首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium avium comprises genetically related yet phenotypically distinct subspecies. Consistent with their common origin, whole-genome sequence comparisons have revealed extensive synteny among M. avium organisms. However, the sequenced strains also display numerous regions of heterogeneity that likely contribute to the diversity of the individual subspecies. Starting from a phylogenetic framework derived by multilocus sequence analysis, we examined the distribution of 25 large sequence polymorphisms across a panel of genetically defined M. avium strains. This distribution was most variable among M. avium subsp. hominissuis isolates. In contrast, M. avium subsp. paratuberculosis strains exhibited a characteristic profile, with all isolates containing a set of genomic insertions absent from other M. avium strains. The emergence of the pathogen from its putative M. avium subsp. hominissuis ancestor entailed the acquisition of approximately 125 kb of novel genetic material, followed by a second phase, characterized by reductive genomics. One genomic deletion is common to all isolates while additional deletions distinguish two major lineages of M. avium subsp. paratuberculosis. For the average strain, these losses total at least 38 kb (sheep lineage) to 90 kb (cattle lineage). This biphasic pattern of evolution, characterized by chromosomal gene acquisition with subsequent gene loss, describes the emergence of M. avium subsp. paratuberculosis and may serve as a general model for the origin of pathogenic mycobacteria.Mycobacterium avium organisms are nontuberculous mycobacteria prevalent in environmental and clinical settings. M. avium infections result in diverse diseases, including avian tuberculosis, Johne''s disease, and Lady Windermere''s syndrome. Isolates are phenotypically different and were historically classified as separate species. However, current taxonomy, based on molecular analyses, recognizes a single species, M. avium, which is divided into distinct subgroups (21, 22).At present, M. avium subsp. hominissuis denotes environmental organisms associated with opportunistic infections in humans and swine (13, 23). M. avium subsp. avium is the classical agent of tuberculosis in birds and, along with M. avium subsp. silvaticum, represents a distinct lineage of bird pathogens (22). M. avium subsp. paratuberculosis causes Johne''s disease (Paratuberculosis), a chronic granulomatous intestinal disease (5). Although primarily associated with livestock, the bacterium may infect a wide range of mammalian hosts. A number of studies, using molecular testing for the M. avium subsp. paratuberculosis-specific insertion element IS900, have found an association between the presence of M. avium subsp. paratuberculosis and Crohn''s disease in humans (1, 9).Previous studies, including bigenomic comparisons of the sequenced strains M. avium subsp. hominissuis 104 and M. avium subsp. paratuberculosis K-10 (11), have revealed inter- and intrasubspecies differences (6, 12, 15, 16, 18, 19, 26). The phenotypic heterogeneity of M. avium strains may stem from genomic differences, but in the absence of a phylogenetic framework it has been difficult to define the key variations associated with the emergence of an individual subspecies. Recently, we proposed a phylogeny for M. avium based on multilocus sequence analysis (MLSA) of 10 genes and 56 M. avium isolates. This phylogeny is consistent with the current taxonomy and indicates that M. avium subsp. paratuberculosis is a distinct, clonal lineage of M. avium (22). To better understand the evolution of this subspecies, we have now examined the distribution of large sequence polymorphisms among a genetically defined panel of M. avium strains. Our findings reveal a characteristic genomic profile for M. avium subsp. paratuberculosis and provide insight into the biphasic evolution of this successful pathogen.  相似文献   

