共查询到20条相似文献,搜索用时 10 毫秒
2.
3.
Background
Wnt signaling is important in development and can also contribute to the initiation and progression of cancer. The Secreted Frizzled Related Proteins (SFRPs) constitute a family of Wnt modulators, crucial for controlling Wnt signaling. Here we investigate the expression and role of SFRP3 in melanoma.Methodology/Principal Findings
We show that SFRP3 mRNA is down-regulated in malignant melanoma tumors as compared to normal/benign tissue. Furthermore, we found that SFRP3 expression was lost in the malignant melanoma cell lines, A2058, HTB63 and A375, but not in the non-transformed melanocyte cell line, Hermes 3A. Methylated CpG rich areas were detected in the SFRP3 gene in melanoma cell lines and their SFRP3 expression could be restored using the demethylating agent, 5′aza-deoxycytidine. Addition of recombinant SFRP3 to melanoma cells had no effect on viable cell numbers, but decreased cell migration and invasion. Wnt5a signaling has been shown to increase the migration and invasion of malignant melanoma cells, and high expression of Wnt5a in melanoma tumors has been connected to a poor prognosis. We found that recombinant SFRP3 could inhibit Wnt5a signaling, and that it inhibited melanoma cell migration and invasion in a Wnt5a-dependent manner.Conclusion/Significance
We conclude that SFRP3 functions as a melanoma migration and invasion suppressor by interfering with Wnt5a signaling. 相似文献4.
Jacqueline A. Bonds Yafit Kuttner-Hirshler Nancy Bartolotti Matthew K. Tobin Michael Pizzi Robert Marr Orly Lazarov 《PloS one》2015,10(6)
Presenilin-1 (PS1), the catalytic core of the aspartyl protease γ-secretase, regulates adult neurogenesis. However, it is not clear whether the role of neurogenesis in hippocampal learning and memory is PS1-dependent, or whether PS1 loss of function in adult hippocampal neurogenesis can cause learning and memory deficits. Here we show that downregulation of PS1 in hippocampal neural progenitor cells causes progressive deficits in pattern separation and novelty exploration. New granule neurons expressing reduced PS1 levels exhibit decreased dendritic branching and dendritic spines. Further, they exhibit reduced survival. Lastly, we show that PS1 effect on neurogenesis is mediated via β-catenin phosphorylation and notch signaling. Together, these observations suggest that impairments in adult neurogenesis induce learning and memory deficits and may play a role in the cognitive deficits observed in Alzheimer’s disease. 相似文献
5.
《Cell cycle (Georgetown, Tex.)》2013,12(24):3065-3069
Granule neurons of the dentate gyrus (DG) of the hippocampus undergo continuous renewal throughout life. Among cell-cycle regulators, cyclin-dependent kinase 2 (Cdk2) is considered as a major regulator of S-phase entry. We used Cdk2-deficient mice to decipher the requirement of Cdk2 for the generation of new neurons in the adult hippocampus. The quantification of cell cycle markers first revealed that the lack of Cdk2 activity does not influence spontaneous or seizure-induced proliferation of neural progenitor cells (NPC) in the adult DG. Using bromodeoxyuridine incorporation assays, we showed that the number of mature newborn granule neurons generated de novo was similar in both wild-type (WT) and Cdk2-deficient adult mice. Moreover, the apparent lack of cell output reduction in Cdk2-/- mice DG did not result from a reduction in apoptosis of newborn granule cells as analyzed by TUNEL assays. Our results therefore suggest that Cdk2 is dispensable for NPC proliferation, differentiation and survival of adult-born DG granule neurons in vivo. These data emphasize that functional redundancies between Cdks also occur in the adult brain at the level of neural progenitor cell cycle regulation during hippocampal neurogenesis. 相似文献
6.
7.
Adult neurogenesis is a unique form of plasticity found in the hippocampus, a brain region key to learning and memory formation.
While many external stimuli are known to modulate the generation of new neurons in the hippocampus, little is known about
the local circuitry mechanisms that regulate the process of adult neurogenesis. The neurogenic niche in the hippocampus is
highly complex and consists of a heterogeneous population of cells including interneurons. Because interneurons are already
highly integrated into the hippocampal circuitry, they are in a prime position to influence the proliferation, survival, and
maturation of adult-generated cells in the dentate gyrus. Here, we review the current state of our understanding on the interplay
between interneurons and adult hippocampal neurogenesis. We focus on activity- and signaling-dependent mechanisms, as well
as research on human diseases that could provide better insight into how interneurons in general might add to our comprehension
of the regulation and function of adult hippocampal neurogenesis. 相似文献
8.
9.
10.
11.
Chong Gao Xingmiao Chen Aimin Xu Kenneth Cheng Jiangang Shen 《Molecular neurobiology》2018,55(7):5537-5547
Adaptor proteins containing the pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif (APPLs) are multifunctional adaptor proteins involved in regulating many biological activities and processes. The newly identified metabolic factor APPL2 showed the potentials to modulate cell growth, but whether APPL2 could affect adult neurogenesis and animal mood behaviors remains unknown. In the present study, APPL2 transgenic (Tg) mice and wild-type littermates were used for testing our hypothesis that APPL2 could affect glucocorticoid receptor (GR) signaling and modulate hippocampal neurogenesis, which contributes to depressive and anxiety behaviors. Compared with WT littermates, APPL2 Tg mice had enhanced GR phosphorylation under basic condition but had no different plasma corticosterone (CORT) level and GR phosphorylation under stress stimulation. APPL2 Tg mice had decreased hippocampal neurogenesis that was reversed by GR antagonist RU486. APPL2 Tg mice also showed the impaired hippocampal neurogenesis and presented the depressive and anxiety behaviors. In conclusion, APPL2 could be an important regulator for adult neurogenesis. APPL2 overexpression could blunt the activation of glucocorticoid receptor when undergoing environmental stress. Our study suggests that APPL2 might be a new therapeutic target for mental disorders. 相似文献
12.
