首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multistep two-component signaling system is established as a key element of cytokinin signaling in Arabidopsis. Here, we provide evidence for a function of the two-component signaling system in cold stress response in Arabidopsis. Cold significantly induced the expression of a subset of A-type ARR genes and of GUS in ProARR7:GUS transgenic Arabidopsis. AHK2 and AHK3 were found to be primarily involved in mediating cold to express A-type ARRs despite cytokinin deficiency. Cold neither significantly induced AHK2 and AHK3 expression nor altered the cytokinin contents of wild type within the 4 h during which the A-type ARR genes exhibited peak expression in response to cold, indicating that cold might induce ARR expression via the AHK2 and AHK3 proteins without alterations in cytokinin levels. The ahk2 ahk3 and ahk3 ahk4 mutants exhibited enhanced freezing tolerance compared with wild type. These ahk double mutants acclimated as efficiently to cold as did wild type. The overexpression of the cold-inducible ARR7 in Arabidopsis resulted in a hypersensitivity response to freezing temperatures under cold-acclimated conditions. The expression of C-repeat/dehydration-responsive element target genes was not affected by ARR7 overexpression as well as in ahk double mutants. By contrast, the arr7 mutants showed increased freezing tolerance. The ahk2 ahk3 and arr7 mutants showed hypersensitive response to abscisic acid (ABA) for germination, whereas ARR7 overexpression lines exhibited insensitive response to ABA. These results suggest that AHK2 and AHK3 and the cold-inducible A-type ARRs play a negative regulatory role in cold stress signaling via inhibition of ABA response, occurring independently of the cold acclimation pathway.  相似文献   

2.
The Arabidopsis thaliana genome encodes a small family of histidine (His) protein kinases, some of which have redundant functions as ethylene receptors, whereas others serve as cytokinin receptors. The most poorly characterized of these is authentic histidine kinase 5 (AHK5; also known as cytokinin-independent 2, CKI2). Here we characterize three independent ahk5 mutants, and show that they have a common phenotype. Our results suggest that AHK5 His-kinase acts as a negative regulator in the signaling pathway in which ethylene and ABA inhibit the root elongation through ETR1 (an ethylene receptor).  相似文献   

3.
4.
Cytokinins are plant hormones that may play essential and crucial roles in various aspects of plant growth and development. Although the functional significance of exogenous cytokinins as to the proliferation and differentiation of cells has been well documented, the biological roles of endogenous cytokinins have remained largely unknown. The recent discovery of the Arabidopsis Histidine Kinase 4 (AHK4)/CRE1/WOL cytokinin receptor in Arabidopsis thaliana strongly suggested that the cellular response to cytokinins involves a two-component signal transduction system. However, the lack of an apparent phenotype in the mutant, presumably because of genetic redundancy, prevented us from determining the in planta roles of the cytokinin receptor. To gain insight into the molecular functions of the three AHK genes AHK2, AHK3, and AHK4 in this study, we identified mutational alleles of the AHK2 and AHK3 genes, both of which encode sensor histidine kinases closely related to AHK4, and constructed a set of multiple ahk mutants. Application of exogenous cytokinins to the resultant strains revealed that both AHK2 and AHK3 function as positive regulators for cytokinin signaling similar to AHK4. The ahk2 ahk4 and ahk3 ahk4 double mutants and the ahk single mutants grew normally, whereas the ahk2 ahk3 double mutants exhibited a semidwarf phenotype as to shoots, such as a reduced leaf size and a reduced influorescence stem length. The growth and development of the ahk2 ahk3 ahk4 triple mutant were markedly inhibited in various tissues and organs, including the roots and leaves in the vegetative growth phase and the influorescence meristem in the reproductive phase. We showed that the inhibition of growth is associated with reduced meristematic activity of cells. Expression analysis involving AHK:beta-glucuronidase fusion genes suggested that the AHK genes are expressed ubiquitously in various tissues during postembryonic growth and development. Our results thus strongly suggest that the primary functions of AHK genes, and those of endogenous cytokinins, are triggering of the cell division and maintenance of the meristematic competence of cells to prevent subsequent differentiation until a sufficient number of cells has accumulated during organogenesis.  相似文献   