2.
In order to introduce specificity for Mycobacterium avium subsp. paratuberculosis prior to a phage amplification assay, various magnetic-separation approaches, involving either antibodies or peptides, were evaluated in terms of the efficiency of capture (expressed as a percentage) of M. avium subsp. paratuberculosis cells and the percentage of nonspecific binding by other Mycobacterium spp. A 50:50 mixture of MyOne Tosylactivated Dynabeads coated with the chemically synthesized M. avium subsp. paratuberculosis-specific peptides biotinylated aMp3 and biotinylated aMptD (i.e., peptide-mediated magnetic separation [PMS]) proved to be the best magnetic-separation approach for achieving 85 to 100% capture of M. avium subsp. paratuberculosis and minimal (<1%) nonspecific recovery of other Mycobacterium spp. (particularly if beads were blocked with 1% skim milk before use) from broth samples containing 103 to 104 CFU/ml. When PMS was coupled with a recently optimized phage amplification assay and used to detect M. avium subsp. paratuberculosis in 50-ml volumes of spiked milk, the mean 50% limit of detection (LOD50) was 14.4 PFU/50 ml of milk (equivalent to 0.3 PFU/ml). This PMS-phage assay represents a novel, rapid method for the detection and enumeration of viable M. avium subsp. paratuberculosis organisms in milk, and potentially other sample matrices, with results available within 48 h.The prospect of being able to detect viable Mycobacterium avium subsp. paratuberculosis organisms in food or veterinary samples within 48 h using a commercially available phage amplification assay (FASTPlaqueTB assay; Biotec Laboratories Limited, Ipswich, United Kingdom), rather than waiting weeks for conventional culture results, is an exciting recent development (7, 8, 26). However, the mycobacteriophage used in the phage amplification assay has a broader mycobacterial host range than M. avium subsp. paratuberculosis alone (23). Consequently, plaques obtained when naturally infected, rather than artificially spiked, samples are tested may not necessarily emanate from M. avium subsp. paratuberculosis alone if other Mycobacterium spp. are also present in the sample. Some additional selective step prior to phage infection, such as magnetic separation (12), is needed to introduce selectivity for M. avium subsp. paratuberculosis.Magnetic separation (MS) has become a routine method in food and veterinary microbiology laboratories and is commonly used in combination with culture or molecular methods for the detection and isolation of pathogenic bacteria such as Listeria monocytogenes (13, 31), Salmonella spp. (22, 25), and Escherichia coli O157:H7 in both the food (15) and veterinary (20) clinical sample testing context. Magnetic-separation methods selectively separate the target bacterium from other, nontarget microorganisms and inhibitory sample components while concentrating the target bacterial cells into a smaller volume. Collectively, these properties of magnetic separation enhance the analytical specificity and sensitivity of the subsequent detection method, which can be culture, PCR, microscopy, an antigen detection immunoassay, or a phage assay. The latter is our proposed endpoint detection method. The combination of phage amplification and MS is not a new concept. Immunomagnetic (IMS)-phage assays for Salmonella enterica serovar Enteritidis and Escherichia coli O157:H7 have been described previously (5, 6).The original IMS approach for M. avium subsp. paratuberculosis, employing a polyclonal anti-M. avium subsp. paratuberculosis antibody, was described by Grant et al. (9). This IMS approach showed good detection specificity for M. avium subsp. paratuberculosis as well as high detection sensitivity, because it was able to recover ≤10 CFU/ml directly from both spiked broth and milk. Its subsequent use in combination with IS900 PCR enhanced the speed of detection of M. avium subsp. paratuberculosis (10), and IMS-PCR was able to detect as few as 103 CFU/50 ml, 1 to 2 log10 units lower than the number detected by IS900 PCR applied directly to milk. However, our experience of using this and another polyclonal-antibody-based IMS method (Pathatrix PM-50 beads; Matrix Microscience, Newmarket, England) in conjunction with culture on Herrold''s egg yolk medium for the isolation of M. avium subsp. paratuberculosis from mixed-broth cultures from milk (unpublished data) and from raw-milk cheeses (27) has been that these polyclonal-antibody-based IMS methods lack sufficient specificity for M. avium subsp. paratuberculosis, and that consequently, nontarget bacteria, which bind nonspecifically to the beads, often overgrow this bacterium in culture. With other food-borne pathogens, an appropriate selective culture medium can be employed after IMS to prevent the outgrowth of any nontarget bacteria. Unfortunately, no truly selective culture medium exists for M. avium subsp. paratuberculosis at present, so specificity for this bacterium via magnetic separation must be achieved by optimizing the types of bead and capture ligands used.A monoclonal-antibody-based IMS method for M. avium subsp. paratuberculosis was reported by Metzger-Boddien et al. (17). Other groups have been attempting to produce monoclonal antibodies for application in IMS (3, 4). However, as an alternative to either polyclonal or monoclonal antibodies for the capture of M. avium subsp. paratuberculosis, new magnetic-separation approaches involving an M. avium subsp. paratuberculosis-specific peptide, aMp3 (30) or aMptD (28), have been described (i.e., peptide-mediated magnetic separation [PMS]). The first peptide (aMp3) was screened from nine recombinant bacteriophages specifically binding M. avium subsp. paratuberculosis that were produced using a commercially available phage-peptide display library (30). The second peptide, aMptD, was identified by biopanning of the M. avium subsp. paratuberculosis-specific ABC transponder operon (mpt) (29). The two chemically synthesized peptides, aMp3 and aMptD, were linked via carbodiimide to paramagnetic beads and were used in peptide-based capture PCR. Both PMS methods were reported to have high selectivity for M. avium subsp. paratuberculosis (i.e., no cross-reaction with other Mycobacterium spp.), and the analytical detection sensitivity, 5 ×102 CFU per ml (28), was comparable to the results previously reported by Grant et al. (10).As with other pathogenic bacteria that are likely to be present in raw milk, low numbers of viable M. avium subsp. paratuberculosis organisms are expected to be encountered in milk and dairy products (2, 11, 24). For other food-borne pathogens, such as Listeria monocytogenes (31), Salmonella spp. (22), and Escherichia coli O157:H7 (15), magnetic separation is generally applied after an enrichment culture step. This enrichment culture step aims to dilute food components known to be growth/PCR inhibitors, revive stressed or injured cells, and boost the numbers of the target bacterium (18, 21), so that magnetic separation and subsequent detection are likely to be more successful. Unfortunately, a prior enrichment culture step is impractical for M. avium subsp. paratuberculosis, since it would take too long, due to the slow-growing nature of this bacterium; thus, MS really needs to be applied directly to the sample. Consequently, any IMS or PMS method for M. avium subsp. paratuberculosis must achieve close to 100% capture efficiency, with minimal nonspecific binding by other mycobacteria, to limit false-negative or false-positive results. Capture efficiency is a measure of the completeness of capture of the original population of target cells present in the sample. Analytical specificity refers to the ability of an assay to measure one particular organism or substance, rather than others, in a sample (19). Therefore, the objectives of this study were (i) to identify the best magnetic-separation approach for the isolation of M. avium subsp. paratuberculosis from milk, in terms of capture efficiency and the percentage of nonspecific binding, by comparing as many paramagnetic-bead-coating antigen combinations as possible and (ii) to evaluate the potential use of the best magnetic-separation approach in conjunction with the previously optimized phage assay (7) as a novel IMS- or PMS-phage assay for the detection of M. avium subsp. paratuberculosis in milk.  相似文献   

3.
4.
Stable Mycobacterium avium infections of several Acanthamoeba strains were characterized by increased infection resistance of recent environmental isolates and reduced infectivity in the presence of other bacteria. Exposure of M. avium in coculture with Acanthamoeba castellanii to monochloramine yielded inactivation kinetics markedly similar to those observed for A. castellanii alone.Acanthamoebae are widely distributed in the environment (20) and generally function ecologically as predators of bacteria (23), although numerous types of bacteria resist predation (22). Acanthamoebae are very resistant to a range of disinfectants (5, 6, 8, 28), and bacteria within acanthamoebae are generally afforded extra protection (16). A notable example is the opportunistic pathogen Mycobacterium avium (10), which can survive within Acanthamoeba species trophozoites and cysts (4, 26), resulting in increased resistance to several antimicrobials (22). It has been demonstrated that many Mycobacterium spp. are able to infect the laboratory strain Acanthamoeba polyphaga (1). Acanthamoeba cultures undergo many physiological changes after several passages in the laboratory (15, 17, 21), although it is not known if prolonged cultivation of Acanthamoeba alters their capacity to be infected by M. avium. This knowledge is important for assessing the environmental relevance of associations between Acanthamoeba and M. avium. Therefore, we studied the infectivity and infection stability of M. avium with several laboratory and environmental Acanthamoeba strains for 28 days under high-nutrient (peptone-yeast extract-glucose [PYG] medium) and low-nutrient (Page''s amoeba saline [PAS]) conditions.  相似文献   

