共查询到20条相似文献,搜索用时 0 毫秒
1.
Falero A Caballero A Trigueros S Pérez C Campos J Marrero K Fando R 《Biochimica et biophysica acta》2011,1814(9):1107-1112
pV(VGJΦ), a single-stranded DNA binding protein of the vibriophage VGJΦ was subject to biochemical analysis. Here, we show that this protein has a general affinity for single-stranded DNA (ssDNA) as documented by Electrophoretic Mobility Shift Assay (EMSA). The apparent molecular weight of the monomer is about 12.7kDa as measured by HPLC-SEC. Moreover, isoelectrofocusing showed an isoelectric point for pV(VGJΦ) of 6.82 pH units. Size exclusion chromatography in 150mM NaCl, 50mM sodium phosphate buffer, pH 7.0 revealed a major protein species of 27.0kDa, suggesting homodimeric protein architecture. Furthermore, pV(VGJΦ) binds ssDNA at extreme temperatures and the complex was stable after extended incubation times. Upon frozen storage at -20°C for a year the protein retained its integrity, biological activity and oligomericity. On the other hand, bioinformatics analysis predicted that pV(VGJΦ) protein has a disordered C-terminal, which might be involved in its functional activity. All the aforementioned features make pV(VGJΦ) interesting for biotechnological applications. 相似文献
2.
The lysogenic phage CTXΦ of Vibrio cholerae can transfer the cholera toxin gene both horizontally(inter-strain) and vertically(cell proliferation). Due to its diversity in form and species, the complexity of regulatory mechanisms, and the important role of the infection mechanism in the production of new virulent strains of V.cholerae, the study of the lysogenic phage CTXΦ has attracted much attention. Based on the progress of current research, the genomic features and their arrangement, the host-dependent regulatory mechanisms of CTXΦ phage survival, proliferation and propagation were reviewed to further understand the phage's role in the evolutionary and epidemiological mechanisms of V. cholerae. 相似文献
3.
4.
Christopher G. Ford Subramaniapillai Kolappan Hanh T. H. Phan Matthew K. Waldor Hanne C. Winther-Larsen Lisa Craig 《The Journal of biological chemistry》2012,287(43):36258-36272
Vibrio cholerae colonize the small intestine where they secrete cholera toxin, an ADP-ribosylating enzyme that is responsible for the voluminous diarrhea characteristic of cholera disease. The genes encoding cholera toxin are located on the genome of the filamentous bacteriophage, CTXφ, that integrates as a prophage into the V. cholerae chromosome. CTXφ infection of V. cholerae requires the toxin-coregulated pilus and the periplasmic protein TolA. This infection process parallels that of Escherichia coli infection by the Ff family of filamentous coliphage. Here we demonstrate a direct interaction between the N-terminal domain of the CTXφ minor coat protein pIII (pIII-N1) and the C-terminal domain of TolA (TolA-C) and present x-ray crystal structures of pIII-N1 alone and in complex with TolA-C. The structures of CTXφ pIII-N1 and V. cholerae TolA-C are similar to coliphage pIII-N1 and E. coli TolA-C, respectively, yet these proteins bind via a distinct interface that in E. coli TolA corresponds to a colicin binding site. Our data suggest that the TolA binding site on pIII-N1 of CTXφ is accessible in the native pIII protein. This contrasts with the Ff family phage, where the TolA binding site on pIII is blocked and requires a pilus-induced unfolding event to become exposed. We propose that CTXφ pIII accesses the periplasmic TolA through retraction of toxin-coregulated pilus, which brings the phage through the outer membrane pilus secretin channel. These data help to explain the process by which CTXφ converts a harmless marine microbe into a deadly human pathogen. 相似文献
5.
6.
7.