5.
Degradation of the plant hormone cytokinin is catalyzed by cytokinin oxidase/dehydrogenase (CKX) enzymes. The Arabidopsis thaliana genome encodes seven CKX proteins which differ in subcellular localization and substrate specificity. Here we analyze the CKX7 gene, which to the best of our knowledge has not yet been studied. pCKX7:GUS expression was detected in the vasculature, the transmitting tissue and the mature embryo sac. A CKX7–GFP fusion protein localized to the cytosol, which is unique among all CKX family members. 35S:CKX7‐expressing plants developed short, early terminating primary roots with smaller apical meristems, contrasting with plants overexpressing other CKX genes. The vascular bundles of 35S:CKX7 primary roots contained only protoxylem elements, thus resembling the wol mutant of the CRE1/AHK4 receptor gene. We show that CRE1/AHK4 activity is required to establish the CKX7 overexpression phenotype. Several cytokinin metabolites, in particular cis‐zeatin (cZ) and N‐glucoside cytokinins, were depleted stronger in 35S:CKX7 plants compared with plants overexpressing other CKX genes. Interestingly, enhanced protoxylem formation together with reduced primary root growth was also found in the cZ‐deficient tRNA isopentenyltransferase mutant ipt2,9. However, different cytokinins were similarly efficient in suppressing 35S:CKX7 and ipt2,9 vascular phenotypes. Therefore, we hypothesize that the pool of cytosolic cytokinins is particularly relevant in the root procambium where it mediates the differentiation of vascular tissues through CRE1/AHK4. Taken together, the distinct consequences of CKX7 overexpression indicate that the cellular compartmentalization of cytokinin degradation and substrate preference of CKX isoforms are relevant parameters that define the activities of the hormone.  相似文献   

6.
Cytokinin signaling in Arabidopsis thaliana utilizes a multi-step two-component signaling (TCS) system comprised of sensor histidine kinases (AHKs), histidine phosphotransfer proteins (AHPs), and response regulators (ARRs). Recent studies have suggested that the cytokinin TCS system is involved in a variety of other signaling and metabolic pathways. To further explore a potential function of the cytokinin TCS in the Arabidopsis dehydration stress response, we investigated the expression of all type-A ARR genes and a type-C ARR, ARR22, in both wild type and ahk single, double, and triple mutants in response to dehydration compared to cytokinin as well as dehydration tolerance of ahk mutants. We found that drought significantly induced the expression of a subset of ARR genes, ARR5, ARR7, ARR15, and ARR22. The results of expression analyses in ahk single, double, and triple mutants demonstrated that the cytokinin receptors AHK2 and AHK3 are redundantly involved in dehydration-inducible expression of ARR7, but not that of ARR5, ARR15, or ARR22. Dehydration tolerance assays showed that ahk2 and ahk3 single mutants exhibited enhanced dehydration tolerance compared with that of wild-type plants and ahk4 mutants, and that ahk2 ahk3 double mutants exhibited stronger drought tolerance than that of ahk3 ahk4, which exhibited more enhanced drought tolerance than that of wild-type plants and ahk single mutants. Taken together, these results demonstrate that while the cytokinin receptors AHK2 and AHK3 are critically involved in the dehydration tolerance response, both cytokinin receptor-dependent pathway and receptor-independent pathway occur in the dehydration response regulating ARR gene expression. In addition, preincubating ahk2, ahk3, ahk4, and the wild-type plants with cytokinin induced enhanced dehydration stress tolerance in these plants, demonstrating that cytokinins are involved in regulating plant response to dehydration stress.  相似文献   