5.
Mycobacterium abscessus is a rapidly growing mycobacterial species that can be involved in pulmonary and disseminated infections in immunosuppressed or young cystic fibrosis patients. It is an emerging pathogen and has attracted recent attention due to the numerous cases of infection; furthermore, genomic tools have been developed for this species. Nevertheless, the study of this species has until now been limited to spontaneous variants. We report here a comparison of three different mutagenesis systems—the ts-sacB, the phage, and the recombineering systems—and show that there are important differences in their efficiency for the construction of allelic-exchange mutants. We show, using the mmpL4b gene of the glycopeptidolipid pathway as a target, that allelic-exchange mutants can be constructed with a reasonable efficiency (∼7%) using the recombineering system. These observations will facilitate genetic and cellular microbiology experiments involving the construction and use of well-defined mutants to study the virulence determinant of this emerging pathogen.The mycobacterial genus contains plethora of species that are pathogenic for either humans or animals. The most well-known are undoubtedly Mycobacterium leprae, M. tuberculosis, and M. ulcerans, the etiologic agents of human leprosy, tuberculosis, and Buruli ulcer, respectively (47-49). M. avium subsp. paratuberculosis, responsible for Johnes disease in ruminants, is also a serious health concern since it is suspected to be a threat to human via infected milk (9, 10). M. abscessus is an emerging pathogen involved in pulmonary and disseminated infection in young cystic fibrosis patients (26, 36). M. abscessus can cause nosocomial infections of skin and soft tissues in immunosuppressed patients (28, 35). It is also able to cross the blood-brain barrier and to cause meningoencephalitis (42). M. abscessus is phylogenetically related to M. chelonae and, indeed, these species have long been grouped together under the designation of the “M. abscessus-chelonae complex” (6). M. abscessus is a rapid grower that forms colonies in 5 days. Like other mycobacterial species, M. abscessus is equipped with a robust waxy cell wall that, as in other species, probably contributes to virulence (12). The emerging and growing interest in M. abscessus has led to its genome being sequenced (accession no. NC010397) (F. Ripoll et al., unpublished data) and to the development of DNA microarrays (Jean-Yves Coppée, unpublished data).The availability of genomic resources and animal models (32) makes M. abscessus a very attractive system. However, there is no defined mutagenesis system for this species and, to the best of our knowledge, no defined mutants have been constructed thus far. The consequence is that the study of this organism has been restricted to spontaneous variants. Utilization of spontaneous mutants has, nevertheless, allowed the characterization of morphotypically rough isolates that are hypervirulent both in vitro and in vivo (7, 8, 17). These rough isolates are low glycopeptidolipid producers. Glycopeptidolipid is an extractable lipid found at the surface of the bacilli (4, 11, 13). However, its role in the virulence process is currently unknown. The lack of a suitable genetic system is certainly responsible for the rarity of studies on this species (fewer than 500 references in Medline, whereas there are more than 32,000 for M. tuberculosis). Other mycobacterial species, especially M. tuberculosis, have been genetically intractable for many years (15, 18, 24). This has forced researchers to develop dedicated systems for the construction of allelic-exchange mutants. Three major systems have mainly been used thus far in M. tuberculosis and in other mycobacteria: (i) a thermosensitive counterselectable plasmid based on sucrose sensitivity (21-23), (ii) a thermosensitive mycobacteriophage (2) and, more recently, (iii) a mycobacterial recombinase-based system (43, 44). These three systems are effective in M. tuberculosis, M. smegmatis, and other refractory species, including M. avium subsp. avium, and allow straightforward construction of both marked and unmarked mutants.The aim of the present study was to compare the three main mutagenesis systems available for mycobacteria and to determine which system is best adapted to M. abscessus. To this end, we used mmpL4b as a target gene and the three genetic tools described above. The mmpL4b gene is involved in glycopeptidolipid synthesis (29, 40) and is a good model target because its mutation results in a rough phenotype that can be visually distinguished. We show here that there are large differences in efficacy between the three systems and that the mycobacterial recombinase-based system is the most efficient. For an unknown reason, allelic exchange is much less frequent in M. abscessus than in other species, including M. tuberculosis; this complicates the construction of defined mutants. The availability of a suitable genetic system will undoubtedly facilitates the characterization of the virulence determinants in this emerging pathogen.  相似文献   

6.
It has been suggested that Mycobacterium avium subspecies paratuberculosis has a role in Crohn''s disease. The organism may be acquired but is difficult to culture from the environment. We describe a quantitative PCR (qPCR) method to detect M. avium subsp. paratuberculosis in drinking water and the results of its application to drinking water and faucet biofilm samples collected in the United States.Mycobacterium avium subspecies paratuberculosis is a member of the Mycobacterium avium complex. M. avium subsp. paratuberculosis causes Johne''s disease in bovine and ovine animals and has been hypothetically linked to Crohn''s disease in humans. Several review articles have been written describing the association between M. avium subsp. paratuberculosis and Crohn''s disease (1, 2, 10, 11, 16, 23). Most mycobacterial infections are acquired from the environment; however, M. avium subsp. paratuberculosis can elude laboratory culture from environmental samples (28). M. avium subsp. paratuberculosis has been cultured only once from drinking water in the United States; therefore, its occurrence in drinking water is unknown (17). There are several reasons one could expect to find M. avium subsp. paratuberculosis in drinking water. The bacterium has been isolated from surface water used as a source of drinking water (19, 20, 24, 26). It is resistant to chlorine disinfection (25). Also, other subspecies of M. avium have been detected in biofilms obtained from drinking water pipes in the United States (8, 22, 27).Due to the potential for waterborne transmission of mycobacteria and the association of M. avium subsp. paratuberculosis with human illness, the focus of this study was to estimate the organism''s occurrence in drinking water in the United States using quantitative PCR (qPCR) (15). A comprehensive method was developed for detection of M. avium subsp. paratuberculosis in drinking water and biofilms that includes the concentration of microorganisms from samples using membrane filtration, total DNA extraction and purification, and detection of two targets unique to this bacterium: IS900 and target 251. IS900 is a common target used to identify M. avium subsp. paratuberculosis, and the average number of copies per genome is 14 to 18 (13). Target 251 qPCR analysis, which corresponds to the M. avium subsp. paratuberculosis gene 2765c (David Alexander, personal communication), was developed by Rajeev et al. (21). Samples positive for both targets are considered positive for M. avium subsp. paratuberculosis. TaqMan primer and probe sequences and qPCR assay characteristics are described in Table Table1.1. The complete method is described in Fig. S1 in the supplemental material.

