首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Phosphatases are known to play a crucial role in phosphate turnover in plants. However, the exact role of acid phosphatases in plants has been elusive because of insufficient knowledge of their in vivo substrate and subcellular localization. We investigated the biochemical properties of a purple acid phosphatase isolated from red kidney bean (Phaseolus vulgaris) (KBPAP) with respect to its substrate and inhibitor profiles. The kinetic parameters were estimated for five substrates. We used 31P nuclear magnetic resonance to investigate the in vivo substrate of KBPAP. Chemical and enzymological estimation of polyphosphates and ATP, respectively, indicated the absence of polyphosphates and the presence of ATP in trace amounts in the seed extracts. Immunolocalization using antibodies raised against KBPAP was unsuccessful because of the non-specificity of the antiserum toward glycoproteins. Using histoenzymological methods with ATP as a substrate, we could localize KBPAP exclusively in the cell walls of the peripheral two to three rows of cells in the cotyledons. KBPAP activity was not detected in the embryo. In vitro experiments indicated that pectin, a major component of the cell wall, significantly altered the kinetic properties of KBPAP. The substrate profile and localization suggest that KBPAP may have a role in mobilizing organic phosphates in the soil during germination.  相似文献   

4.
The major acid phosphatase (APase) from potato (Solanum tuberosom L. cv Chiefton) tubers has been purified 2289-fold to near homogeneity and a final O-phospho-L-tyrosine (P-Tyr) hydrolyzing specific activity of 1917 [mu]mol Pi produced min-1 mg-1 of protein. Nondenaturing polyacrylamide gel electrophoresis of the final preparation resolved a single protein-staining band that co-migrated with APase activity. Following sodium dodecyl sulfate polyacrylamide gel electrophoresis, glycosylated polypeptides of 57 and 55 kD were observed. The two polypeptides are immunologically closely related, since both proteins cross-reacted on immunoblots probed with rabbit anti-(Brassica nigra APase) immunoglobulin G. Immunoblotting studies revealed that the 55-kD subunit did not arise via proteolytic cleavage of the 57-kD subunit after tissue extraction. The native molecular mass was approximately 100 kD, suggesting that the holoenzyme could exist as either a homodimer or a heterodimer. The enzyme displayed a pH optimum of 5.8, was activated 40% by 4 mM Mg2+, and was potently inhibited by molybdate, vanadate, and ZnCl2. The final preparation displayed the highest activity and specificity constant with P-Tyr, but also dephosphorylated other phosphomonoesters including p-nitrophenylphosphate, O-phospho-L-serine, phosphoenolpyruvate, PPi, and ATP. Antibodies to P-Tyr were used to demonstrate that several endogenous phosphotyrosylated tuber polypeptides could serve as in vitro substrates for the purified APase. Although the precise physiological significance of the potato APase's substantial in vitro activity with P-Tyr remains obscure, the possibility that this APase may function to dephosphorylate certain protein-located P-Tyr residues in vivo is suggested.  相似文献   

5.
SYNOPSIS. Properties and cellular location of acid phosphatase in Trypanosoma gambiense were studied. Activity was found in both the sediment (32,000 ×g) and the supernatant of homogenates. Cenrifugation in 0.3 M sucrose showed activity principally in the lowspeed fraction (4,000 ×g). One min of sonication released most of this activity. Several phosphomonoesters were hydrolyzed at acid H's. Enzymatic activity was relatively specific for pyrophosphate and p-nitrophenylphosphate at pH 3.6. At pH 5.2, purine and pyimidine nucleotide 5′-triphosphates as well as adenosine di- and ono-5′-phosphates were hydrolyzed nonspecifically. Activity with yrophosphate at pH 3.6 had a temperature optimum of 60-70 C while that for adenosine 5′-triphosphate (pH 5.2) was 50 C. These ctivities of the sediment required no metal co-factors and were inibited by Fe++, inhibition at the lower pH being greater. Glucose 6-phosphate was hydrolyzed by the supernatant with maximum activity between pH 6.0 and 7.2 and a temperature optimum of 50 C. This pH range showed a broad plateau with 2 or 3 minor peaks. The hydrolysis of p-nitrophenylphosphate showed a similar pH curve. In glucose 6-phosphate hydrolysis, Mg++ was a required co-factor but could be replaced by Ni++ or Co++. Ammonium sulfate fractionation precipitated most of the supernatant activity between 50 and 75% saturation. A modified Gomori technic produced spherical deposits of PbS thruout the cytoplasm of the intact cell. With the electron microscope, Pb phosphate deposition was observed in membrane-bound vesicles (i.e., lysosomes) approximately 100-150 mμ in diameter. These organelles were common in the region of the reservoir at the base of the flagellum. Acid phosphatase activity specific for glucose 6-phosphate as substrate was localized within this basal pocket.  相似文献   

