identified. The first one was the membrane cofactor protein (MCP; CD46), a ubiquitously expressed regulator of complement activation sustaining infection by the MV vaccine strain (8, 21) but not by wild-type (WT) strains (24). Wild-type MV strains, as well as the vaccine strain, enter cells through the signaling lymphocytic activation molecule (SLAM; CD150) (10, 15, 35). SLAM is an immune cell-specific protein expressed on the surface of thymocytes, activated lymphocytes, mature dendritic cells, and activated macrophages (4, 31). The existence of another receptor on cells derived from human lung and bladder epithelium has been inferred (18, 33). While this epithelial receptor (EpR) has not been identified yet, it appears to be a basolateral protein expressed by cells forming tight junctions (18).We are characterizing the mechanisms by which MV spreads in its host and the pathogenic consequences of the interactions with different receptors. We previously showed that an MV unable to recognize EpR remains virulent in rhesus monkeys but cannot cross the epithelium and is not shed (18). This result is consistent with the model of MV pathogenesis according to which immune cells in the airway lumen are initially infected, cross the epithelial barrier, and disseminate the infection to lymphatic tissues (18). Ultimately, infected immune cells may spread the infection to the respiratory epithelium (11, 18). This new model also predicts that an MV unable to recognize SLAM (SLAM-blind) would fail to spread efficiently and be attenuated.To test this aspect of the new model, we generated a SLAM-blind MV, based on the previous identification of H protein residues necessary for productive SLAM interactions (23, 36). To assess whether the SLAM-relevant residues, originally identified in the CD46-binding background of the vaccine H protein, are neutral also for EpR-mediated cell entry, we used a wild-type H protein and a cell line expressing EpR. We found that only the arginine-to-alanine mutation at position 533 was completely neutral for EpR-dependent fusion. To investigate the role of SLAM in pathogenesis, we then generated in the wild-type IC-B strain a SLAM-blind MV with the arginine-to-alanine mutation at position 533 (34). After confirming the predicted receptor specificity of the recombinant virus, we inoculated six rhesus monkeys, and we document here that the SLAM-blind MV is attenuated and yet induces strong adaptive immune responses.  相似文献   

9.
10.
One of the best-studied examples of host-virus coevolution is the release of myxoma virus (MV) for biological control of European rabbits in Australia and Europe. To investigate the genetic basis of MV adaptation to its new host, we sequenced the genome of 6918, an attenuated Spanish field strain, and compared it with that of Lausanne, the strain originally released in Europe in 1952. Although isolated 43 years apart, the genomes were highly conserved (99.95% identical). Only 32 of the 159 MV predicted proteins revealed amino acid changes. Four genes (M009L, M036L, M135R, and M148R) in 6918 were disrupted by frameshift mutations.Myxoma virus (MV), the causative agent of myxomatosis, belongs to the Leporipoxvirus genus of the Poxviridae family (9). Two distinct types of MV have been identified: South American MV, which circulates in Sylvilagus brasiliensis, and Californian MV, which circulates in Sylvilagus bachmani. Each virus is highly adapted to its host, causing a benign cutaneous fibroma at the site of inoculation. Both types of MV infect the European rabbit (Oryctolagus cuniculus), causing myxomatosis. The Californian strain MSW is more virulent for European rabbits than South American strains such as SLS or Lausanne (54). Another leporipoxvirus, Shope fibroma virus (SFV), is found in eastern North America in Sylvilagus floridanus. SFV protects European rabbits against myxomatosis (24), and it is routinely used as a vaccine.One of the best-studied examples of host-virus coevolution is the use of MV for biological control of European rabbits (22, 23, 29). It is particularly unusual because the precise time the virus was released is known, and the original viruses are available for comparison with current strains. MV (the SLS strain) was deliberately released in Australia in 1950 and soon after (1952) in France (the Lausanne strain), whence it rapidly spread across Europe, and it has become endemic since then. For almost 60 years, a complex coevolution of host and virus has occurred, characterized by the emergence of attenuated viral strains and rabbits selected for resistance to MV (11, 12, 30).The MV Lausanne strain and SFV have been completely sequenced (13, 61). MV encodes 171 genes, versus 165 encoded by SFV. The genetic information is highly conserved between the two viruses. Recently, preliminary sequencing of the MSW strain indicated that the major genomic differences with the Lausanne strain localize at the left terminal end of the MSW genome (31). In MSW, the terminal inverted repeats (TIRs) are extended, causing the duplication of five complete open reading frames (ORFs), which are present as a single copy near the right TIR in the Lausanne strain (9). To date, little molecular analysis concerning the adaptation of MV to its new host has been performed. Studies involving Australian field strains found small differences with reference to the SLS and Lausanne strains (49, 50), suggesting that adaptation (and the concomitant attenuation) of MV is not associated with major genetic changes such as large deletions. This finding is in contrast to what has been reported for attenuated poxviruses obtained by extensive cell culture passaging, which usually present substantial genomic deletions or rearrangements (5, 25, 36, 47, 48).Strain 6918 is a naturally attenuated MV isolated in Spain in 1995 (7). It is therefore a descendant of the Lausanne strain recovered after 43 years of continuous evolution in the field. It has been used for the development of a “transmissible vaccine” intended to protect wild-rabbit populations against both myxomatosis and rabbit hemorrhagic disease virus (RHDV) in Spain, where the European rabbit plays a key role in the Mediterranean ecosystems (18). For this purpose, a recombinant virus, 6918VP60-T2, was constructed by inserting the capsid gene of RHDV into the genome of strain 6918 (4, 6, 7, 56, 57). The genomes of 6918 and 6918VP60-T2 have been sequenced. Here we report the results of our comparison of the genomic sequences of Lausanne and 6918. To our knowledge, this is the first comparative genomic analysis involving two poxvirus field strains linked by a clearly recorded lineage, one being fully virulent and the other virtually nonpathogenic. The results provide relevant insights into the mechanisms of MV attenuation that occurred as a consequence of the adaptation of the virus to its new host.  相似文献   