TABLE 1.

qPCR assay primers, probes, DNA targets, and assay characteristicsa
DNA targetPrimer or probe (sequence, 5′→3′)Product (bp)
Reference
LODbLOQc
IS900IS900F (CCGCTAATTGAGAGATGCGATTGG)2301.81.813
IS900R (ATTCAACTCCAGCAGCGCGGCCTC)
IS900P (6-FAM-TCCACGCCCGCCCAGACAGG-TAMRA)
Target 251251F (GCAAGACGTTCATGGGAACT)200NDND21
251R (GCGTAACTCAGCGAACAACA)
251P (6-FAM-CTGACTTCACGATGCGGTTCTTC-TAMRA)
Open in a separate windowaFAM, 6-carboxyfluorescein; TAMRA, 6-carboxytetramethylrhodamine; ND, not determined.bThe limit of detection (LOD) of the IS900 qPCR assay was defined as the lowest copy number resulting in a CT of <40, determined from six independent dilution series.cThe limit of quantification (LOQ) was defined as the lowest copy number per assay yielding a coefficient of variation (CV) of less than 25% (33).A master standard curve was generated from six series of 10-fold dilutions of genomic DNA from M. avium subsp. paratuberculosis strain 49164 for quantification of IS900 target copies (see Fig. S2A in the supplemental material). Each dilution series contained eight standards run in triplicate for a total of 18 threshold cycle (CT) measurements per standard. A linear regression was performed on CT versus log IS900 copy number and R2 was 0.997. The standard error of y was used to create two equations to estimate the upper and lower concentration, or range, of M. avium subsp. paratuberculosis IS900 copy number.The specificities of the IS900 and target 251 primer/probe sets were evaluated by Rajeev et al. (21) on 211 M. avium subsp. paratuberculosis and 38 non-M. avium subsp. paratuberculosis isolates, and each assay was 100% specific for M. avium subsp. paratuberculosis. We further evaluated specificity using 22 M. avium subsp. paratuberculosis isolates from animals and 10 non-M. avium subsp. paratuberculosis ATCC reference strains (see Table S1 in the supplemental material) (18). Target 251 was 100% specific; however, one M. avium subsp. paratuberculosis isolate (3063) repeatedly produced a negative result by IS900 qPCR. Results suggest that a small subset of M. avium subsp. paratuberculosis isolates may not contain the IS900 element or may have a sequence that differs from that of the IS900 primer/probe set.The sensitivity of the method for detection of M. avium subsp. paratuberculosis in different drinking water matrices was evaluated by spiking serial dilutions of strain 1112 cells, ranging from 104 cells to no addition of cells, into 1-liter tap water samples obtained from five locations in the United States. The number of M. avium subsp. paratuberculosis cell equivalents was estimated by dividing the IS900 copy number obtained from the master standard curve by 18 (mean, 18 IS900 copies/M. avium subsp. paratuberculosis genome). The method provided consistent detection (5/5 samples) in a spiked sample of 100 cells/liter. In a spiked sample of 10 cells/liter, the IS900 target was detected 40% (2/5 samples) of the time, and at 1 cell/liter we did not detect the target in any spiked sample. Percent recovery was variable and decreased as the number of spiked cells decreased (Fig. (Fig.1).1). At a spike level of 1 × 104 cells/liter, the average percent recovery was 64%; this decreased to 9.2% at 1 × 102 cells/liter. Cell surface hydrophobicity, a property of mycobacteria, may have influenced clumping of the spiked sample or partitioning of M. avium subsp. paratuberculosis onto the sample bottle or filtration unit, affecting recovery of the bacterium (3).Open in a separate windowFIG. 1.Average percent recovery of M. avium subsp. paratuberculosis spiked into drinking water collected from five sites in the United States. Error bars denote standard deviation. MAP, M. avium subsp. paratuberculosis.  相似文献   