Filamentous phages have distinguished roles in conferring many pathogenicity and survival related features to Gram-negative bacteria including the medically important Vibrio cholerae, which carries factors such as cholera toxin on phages. A novel filamentous phage, designated VFJΦ, was isolated in this study from an ampicillin and kanamycin-resistant O139 serogroup V. cholerae strain ICDC-4470. The genome of VFJΦ is 8555 nucleotides long, including 12 predicted open reading frames (ORFs), which are organized in a modular structure. VFJΦ was found to be a mosaic of two groups of V. cholerae phages. A large part of the genome is highly similar to that of the fs2 phage, and the remaining 700 bp is homologous to VEJ and VCYΦ. This 700 bp region gave VFJΦ several characteristics that are not found in fs2 and other filamentous phages. In its native host ICDC-4470 and newly-infected strain N16961, VFJΦ was found to exist as a plasmid but did not integrate into the host chromosome. It showed a relatively wide host range but did not infect the classical biotype O1 V. cholerae strains. After infection, the host strains exhibited obvious inhibition of both growth and flagellum formation and had acquired a low level of ampicillin resistance and a high level of kanamycin resistance. The antibiotic resistances were not directly conferred to the hosts by phage-encoded genes and were not related to penicillinase. The discovery of VFJΦ updates our understanding of filamentous phages as well as the evolution and classification of V. cholerae filamentous phage, and the study provides new information on the interaction between phages and their host bacteria. 相似文献
8.
The Vibrio cholerae bacterium is the agent of cholera. The capacity to produce the cholera toxin, which is responsible for the deadly diarrhea associated with cholera epidemics, is encoded in the genome of a filamentous phage, CTXφ. Rolling-circle replication (RCR) is central to the life cycle of CTXφ because amplification of the phage genome permits its efficient integration into the genome and its packaging into new viral particles. A single phage-encoded HUH endonuclease initiates RCR of the proto-typical filamentous phages of enterobacteriaceae by introducing a nick at a specific position of the double stranded DNA form of the phage genome. The rest of the process is driven by host factors that are either essential or crucial for the replication of the host genome, such as the Rep SF1 helicase. In contrast, we show here that the histone-like HU protein of V. cholerae is necessary for the introduction of a nick by the HUH endonuclease of CTXφ. We further show that CTXφ RCR depends on a SF1 helicase normally implicated in DNA repair, UvrD, rather than Rep. In addition to CTXφ, we show that VGJφ, a representative member of a second family of vibrio integrative filamentous phages, requires UvrD and HU for RCR while TLCφ, a satellite phage, depends on Rep and is independent from HU. 相似文献
9.
Furazolidone in concentrations which had little effect on the growth of host organisms greatly reduced the yield of phage 149 from the host Vibrio cholerae OGAWA 154. This phage was resistant to the in vitro action of the drug. The phage yield of infected bacteria depended significantly on the time of addition or withdrawal of the drug. The average burst size of the drug-treated and infected bacteria decreased exponentially with increase in drug concentration. The latent period of phage multiplication and also the eclipse period did not change significantly from the control values. A concentration of 0.05 μg of furazolidone per ml inhibited DNA synthesis by about 50% in phage-infected cells and only by about 18% in noninfected ones, relative to the respective controls. RNA and protein synthesis were affected by a much smaller degree both in infected and noninfected cells. Quantitative deduction of the length of furazolidone-treated cells from their phage adsorption characteristics and its agreement with previous electron microscopy data indicated that furazolidone did not affect the phage receptors. 相似文献
10.
The interaction of naringenin (Nar) and its neohesperidoside, naringin (Narn), with calf thymus deoxyribonucleic acid (ctDNA) in the absence and the presence of β-cyclodextrin (β-CD) was investigated. The interaction of Nar and Narn with β-CD/ctDNA was analyzed by using absorption, fluorescence, and molecular modeling techniques. Docking studies showed the existence of hydrogen bonding, electrostatic and phobic interaction of Nar and Narn with β-CD/DNA. 1:2 stoichiometric inclusion complexes were observed for Nar and Narn with β-CD. With the addition of ctDNA, Nar and Narn resulted into the fluorescence quenching phenomenon in the aqueous solution and β-CD solution. The binding constant K b and the number of binding sites were found to be different for Nar and Narn bindings with DNA in aqueous and β-CD solution. The difference is attributed to the structural difference between Nar and Narn with neohesperidoside moiety present in Narn. 相似文献
11.
《Bioorganic & medicinal chemistry》2016,24(5):1115-1120
The genome of the pathogenic bacterium Vibrio cholerae encodes for three carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β- and γ-classes. VchCA, the α-CA from this species was investigated earlier, whereas the β-class enzyme, VchCAβ was recently cloned, characterized kinetically and its X-ray crystal structure reported by this group. Here we report an inhibition study with sulfonamides and one sulfamate of this enzyme. The best VchCAβ inhibitors were deacetylated acetazolamide and methazolamide and hydrochlorothiazide, which showed inhibition constants of 68.2–87.0 nM. Other compounds, with medium potency against VchCAβ, (KIs in the range of 275–463 nM), were sulfanilamide, metanilamide, sulthiame and saccharin whereas the clinically used agents such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, zonisamide and celecoxib were micromolar inhibitors (KIs in the range of 4.51–8.57 μM). Identification of potent and possibly selective inhibitors of VchCA and VchCAβ over the human CA isoforms, may lead to pharmacological tools useful for understanding the physiological role(s) of this under-investigated enzymes. 相似文献
12.