6.
拟南芥紫色酸性磷酸酶基因(AtPAPs)对磷饥饿的响应   总被引:2,自引:0,他引:2  
根据拟南芥基因组测序所获得的信息,对拟南芥2号染色 7个可能的紫色酸性磷酸酶基因进行了cDNA克隆、测序及生物信息学分析,并对其在磷饥饿状态下转录水平的表达模式进行了研究,发现大部分的AtPAPs都是组成性表达的,只有AtPAP9,AtPAP10是诱导表达的,其中AtPAP9的转录产物是磷饥饿重新诱导的,而AtPAP10是磷饥饿诱导增加的。  相似文献   

7.
R. Loppes  R. E. Matagne 《Genetics》1973,75(4):593-604
In order to isolate acid phosphatase mutants in the green alga Chlamydomonas reinhardi, a staining method for detecting the enzyme activity in colonies has been developed. The occurrence of more than one acid phosphatase brought about some difficulty in the selection of mutants. We have, however, found an original method of selection based on the differential heat sensitivity of the enzymes. After treatment of the wild-type strain with N-methyl-N'-nitro-N-nitrosoguanidine, two types of mutants were recovered, then analyzed by biochemical and electrophoretic methods. In the first class of mutants (P(1), P(2), P(3),...) a heat-stable acid phosphatase bound to cellular debris of the crude extract was missing. The mutant P(a), representing the second class of mutations, was lacking a soluble heat-sensitive enzyme. These mutations were genetically different and exhibited mendelian inheritance.  相似文献   

8.
9.
Phosphate is an essential component of all cells that must be taken up from the environment. Prokaryotes commonly secrete alkaline phosphatases (APs) to recruit phosphate from organic compounds by hydrolysis. In this study, the AP from Halobacterium salinarum, an archaeon that lives in a saturated salt environment, has been functionally and structurally characterized. The core fold and the active-site architecture of the H. salinarum enzyme are similar to other AP structures. These generally form dimers composed of dominant β-sheet structures sandwiched by α-helices and have well-accessible active sites. The surface of the enzyme is predicted to be highly negatively charged, like other proteins of extreme halophiles. In addition to the conserved core, most APs contain a crown domain that strongly varies within species. In the H. salinarum AP, the crown domain is made of an acyl-carrier-protein-like fold. Different from other APs, it is not involved in dimer formation. We compare the archaeal AP with its bacterial and eukaryotic counterparts, and we focus on the role of crown domains in enhancing protein stability, regulating enzyme function, and guiding phosphoesters into the active-site funnel.  相似文献   

10.
11.
12.
Bdellovibrio bacteriovorus is an unusual δ-proteobacterium that invades and preys on other Gram-negative bacteria and is of potential interest as a whole cell therapeutic against pathogens of man, animals and crops. PTPs (protein tyrosine phosphatases) are an important class of enzyme involved in desphosphorylating a variety of substrates, often with implications in cell signaling. The B. bacteriovorus open reading frame Bd1204 is predicted to encode a PTP of unknown function. Bd1204 is both structurally and mechanistically related to the PTP-like phytase (PTPLP) class of enzymes and possesses a number of unique properties not observed in any other PTPLPs characterized to date. Bd1204 does not display catalytic activity against some common protein tyrosine phosphatase substrates but is highly specific for hydrolysis of phosphomonoester bonds of inositol hexakisphosphate. The structure reveals that Bd1204 has the smallest and least electropositive active site of all characterized PTPLPs to date yet possesses a unique substrate specificity characterized by a strict preference for inositol hexakisphosphate. These two active site features are believed to be the most significant contributors to the specificity of phytate degrading enzymes. We speculate that Bd1204 may be involved in phosphate acquisition outside of prey.  相似文献   

13.
14.
Induction and secretion of acid phosphatases(APases) is thought to be an adaptive mechanism that helps plants survive and grow under phosphate(Pi) deprivation. In Arabidopsis, there are 29 purple acid phosphatase(AtPAP)genes. To systematically investigate the roles of different AtPAPs, we first identified knockout or knock‐down T‐DNA lines for all 29 AtPAP genes. Using these atpap mutants combined with in‐gel and quantitative APase enzyme assays,we demonstrated that AtPAP12 and AtPAP26 are two major intracellular and secreted APases in Arabidopsis while AtPAP10is mainly a secreted APase. On Pi‐deficient(P) medium or Pmedium supplemented with the organophosphates ADP and fructose‐6‐phosphate(Fru‐6‐P), growth of atpap10 was significantly reduced whereas growth of atpap12 was only moderately reduced, and growth of atpap26 was nearly equal to that of the wild type(WT). Overexpression of the AtPAP12 or AtPAP26 gene, however, caused plants to grow better on Por P medium supplemented with ADP or Fru‐6‐P. Interestingly, Pi levels are essentially the same for the WT and overexpressing lines, although these two types of plants have significantly different growth phenotypes. These results suggest that the APases may have other roles besides enhancing internal Pi recycling or releasing Pi from external organophosphates for plant uptake.  相似文献   