7.
Thermal inactivation experiments were carried out to assess the utility of a recently optimized phage amplification assay to accurately enumerate viable Mycobacterium avium subsp. paratuberculosis cells in milk. Ultra-heat-treated (UHT) whole milk was spiked with large numbers of M. avium subsp. paratuberculosis organisms (106 to 107 CFU/ml) and dispensed in 100-μl aliquots in thin-walled 200-μl PCR tubes. A Primus 96 advanced thermal cycler (Peqlab, Erlangen, Germany) was used to achieve the following time and temperature treatments: (i) 63°C for 3, 6, and 9 min; (ii) 68°C for 20, 40, and 60 s; and (iii) 72°C for 5, 10, 15, and 25 s. After thermal stress, the number of surviving M. avium subsp. paratuberculosis cells was assessed by both phage amplification assay and culture on Herrold''s egg yolk medium (HEYM). A high correlation between PFU/ml and CFU/ml counts was observed for both unheated (r2 = 0.943) and heated (r2 = 0.971) M. avium subsp. paratuberculosis cells. D and z values obtained using the two types of counts were not significantly different (P > 0.05). The D68°C, mean D63°C, and D72°C for four M. avium subsp. paratuberculosis strains were 81.8, 9.8, and 4.2 s, respectively, yielding a mean z value of 6.9°C. Complete inactivation of 106 to 107 CFU of M. avium subsp. paratuberculosis/ml milk was not observed for any of the time-temperature combinations studied; 5.2- to 6.6-log10 reductions in numbers were achieved depending on the temperature and time. Nonlinear thermal inactivation kinetics were consistently observed for this bacterium. This study confirms that the optimized phage assay can be employed in place of conventional culture on HEYM to speed up the acquisition of results (48 h instead of a minimum of 6 weeks) for inactivation experiments involving M. avium subsp. paratuberculosis-spiked samples.Due to the possible association of Mycobacterium avium subsp. paratuberculosis, the causative agent of Johne''s disease in cattle, with Crohn''s disease in humans, the consumption of milk and dairy products contaminated with this pathogenic bacterium has been suggested as a possible source of infection for humans (18). So far, the presence of viable M. avium subsp. paratuberculosis cells has been reported for pasteurized cows'' milk (6, 14, 23) and various cheeses (1, 4, 19). However, the rapid detection of viable M. avium subsp. paratuberculosis cells in food remains problematic. Culture is considered the gold standard method of demonstrating the viability of M. avium subsp. paratuberculosis cells, yet this approach is far from perfect and is not really appropriate for risk assessment purposes. First, M. avium subsp. paratuberculosis is a fastidious, slow-growing bacterium requiring a long incubation period before producing visible colonies (4 to 6 weeks minimum). Second, there is no selective growth medium for M. avium subsp. paratuberculosis, and chemical decontamination is required before plating samples on solid Herrold''s egg yolk medium (HEYM). This decontamination step, which aims to inactivate the competitive microflora, is often not totally effective, and cultures can be overgrown quickly by non-acid-fast bacteria during incubation. Third, the decontamination step has been demonstrated to have adverse effects on M. avium subsp. paratuberculosis viability (5). This extends the time required for primary isolation (to up to 20 weeks) and undoubtedly underestimates the number of cells originally present in the sample.Recently, we reported an optimization of the conditions of a commercially available phage amplification assay involving D29 mycobacteriophage (FASTPlaqueTB assay; Biotec Laboratories, Ipswich, United Kingdom) to permit accurate enumeration of M. avium subsp. paratuberculosis cells in milk (7). The main advantage of using phage amplification to detect M. avium subsp. paratuberculosis is that the number of viable cells can be estimated quickly, within 24 to 48 h, based on the count of plaques produced when D29-infected cells burst on a lawn of M. smegmatis indicator cells in an agar plate. Moreover, there is no need to carry out chemical decontamination of the sample before the phage assay because the D29 phage will infect only viable mycobacterial cells, and thus the detection sensitivity of the test is enhanced. For these reasons, the optimized phage amplification method may be used to speed up the acquisition of results during inactivation experiments involving samples artificially spiked with M. avium subsp. paratuberculosis.So far, the optimized phage amplification assay has been applied for the detection of viable M. avium subsp. paratuberculosis cells in spiked broth and milk samples. However, the performance of the test in assessing the viability of M. avium subsp. paratuberculosis cells subjected to physical or chemical treatments, which are likely to comprise mixtures of viable cells, injured/stressed cells, and dead cells, still needed to be investigated. For this reason, thermal inactivation experiments were carried out in order to assess the utility of this optimized phage assay for use instead of conventional culture for research involving artificially spiked milk samples. The main objectives of this study were to evaluate the correlation between colony and plaque counts for heat-treated M. avium subsp. paratuberculosis and to demonstrate a quicker acquisition of accurate results than that obtainable by culture.  相似文献   

8.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

9.
Several mycoplasma species feature a membrane protrusion at a cell pole, and unknown mechanisms provide gliding motility in the direction of the pole defined by the protrusion. Mycoplasma gallisepticum, an avian pathogen, is known to form a membrane protrusion composed of bleb and infrableb and to glide. Here, we analyzed the gliding motility of M. gallisepticum cells in detail. They glided in the direction of the bleb at an average speed of 0.4 μm/s and remained attached around the bleb to a glass surface, suggesting that the gliding mechanism is similar to that of a related species, Mycoplasma pneumoniae. Next, to elucidate the cytoskeletal structure of M. gallisepticum, we stripped the envelopes by treatment with Triton X-100 under various conditions and observed the remaining structure by negative-staining transmission electron microscopy. A unique cytoskeletal structure, about 300 nm long and 100 nm wide, was found in the bleb and infrableb. The structure, resembling an asymmetrical dumbbell, is composed of five major parts from the distal end: a cap, a small oval, a rod, a large oval, and a bowl. Sonication likely divided the asymmetrical dumbbell into a core and other structures. The cytoskeletal structures of M. gallisepticum were compared with those of M. pneumoniae in detail, and the possible protein components of these structures were considered.Mycoplasmas are commensal and occasionally pathogenic bacteria that lack a peptidoglycan layer (50). Several species feature a membrane protrusion at a pole; for Mycoplasma mobile, this protrusion is called the head, and for Mycoplasma pneumoniae, it is called the attachment organelle (25, 34-37, 52, 54, 58). These species bind to solid surfaces, such as glass and animal cell surfaces, and exhibit gliding motility in the direction of the protrusion (34-37). This motility is believed to be essential for the mycoplasmas'' pathogenicity (4, 22, 27, 36). Recently, the proteins directly involved in the gliding mechanisms of mycoplasmas were identified and were found to have no similarities to those of known motility systems, including bacterial flagellum, pilus, and slime motility systems (25, 34-37).Mycoplasma gallisepticum is an avian pathogen that causes serious damage to the production of eggs for human consumption (50). The cells are pear-shaped and have a membrane protrusion, consisting of the so-called bleb and infrableb (29), and gliding motility (8, 14, 22). Their putative cytoskeletal structures may maintain this characteristic morphology because M. gallisepticum, like other mycoplasma species, does not have a cell wall (50). In sectioning electron microscopy (EM) studies of M. gallisepticum, an intracellular electron-dense structure in the bleb and infrableb was observed, suggesting the existence of a cytoskeletal structure (7, 24, 29, 37, 58). Recently, the existence of such a structure has been confirmed by scanning EM of the structure remaining after Triton X-100 extraction (13), although the details are still unclear.A human pathogen, M. pneumoniae, has a rod-shaped cytoskeletal structure in the attachment organelle (9, 15, 16, 31, 37, 57). M. gallisepticum is related to M. pneumoniae (63, 64), as represented by 90.3% identity between the 16S rRNA sequences, and it has some open reading frames (ORFs) homologous to the component proteins of the cytoskeletal structures of M. pneumoniae (6, 17, 48). Therefore, the cytoskeletal structures of M. gallisepticum are expected to be similar to those of M. pneumoniae, as scanning EM images also suggest (13).The fastest-gliding species, M. mobile, is more distantly related to M. gallisepticum; it has novel cytoskeletal structures that have been analyzed through negative-staining transmission EM after extraction by Triton X-100 with image averaging (45). This method of transmission EM following Triton X-100 extraction clearly showed a cytoskeletal “jellyfish” structure. In this structure, a solid oval “bell,” about 235 nm wide and 155 nm long, is filled with a 12-nm hexagonal lattice. Connected to this bell structure are dozens of flexible “tentacles” that are covered with particles 20 nm in diameter at intervals of about 30 nm. The particles appear to have 180° rotational symmetry and a dimple at the center. The involvement of this cytoskeletal structure in the gliding mechanism was suggested by its cellular localization and by analyses of mutants lacking proteins essential for gliding.In the present study, we applied this method to M. gallisepticum and analyzed its unique cytoskeletal structure, and we then compared it with that of M. pneumoniae.  相似文献   