11.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

12.
13.
14.
15.
Measles virus (MV) entry requires at least 2 viral proteins, the hemagglutinin (H) and fusion (F) proteins. We describe the rescue and characterization of a measles virus with a specific mutation in the stalk region of H (I98A) that is able to bind normally to cells but infects at a lower rate than the wild type due to a reduction in fusion triggering. The mutant H protein binds to F more avidly than the parent H protein does, and the corresponding virus is more sensitive to inhibition by fusion-inhibitory peptide. We show that after binding of MV to its receptor, H-F dissociation is required for productive infection.Measles virus (MV) infection requires binding of the hemagglutinin (H) protein to its cognate receptors (9, 20, 21, 29, 41) while the fusion (F) protein triggers membrane lipid mixing and fusion. The H protein is a type II transmembrane homodimeric, disulfide-linked glycoprotein (33). The F protein is a type I membrane glycoprotein that exists as a homotrimeric complex. The protein is cleaved by furin in the trans-Golgi network into a metastable heterodimer with a membrane-spanning F1 domain and a membrane-distal F2 domain (16). Expressed alone, neither H nor F leads to membrane fusion, and therefore, both proteins are required and have to interact for productive infection of a target cell (46). There is evidence that these interactions start within the endoplasmic reticulum (34).The H proteins of Paramyxoviridae family members have a globular head with a six-blade β-propellor structure that is responsible for receptor binding (4, 7, 13), a stalk region composed of alpha-helical coiled coils (18, 48) that anchors the complex to the plasma membrane, and a short cytoplasmic domain that can interact with the matrix (M) protein and modulate fusion (2). Given that the F protein does not interact with a receptor on the target cell but undergoes conformational changes to enable membrane fusion, it seems likely that the F protein must interact with the H protein that enables fusion (14, 19, 23, 24, 35, 47). The molecular interactions between the F and H proteins are being increasingly understood (6, 8, 24, 25, 30, 35, 42). Hummel and Bellini have described a mutation in the H glycoprotein where threonine replaced isoleucine 98, which led to loss of fusion in chronically infected cells, but the virus was not rescued (15). Corey and Iorio performed alanine-scanning mutagenesis to determine the role of specific, membrane-proximal residues in the stalk region of the H protein responsible for H-F interactions (6). Substitution of alanine for specific residues in this region altered cell-to-cell fusion and the strength of the H-F interaction in transient-transfection experiments (6). Replacement of isoleucine with alanine at position 98 reduced fusion but did not significantly alter hemadsorption, implying that binding of the mutant H protein to CD46 was not affected (6). More recently, Paal et al. showed that the H protein can tolerate significant additions to its alpha-helical coiled coils without loss of binding or fusion in transient-transfection assays (30). Although these studies confirm the importance of the interactions between the H protein stalk and the metastable F protein for enabling fusion after receptor binding, the exact steps leading to fusion are still unclear. Moreover, studies evaluating H-F interactions were performed with transient protein expression and not in the presence of the actual virus. This is potentially an important shortcoming since the M protein can modulate infection and fusion (1).  相似文献   

16.
17.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

18.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号