Daniela Vullo Semra Isik Sonia Del Prete Viviana De Luca Vincenzo Carginale Andrea Scozzafava Claudiu T. Supuran Clemente Capasso 《Bioorganic & medicinal chemistry letters》2013,23(6):1636-1638
An α-carbonic anhydrase (CA, EC 4.2.1.1) has been recently cloned and characterized in the human pathogenic bacterium Vibrio cholerae, denominated VchCA (Del Prete et al. J. Med. Chem. 2012, 55, 10742). This enzyme shows a good catalytic activity for the CO2 hydration reaction, comparable to that of the human (h) isoform hCA I. Many inorganic anions and several small molecules were investigated as VchCA inhibitors. Inorganic anions such as cyanate, cyanide, hydrogen sulfide, hydrogen sulfite, and trithiocarbonate were effective VchCA inhibitors with inhibition constants in the range of 33–88 μM. Other effective inhibitors were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, with KIs of 7–43 μM. Halides (bromide, iodide), bicarbonate and carbonate were much less effective VchCA inhibitors, with KIs in the range of 4.64–28.0 mM. The resistance of VchCA to bicarbonate inhibition may represent an evolutionary adaptation of this enzyme to living in an environment rich in this ion, such as the gastrointestinal tract, as bicarbonate is a virulence enhancer of this bacterium. 相似文献
13.
Daniela De Vita Andrea Angeli Fabiana Pandolfi Martina Bortolami Roberta Costi Roberto Di Santo 《Journal of enzyme inhibition and medicinal chemistry》2017,32(1):798-804
We discovered novel and selective sulfonamides/amides acting as inhibitors of the α-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae (VchCA). This Gram-negative bacterium is the causative agent of cholera and colonises the upper small intestine where sodium bicarbonate is present at a high concentration. The secondary sulfonamides and amides investigated here were potent, low nanomolar VchCA inhibitors whereas their inhibition of the human cytosolic isoforms CA I and II was in the micromolar range or higher. The molecules represent an interesting lead for antibacterial agents with a possibly new mechanism of action, although their CA inhibition mechanism is unknown for the moment. 相似文献
14.
15.
16.
Andrea Angeli Sonia Del Prete Sameh M. Osman Fatmah A. S. Alasmary Zeid AlOthman William A. Donald 《Journal of enzyme inhibition and medicinal chemistry》2018,33(1):227-233
The α- and β-class carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae, VchCAα, and VchCAβ, were investigated for their activation with natural and non-natural amino acids and amines. The most effective VchCAα activators were L-tyrosine, histamine, serotonin, and 4-aminoethyl-morpholine, which had KAs in the range of 8.21–12.0?µM. The most effective VchCAβ activators were D-tyrosine, dopamine, serotonin, 2-pyridyl-methylamine, 2-aminoethylpyridine, and 2-aminoethylpiperazine, which had KAs in the submicromolar – low micromolar range (0.18–1.37?µM). The two bacterial enzymes had very different activation profiles with these compounds, between each other, and in comparison to the human isoforms hCA I and II. Some amines were selective activators of VchCAβ, including 2-pyridylmethylamine (KA of 180?nm for VchCAβ, and more than 20?µM for VchCAα and hCA I/II). The activation of CAs from bacteria, such as VchCAα/β has not been considered previously for possible biomedical applications. It would be of interest to study in more detail the extent that CA activators are implicated in the virulence and colonisation of the host by such pathogenic bacteria, which for Vibrio cholerae, is highly dependent on the bicarbonate concentration and pH in the surrounding tissue. 相似文献
17.