10.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

11.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

12.
13.
The occurrence of 10 pathogens and three fecal indicators was assessed by quantitative PCR in manures of Australian feedlot cattle. Most samples tested positive for one or more pathogens. For the dominant pathogens Campylobacter jejuni, Listeria monocytogenes, Giardia spp., Cryptosporidium spp., and eaeA-positive Escherichia coli, 102 to 107 genome copies g−1 (dry weight) manure were recovered.More than 600,000 tons of feedlot cattle manure are generated each year in Australia, which raises concern for potential water, air, and soil contamination (21, 27). Hence, better monitoring and knowledge of the resulting risks are needed (5, 26). Most zoonotic pathogens associated with cattle are well described in the literature, especially those of major health significance, including the bacterial pathogens Campylobacter spp., Listeria monocytogenes, pathogenic Escherichia coli (particularly serotypes O157 and O111), Salmonella enterica, Yersinia spp., Leptospira spp., Coxiella burnetii, Mycobacterium avium subsp. paratuberculosis, and the parasitic protozoa Giardia lamblia and Cryptosporidium parvum (2, 21, 27). While studies of pathogen occurrence in manure are numerous, data suited to quantitatively estimating end user risks are still limited. Few surveys quantify multiple pathogens (11, 12, 14, 28), and none have concurrently measured all 10 above in cattle manure. A further constraint on risk assessment is that most data were generated in North America or Europe, where cli-mate and environment can differ markedly from Australian conditions.Addressing this knowledge gap now appears feasible, as real-time quantitative PCR (qPCR) can be used as an alternative to culture-based methods for quantifying environmental pathogens (7, 23, 29). Improvements in sample preparation and nucleic acid cleanup methods have largely overcome problems associated with the molecular biology-based analysis of fecal matter (22). Further, qPCR can detect stressed, damaged, and otherwise nonculturable cells persisting in a state of dormancy or indeed dead (15, 17, 29). The aim of this paper is to report on a quantitative survey of zoonotic pathogens and indicators in manures from Australian feedlot beef cattle.A total of 128 composited samples (five subsamples each) representing fresh feces (n = 32), pen manure (n = 32), harvested pen manure (n = 28), stockpiled manure (n = 23), composted manure (n = 6), and carcass compost (n = 7) were collected from five cattle feedlots in eastern Australia in the winter/summer of 2009 (13). All samples were assayed for the 10 key pathogens listed above and also fecal indicators (total coliforms, E. coli, and enterococci).  相似文献   