13.
Malini Visweswaran Luca Schiefer Frank Arfuso Rodney J. Dilley Philip Newsholme Arun Dharmarajan 《PloS one》2015,10(2)
With more than 1.4 billion overweight or obese adults worldwide, obesity and progression of the metabolic syndrome are major health and economic challenges. To address mechanisms of obesity, adipose tissue-derived mesenchymal stem cells (ADSCs) are being studied to detail the molecular mechanisms involved in adipogenic differentiation. Activation of the Wnt signalling pathway has inhibited adipogenesis from precursor cells. In our study, we examined this anti-adipogenic effect in further detail stimulating Wnt with lithium chloride (LiCl) and 6-bromo indirubin 3’oxime (BIO). We also examined the effect of Wnt inhibition using secreted frizzled-related protein 4 (sFRP4), which we have previously shown to be pro-apoptotic, anti-angiogenic, and anti-tumorigenic. Wnt stimulation in LiCl and BIO-treated ADSCs resulted in a significant reduction (2.7-fold and 12-fold respectively) in lipid accumulation as measured by Oil red O staining while Wnt inhibition with sFRP4 induced a 1.5-fold increase in lipid accumulation. Furthermore, there was significant 1.2-fold increase in peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein alpha (C/EBPα), and 1.3-fold increase in acetyl CoA carboxylase protein levels. In contrast, the expression of adipogenic proteins (PPARγ, C/EBPα, and acetyl CoA carboxylase) were decreased significantly with LiCl (by 1.6, 2.6, and 1.9-fold respectively) and BIO (by 7, 17, and 5.6-fold respectively) treatments. These investigations demonstrate interplay between Wnt antagonism and Wnt activation during adipogenesis and indicate pathways for therapeutic intervention to control this process. 相似文献
14.
15.
16.
17.
Elisa Vilardo Christian Barbato MariaTeresa Ciotti Carlo Cogoni Francesca Ruberti 《The Journal of biological chemistry》2010,285(24):18344-18351
The amyloid precursor protein (APP) and its proteolytic product amyloid beta (Aβ) are associated with both familial and sporadic forms of Alzheimer disease (AD). Aberrant expression and function of microRNAs has been observed in AD. Here, we show that in rat hippocampal neurons cultured in vitro, the down-regulation of Argonaute-2, a key component of the RNA-induced silencing complex, produced an increase in APP levels. Using site-directed mutagenesis, a microRNA responsive element (RE) for miR-101 was identified in the 3′-untranslated region (UTR) of APP. The inhibition of endogenous miR-101 increased APP levels, whereas lentiviral-mediated miR-101 overexpression significantly reduced APP and Aβ load in hippocampal neurons. In addition, miR-101 contributed to the regulation of APP in response to the proinflammatory cytokine interleukin-1β (IL-lβ). Thus, miR-101 is a negative regulator of APP expression and affects the accumulation of Aβ, suggesting a possible role for miR-101 in neuropathological conditions. 相似文献
18.
19.
Patrícia Patrício António Mateus-Pinheiro Nuno Sousa Luísa Pinto 《Molecular neurobiology》2013,48(1):84-96
Since adult neurogenesis became a widely accepted phenomenon, much effort has been put in trying to understand the mechanisms involved in its regulation. In addition, the pathophysiology of several neuropsychiatric disorders, such as depression, has been associated with imbalances in adult hippocampal neurogenesis. These imbalances may ultimately reflect alterations at the cell cycle level, as a common mechanism through which intrinsic and extrinsic stimuli interact with the neurogenic niche properties. Thus, the comprehension of these regulatory mechanisms has become of major importance to disclose novel therapeutic targets. In this review, we first present a comprehensive view on the cell cycle components and mechanisms that were identified in the context of the homeostatic adult hippocampal neurogenic niche. Then, we focus on recent work regarding the cell cycle changes and signaling pathways that are responsible for the neurogenesis imbalances observed in neuropathological conditions, with a particular emphasis on depression. 相似文献
20.
The dentate gyrus (DG) and the olfactory bulb (OB) are two regions of the adult brain in which new neurons are integrated daily in the existing networks. It is clearly established that these newborn neurons are implicated in specific functions sustained by these regions and that different factors can influence neurogenesis in both structures. Among these, life events, particularly occurring during early life, were shown to profoundly affect adult hippocampal neurogenesis and its associated functions like spatial learning, but data regarding their impact on adult bulbar neurogenesis are lacking. We hypothesized that prenatal stress could interfere with the development of the olfactory system, which takes place during the prenatal period, leading to alterations in adult bulbar neurogenesis and in olfactory capacities. To test this hypothesis we exposed pregnant C57Bl/6J mice to gestational restraint stress and evaluated behavioral and anatomic consequences in adult male offspring.We report that prenatal stress has no impact on adult bulbar neurogenesis, and does not alter olfactory functions in adult male mice. However, it decreases cell proliferation and neurogenesis in the DG of the hippocampus, thus confirming previous reports on rats. Altogether our data support a selective and cross-species long-term impact of prenatal stress on neurogenesis. 相似文献