Chlamydiae are obligate intracellular pathogens that are sensitive to pro-inflammatory cytokine interferon-γ. IFN-γ-inducible murine p47 GTPases have been demonstrated to function in resistance to chlamydia infection in vivo and in vitro. Because the human genome does not encode IFN-γ-inducible homologues of these proteins, the significance of the p47 GTPase findings to chlamydia pathogenesis in humans is unclear. Here we report a pair of IFN-γ-inducible proteins, the human guanylate binding proteins (hGBPs) 1 and 2 that potentiate the anti-chlamydial properties of IFN-γ. hGBP1 and 2 localize to the inclusion membrane, and their anti-chlamydial functions required the GTPase domain. Alone, hGBP1 or 2 have mild, but statistically significant and reproducible negative effects on the growth of Chlamydia trachomatis, whilst having potent anti-chlamydial activity in conjunction with treatment with a sub-inhibitory concentration of IFN-γ. Thus, hGBPs appear to potentiate the anti-chlamydial effects of IFN-γ. Indeed, depletion of hGBP1 and 2 in cells treated with IFN-γ led to an increase in inclusion size, indicative of better growth. Interestingly, chlamydia species/strains harboring the full-length version of the putative cytotoxin gene, which has been suggested to confer resistance to IFN-γ was not affected by hGBP overexpression. These findings identify the guanylate binding proteins as potentiators of IFN-γ inhibition of C. trachomatis growth, and may be the targets of the chlamydial cytotoxin. 相似文献
18.
19.
K. M. Alagappan B. Deivasigamani S. T. Somasundaram S. Kumaran 《Current microbiology》2010,61(4):235-240
Vibrio parahaemolyticus is a natural microflora of marine and coastal water bodies and associated with mortality of larval shrimp in penaeid shrimp
in ponds. Bacteriophages occur virtually in all places where their hosts exist. In this study, total distribution of V. parahaemolyticus and its phages were examined in shrimp ponds, seawater, estuary, animal surface, and tissues. Total vibrio count in sediments
of two ponds was found to be 2.6 × 103 and 5.6 × 103 cfu/g. Incidence of V. parahaemolyticus in the ponds was close, while it was markedly higher in the animal surface and tissue samples. Biochemically identified eight
strains of V. parahaemolyticus (V1, V3–V6, V9, V11, and V12) were taken for further infection studies with bacteriophage. Totally five bacteriophages capable
of infecting V. parahaemolyticus MTCC-451 strain were isolated from all the samples. One of the isolated bacteriophage Vp1 from estuary was able to lyse all
the isolated V. parahaemolyticus strains we used. Therefore, the morphology of Vp1 was estimated in TEM. Vp1 phage head measuring approximately about 50–60 nm
diameter with icosahedral outline and a contractile tails of diameter 7 nm and length 100 nm and it was identified as Myoviridae.
Therefore, the phages have the potential application in destroying bacterial pathogens. 相似文献
20.
Cristine Betzer A. James Movius Min Shi Wei-Ping Gai Jing Zhang Poul Henning Jensen 《PloS one》2015,10(2)
Monomeric α-synuclein (αSN) species are abundant in nerve terminals where they are hypothesized to play a physiological role related to synaptic vesicle turn-over. In Parkinson’s disease (PD) and dementia with Lewy body (DLB), αSN accumulates as aggregated soluble oligomers in terminals, axons and the somatodendritic compartment and insoluble filaments in Lewy inclusions and Lewy neurites. The autosomal dominant heritability associated to mutations in the αSN gene suggest a gain of function associated to aggregated αSN. We have conducted a proteomic screen to identify the αSN interactome in brain synaptosomes. Porcine brain synaptosomes were fractionated, solubilized in non-denaturing detergent and subjected to co-immunoprecipitation using purified recombinant human αSN monomers or oligomers as bait. The isolated αSN binding proteins were identified with LC-LTQ-orbitrap tandem mass spectrometry and quantified by peak area using Windows client application, Skyline Targeted Proteomic Environment. Data are available via ProteomeXchange with identifier PXD001462. To quantify the preferential binding an average fold increase was calculated by comparing binding to monomer and oligomer. We identified 10 proteins preferentially binding monomer, and 76 binding preferentially to oligomer and a group of 92 proteins not displaying any preferred conformation of αSN. The proteomic data were validated by immunoprecipitation in both human and porcine brain extracts using antibodies against monomer αSN interactors: Abl interactor 1, and myelin proteolipid protein, and oligomer interactors: glutamate decarboxylase 2, synapsin 1, glial fibrillary acidic protein, and VAMP-2. We demonstrate the existence of αSN conformation selective ligands and present lists of proteins, whose identity and functions will be useful for modeling normal and pathological αSN dependent processes. 相似文献