14.
15.
16.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

17.
Environmental mycobacteria are of increasing concern in terms of the diseases they cause in both humans and animals. Although they are considered to be ubiquitous in aquatic environments, few studies have examined their ecology, and no ecological studies of coastal marine systems have been conducted. This study uses indirect gradient analysis to illustrate the strong relationships that exists between coastal water quality and the abundance of Mycobacterium spp. within a U.S. mid-Atlantic embayment. Mycobacterium species abundance and water quality conditions (based on 16 physical and chemical variables) were examined simultaneously in monthly samples obtained at 18 Maryland and Virginia coastal bay stations from August 2005 to November 2006 (n = 212). A quantitative molecular assay for Mycobacterium spp. was evaluated and applied, allowing for rapid, direct enumeration. By using indirect gradient analysis (environmental principal-components analysis), a strong linkage between eutrophic conditions, characterized by low dissolved-oxygen levels and elevated nutrient concentrations, and mycobacteria was determined. More specifically, a strong nutrient response was noted, with all nitrogen components and turbidity measurements correlating positively with abundance (r values of >0.30; P values of <0.001), while dissolved oxygen showed a strong negative relationship (r = −0.38; P = 0.01). Logistic regression models developed using salinity, dissolved oxygen, and total nitrogen showed a high degree of concordance (83%). These results suggest that coastal restoration and management strategies designed to reduce eutrophication may also reduce total mycobacteria in coastal waters.Environmental mycobacteria, or nontuberculous mycobacteria (NTM), include all species of mycobacteria other than those in the Mycobacterium tuberculosis complex and M. leprae. In general, NTM are aerobic, acid-fast, gram-positive, non-spore-forming, nonmotile organisms found as free-living saprophytes in soil and water (12, 14, 20, 21, 35). However, several members of this group can cause serious disease in humans, including pulmonary infections, cervical lymphadenitis, ulcerative necrosis, skin infections, and disseminated infections associated primarily with autoimmune disorders (12, 29). For example, disseminated infection with the Mycobacterium avium complex can occur in up to 40% of late-stage AIDS patients in developed countries (43). NTM can also have costly and problematic effects on wild and domesticated animals (17, 23). Thus, understanding the sources and reservoirs of these bacteria has become a priority in recent years (12, 34).While the mode of infection has been poorly established for many cases involving NTM, water is commonly implicated as either a source or a vector (12, 43). NTM are considered to be ubiquitous in the environment and have been cultured globally from samples obtained from freshwaters and marine natural waters (12), swimming pools and hot tubs (11, 25), and drinking water supplies (12, 13), among others. However, only a limited number of attempts have been made to examine the association of their distribution and abundance with environmental parameters (1, 21, 24). The abundance of the M. avium complex was found to correlate positively with water temperature and levels of zinc and humic and fulvic acids and negatively with the dissolved-oxygen content and pH in brown-water swamps in the southeastern United States (24). In a study of Finnish brook waters, acidic conditions, along with the presence of peatlands, chemical oxygen demand, increased precipitation, water color, and concentrations of several metals, were found to favor total NTM (20, 21). However, recent efforts with samples from the Rio Grande River in the United States found positive correlations with the presence of coliforms and Escherichia coli counts and negative correlations with chemical toxicity and water temperature in this alkaline, oligotrophic system (1). Although system-specific differences may be apparent, no attempts to examine mycobacterial ecology in marine and estuarine systems have been reported to date.Historically, researchers have relied on culture-based techniques for detection and enumeration of mycobacteria from environmental samples (1, 20, 21, 43). Because of the slow growth of many mycobacteria, culture from environmental samples requires decontamination, which can severely impact both the quantity and diversity of species recovered (18, 19). Recently, quantitative PCR (qPCR) has gained favor as a means of rapidly enumerating organisms or genes in environmental samples (5, 15, 38, 40). This method allows for the continuous monitoring of the reaction through the use of fluorescent reporter molecules or DNA stains. Because of this strategy, the reaction can be evaluated at the peak of the exponential phase, reducing errors of reagent depletion and assay efficiency associated with end point reads. Quantification is based on the principle that the amount of the starting template is directly proportional to the number of cycles required to reach the peak of the exponential phase, and is evaluated through the preparation of standards.Like many coastal lagoon estuaries, the shallow embayments bordering the Maryland and Virginia seaboard are highly susceptible to anthropogenic influence, as they are visited by millions of people annually for vacation and water-related recreation (44). While eutrophication and degraded environmental conditions have been generally linked to factors or organisms which can ultimately influence human health, little attention has been given to the response of bacteria (16, 45). In this paper, we describe our efforts to examine environmental influences on the abundance and distribution of NTM in a dynamic estuarine system.  相似文献   

18.
Bacteria often infect their hosts from environmental sources, but little is known about how environmental and host-infecting populations are related. Here, phylogenetic clustering and diversity were investigated in a natural community of rhizobial bacteria from the genus Bradyrhizobium. These bacteria live in the soil and also form beneficial root nodule symbioses with legumes, including those in the genus Lotus. Two hundred eighty pure cultures of Bradyrhizobium bacteria were isolated and genotyped from wild hosts, including Lotus angustissimus, Lotus heermannii, Lotus micranthus, and Lotus strigosus. Bacteria were cultured directly from symbiotic nodules and from two microenvironments on the soil-root interface: root tips and mature (old) root surfaces. Bayesian phylogenies of Bradyrhizobium isolates were reconstructed using the internal transcribed spacer (ITS), and the structure of phylogenetic relatedness among bacteria was examined by host species and microenvironment. Inoculation assays were performed to confirm the nodulation status of a subset of isolates. Most recovered rhizobial genotypes were unique and found only in root surface communities, where little bacterial population genetic structure was detected among hosts. Conversely, most nodule isolates could be classified into several related, hyper-abundant genotypes that were phylogenetically clustered within host species. This pattern suggests that host infection provides ample rewards to symbiotic bacteria but that host specificity can strongly structure only a small subset of the rhizobial community.Symbiotic bacteria often encounter hosts from environmental sources (32, 48, 60), which leads to multipartite life histories including host-inhabiting and environmental stages. Research on host-associated bacteria, including pathogens and beneficial symbionts, has focused primarily on infection and proliferation in hosts, and key questions about the ecology and evolution of the free-living stages have remained unanswered. For instance, is host association ubiquitous within a bacterial lineage, or if not, do host-infecting genotypes represent a phylogenetically nonrandom subset? Assuming that host infection and free-living existence exert different selective pressures, do bacterial lineages diverge into specialists for these different lifestyles? Another set of questions addresses the degree to which bacteria associate with specific host partners. Do bacterial genotypes invariably associate with specific host lineages, and is such specificity controlled by one or both partners? Alternatively, is specificity simply a by-product of ecological cooccurrence among bacteria and hosts?Rhizobial bacteria comprise several distantly related proteobacterial lineages, most notably the genera Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhizobium (52), that have acquired the ability to form nodules on legumes and symbiotically fix nitrogen. Acquisition of nodulation and nitrogen fixation loci has likely occurred through repeated lateral transfer of symbiotic loci (13, 74). Thus, the term “rhizobia” identifies a suite of symbiotic traits in multiple genomic backgrounds rather than a taxonomic classification. When rhizobia infect legume hosts, they differentiate into specialized endosymbiotic cells called bacteroids, which reduce atmospheric nitrogen in exchange for photosynthates from the plant (35, 60). Rhizobial transmission among legume hosts is infectious. Rhizobia can spread among hosts through the soil (60), and maternal inheritance (through seeds) is unknown (11, 43, 55). Nodule formation on hosts is guided by reciprocal molecular signaling between bacteria and plant (5, 46, 58), and successful infection requires a compatible pairing of legume and rhizobial genotypes. While both host and symbiont genotypes can alter the outcome of rhizobial competition for adsorption (34) and nodulation (33, 39, 65) of legume roots, little is known about how this competition plays out in nature.Rhizobia can achieve reproductive success via multiple lifestyles (12), including living free in the soil (14, 44, 53, 62), on or near root surfaces (12, 18, 19, 51), or in legume nodules (60). Least is known about rhizobia in bulk soil (not penetrated by plant roots). While rhizobia can persist for years in soil without host legumes (12, 30, 61), it appears that growth is often negligible in bulk soil (4, 10, 14, 22, 25). Rhizobia can also proliferate in the rhizosphere (soil near the root zone) of legumes (4, 10, 18, 19, 22, 25, 51). Some rhizobia might specialize in rhizosphere growth and infect hosts only rarely (12, 14, 51), whereas other genotypes are clearly nonsymbiotic because they lack key genes (62) and must therefore persist in the soil. The best-understood rhizobial lifestyle is the root nodule symbiosis with legumes, which is thought to offer fitness rewards that are superior to life in the soil (12). After the initial infection, nodules grow and harbor increasing populations of bacteria until the nodules senesce and the rhizobia are released into the soil (11, 12, 38, 40, 55). However, rhizobial fitness in nodules is not guaranteed. Host species differ in the type of nodules they form, and this can determine the degree to which differentiated bacteroids can repopulate the soil (11, 12, 38, 59). Furthermore, some legumes can hinder the growth of nodules with ineffective rhizobia, thus punishing uncooperative symbionts (11, 27, 28, 56, 71).Here, we investigated the relationships between environmental and host-infecting populations of rhizobia. A main objective was to test the hypothesis that rhizobia exhibit specificity among host species as well as among host microenvironments, specifically symbiotic nodules, root surfaces, and root tips. We predicted that host infection and environmental existence exert different selective pressures on rhizobia, leading to divergent patterns of clustering, diversity, and abundance of rhizobial genotypes.  相似文献   