15.
Induction and secretion of acid phosphatases (APases) is thought to be an adaptive mechanism that helps plants survive and grow under phosphate (Pi) deprivation, in Arabidopsis, there are 29 purple acid phosphatase (AtPAP) genes. To systematically investigate the roles of different AtPAPs, we first identified knockout or knock-down T-DNA lines for all 29 AtPAP genes. Using these atpap mutants combined with in-gel and quantitative APase enzyme assays, we demonstrated that AtPAP12 and AtPAP26 are two major intracellular and secreted APases in Arabidopsis while AtPAPlo is mainly a secreted APase. On Pi-deficient (P-) medium or P- medium supplemented with the organophosphates ADP and fructose-6-phosphate (Fru-6-P), growth of atpaplo was significantly reduced whereas growth of atpap12 was only moderately reduced, and growth of atpap26 was nearly equal to that of the wild type (WT). Overexpression of the AtPAP12 or AtPAP26 gene, however, caused plants to grow better on P- or P- medium supplemented with ADP or Fru-6-P. Interest-ingly, Pi levels are essentially the same for the WT and overexpressing lines, although these two types of plants have significantly different growth phenotypes. These results suggest that the APases may have other roles besides enhancing internal Pi recycling or releasing Pi from external organophosphates for plant uptake.  相似文献   

16.
17.
Enzymes that are used as animal feed supplements should be able to withstand temperatures of 60 to 90°C, which may be reached during the feed pelleting process. The thermostability properties of three histidine acid phosphatases, Aspergillus fumigatus phytase, Aspergillus niger phytase, and A. niger optimum pH 2.5 acid phosphatase, were investigated by measuring circular dichroism, fluorescence, and enzymatic activity. The phytases of A. fumigatus and A. niger were both denatured at temperatures between 50 and 70°C. After heat denaturation at temperatures up to 90°C, A. fumigatus phytase refolded completely into a nativelike, fully active conformation, while in the case of A. niger phytase exposure to 55 to 90°C was associated with an irreversible conformational change and with losses in enzymatic activity of 70 to 80%. In contrast to these two phytases, A. niger pH 2.5 acid phosphatase displayed considerably higher thermostability; denaturation, conformational changes, and irreversible inactivation were observed only at temperatures of ≥80°C. In feed pelleting experiments performed at 75°C, the recoveries of the enzymatic activities of the three acid phosphatases were similar (63 to 73%). At 85°C, however, the recovery of enzymatic activity was considerably higher for A. fumigatus phytase (51%) than for A. niger phytase (31%) or pH 2.5 acid phosphatase (14%). These findings confirm that A. niger pH 2.5 acid phosphatase is irreversibly inactivated at temperatures above 80°C and that the capacity of A. fumigatus phytase to refold properly after heat denaturation may favorably affect its pelleting stability.  相似文献   

18.
The Bacillus subtilis strain VTT E-68013 was chosen for purification and characterization of its excreted phytase. Purified enzyme had maximal phytase activity at pH 7 and 55°C. Isolated enzyme required calcium for its activity and/or stability and was readily inhibited by EDTA. The enzyme proved to be highly specific since, of the substrates tested, only phytate, ADP, and ATP were hydrolyzed (100, 75, and 50% of the relative activity, respectively). The phytase gene (phyC) was cloned from the B. subtilis VTT E-68013 genomic library. The deduced amino acid sequence (383 residues) showed no homology to the sequences of other phytases nor to those of any known phosphatases. PhyC did not have the conserved RHGXRXP sequence found in the active site of known phytases, and therefore PhyC appears not to be a member of the phytase subfamily of histidine acid phosphatases but a novel enzyme having phytase activity. Due to its pH profile and optimum, it could be an interesting candidate for feed applications.  相似文献   

19.
紫色酸性磷酸酶(PAPs)是一类广泛存在于植物体内的金属磷酸酯酶, 其羧基端含有1个保守结构域, 由5个保守基序和7个氨基酸残基构成。作为一种特殊的酸性磷酸酶, PAPs在酸性环境下能够有效催化磷酸酯或酸酐的水解, 释放出植物可以利用的磷酸基团。此外, PAPs在调节植物碳代谢、细胞壁合成和抵御病菌侵染等方面也发挥重要生理作用。该文简要介绍了PAPs的结构、家族成员及其调控因子, 并着重总结了近年来对PAPs生物学功能的研究进展, 为今后系统开展PAPs功能研究提供了理论参考。  相似文献   

20.
The overexpression of the native gene encoding the thermostable Bacillus subtilis US417 phytase using Pichia pastoris system is described. The phytase gene, in which the sequence encoding the signal peptide was replaced by that of the α-factor of Saccharomyces cerevisiae, was placed under the control of the methanol-inducible promoter of the alcohol oxidase 1 gene and expressed in Pichia pastoris. Small-scale expression experiments and activity assays were used to screen positive colonies. A recombinant strain was selected and produces 43 and 227 U/mL of phytase activity in shake flasks and in high-cell-density fermentation, respectively. The purified phytase was glycosylated protein and varied in size (50–65 kDa). It has a molecular mass of 43 kDa when it was deglycosylated. The purified r-PHY maintains 100 % of its activity after 10 min incubation at 75 °C and pH 7.5. This thermostable phytase, which is also active over broad pH ranges, may be useful as feed additives, since it can resist the temperature used in the feed-pelleting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号