19.
20.
Francisella tularensis, the causative agent of the zoonotic disease tularemia, has recently gained increased attention due to the emergence of tularemia in geographical areas where the disease has been previously unknown and to the organism''s potential as a bioterrorism agent. Although F. tularensis has an extremely broad host range, the bacterial reservoir in nature has not been conclusively identified. In this study, the ability of virulent F. tularensis strains to survive and replicate in the amoeba Acanthamoeba castellanii was explored. We observe that A. castellanii trophozoites rapidly encyst in response to F. tularensis infection and that this rapid encystment phenotype is caused by factor(s) secreted by amoebae and/or F. tularensis into the coculture medium. Further, our results indicate that in contrast to the live vaccine strain LVS, virulent strains of F. tularensis can survive in A. castellanii cysts for at least 3 weeks postinfection and that the induction of rapid amoeba encystment is essential for survival. In addition, our data indicate that pathogenic F. tularensis strains block lysosomal fusion in A. castellanii. Taken together, these data suggest that interactions between F. tularensis strains and amoebae may play a role in the environmental persistence of F. tularensis.Francisella tularensis is the etiological agent of the zoonotic disease tularemia, also known as rabbit fever (35, 53). Strains belonging to F. tularensis subsp. tularensis and F. tularensis subsp. holarctica, which are both prevalent in the Northern Hemisphere, cause the majority of reported cases of tularemia (36). Subspecies tularensis is highly contagious, with an infectious dose of 1 to 10 bacteria, and is associated with more severe disease (21). Though described more than a century ago as a disease common among hunters and trappers, tularemia has recently been reported in areas with no previous known risk (20, 25, 31, 42). F. tularensis infects a broad range of wildlife species (36), and a number of arthropods, such as ticks and flies, are known to be vectors (36, 49). Humans are usually infected either through an insect bite or by inhalation of aerosolized bacteria (49). Tularemia can be fatal in up to 30% of untreated cases (36, 49), with the mortality rate reaching 90% in pneumonic infections, as described in early studies conducted with vaccinated human volunteers (44-46, 49). Due to its highly infectious nature and its potential for use as a bioterrorism agent, F. tularensis has been classified as a class A biothreat pathogen by the Centers for Disease Control and Prevention (CDC), which has mandated that human tularemia be a reportable disease since 2000 (15, 37). In addition, the absence of a licensed vaccine for prophylaxis (36) makes understanding the virulence mechanisms used by this pathogen imperative for the development of efficacious measures to prevent or treat human disease.Though F. tularensis has been isolated from more than 250 wildlife species (21), the acute nature of the infections and the resultant high mortality rates in these hosts indicate that the bacterial reservoir(s) in nature have yet to be identified. Tularemia outbreaks involving F. tularensis subsp. holarctica have often been linked to water sources (6, 40), and a positive PCR field test was reported for Francisella during such an outbreak in Norway (5). Abd et al. reported that the F. tularensis live vaccine strain LVS is able to survive and replicate in the amoeba Acanthamoeba castellanii (1), suggesting a potential link between amoeba-Francisella interactions and environmental persistence. A. castellanii, a free-living environmental amoeba, is known to serve as a reservoir for a number of pathogenic microorganisms (24). However, to date, interactions of virulent F. tularensis subspecies tularensis strains with amoebae have not been documented. The ability of several human intracellular pathogens, including Legionella pneumophila and Mycobacterium avium, to infect and survive within amoebae has been well characterized (10, 12). In addition to playing a role in environmental survival and dissemination, growth in A. castellanii has been shown to enhance the ability of L. pneumophila and M. avium to survive and replicate in host macrophages (10, 12) and to enhance the virulence of both species in mice (7, 12). Since F. tularensis species are facultative intracellular pathogens that primarily survive in macrophages, probing the Francisella-amoeba interaction may provide insights into Francisella pathogenesis, as well as environmental survival. In this study, we investigated the ability of virulent type A strains of F. tularensis to survive in A. castellanii with a focus on understanding the role of Francisella-amoeba interactions in environmental persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号