7.
Cytokinin signaling has complex effects on abiotic stress responses that remain to be fully elucidated. The Arabidopsis histidine kinases (AHKs), AHK2, AHK3 and CRE1 (cytokinin response1/AHK4) are the principle cytokinin receptors of Arabidopsis. Using a set of ahk mutants, we found dramatic differences in response to low water potential and salt stress among the AHKs. ahk3‐3 mutants had increased root elongation after transfer to low water potential media. Conversely ahk2‐2 was hypersensitive to salt stress in terms of root growth and fresh weight and accumulated higher than wild‐type levels of proline specifically under salt stress. Strongly reduced proline accumulation in ahk double mutants after low water potential treatment indicated a more general role of cytokinin signaling in proline metabolism. Reduced P5CS11‐pyrroline‐5‐carboxylate synthetase1) gene expression may have contributed to this reduced proline accumulation. Low water potential phenotypes of ahk mutants were not caused by altered abscisic acid (ABA) accumulation as all ahk mutants had wild‐type ABA levels, despite the observation that ahk double mutants had reduced NCED3 (9‐cis‐epoxycartenoid dioxygenase3) expression when exposed to low water potential. No difference in osmoregulatory solute accumulation was detected in any of the ahk mutants indicating that they do not affect drought responsive osmotic adjustment. Overall, our examination of ahk mutants found specific phenotypes associated with AHK2 and AHK3 as well as a general function of cytokinin signaling in proline accumulation and low water potential induction of P5CS1 and NCED3 expression. These results show the stress physiology function of AHKs at a new level of detail.  相似文献   

8.
9.
10.
11.
Inflorescence architecture, pedicel length and stomata patterning in Arabidopsis thaliana are specified by inter-tissue communication mediated by ERECTA and its signaling ligands in the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family of secreted cysteine-rich peptides. Here, we identified and characterized BnEPFL6 from Brassica napus. Heterologous expression of this gene under the double enhanced CaMV promoter (D35S) in Arabidopsis resulted in shortened stamen filaments, filaments degradation, and reduced filament cell size that displayed down-regulated expression of AHK2, in which phenotypic variation of ahk2-1 mutant presented highly consistent with that of BnEPFL6 transgenic lines. Especially, the expression level of BnEPFL6 in the shortened filaments of four B. napus male sterile lines (98A, 86A, SA, and Z11A) was similar to that of BnEPFL6 in the transgenic Arabidopsis lines. The activity of pBnEPFL6.2::GUS was intensive in the filaments of transgenic lines. These observations reveal that BnEPFL6 plays an important role in filament elongation and may also affect organ morphology and floral organ specification via a BnEPFL6-mediated cascade.  相似文献   

12.
We used loss-of-function mutants to study three Arabidopsis thaliana sensor histidine kinases, AHK2, AHK3, and CRE1/AHK4, known to be cytokinin receptors. Mutant seeds had more rapid germination, reduced requirement for light, and decreased far-red light sensitivity, unraveling cytokinin functions in seed germination control. Triple mutant seeds were more than twice as large as wild-type seeds. Genetic analysis indicated a cytokinin-dependent endospermal and/or maternal control of embryo size. Unchanged red light sensitivity of mutant hypocotyl elongation suggests that previously reported modulation of red light signaling by A-type response regulators may not depend on cytokinin. Combined loss of AHK2 and AHK3 led to the most prominent changes during vegetative development. Leaves of ahk2 ahk3 mutants formed fewer cells, had reduced chlorophyll content, and lacked the cytokinin-dependent inhibition of dark-induced chlorophyll loss, indicating a prominent role of AHK2 and, particularly, AHK3 in the control of leaf development. ahk2 ahk3 double mutants developed a strongly enhanced root system through faster growth of the primary root and, more importantly, increased branching. This result supports a negative regulatory role for cytokinin in root growth regulation. Increased cytokinin content of receptor mutants indicates a homeostatic control of steady state cytokinin levels through signaling. Together, the analyses reveal partially redundant functions of the cytokinin receptors and prominent roles for the AHK2/AHK3 receptor combination in quantitative control of organ growth in plants, with opposite regulatory functions in roots and shoots.  相似文献   

13.
Plants alter the architecture of their root systems to adapt to the environment by modulating post-embryonic (lateral and adventitious) root formation and growth. To understand better the genetic basis of this regulation, we screened ethylmethane sulfonate-mutagenized lines of Arabidopsis thaliana for adventitious rooting mutants. One mutant showed retardation of the primary root growth, no production of lateral roots and enhanced formation of adventitious roots. Mapping and genetic complementation revealed that this mutant named wooden leg-3 (wol-3) was an allele of ARABIDOPSIS HISTIDINE KINASE 4 (AHK4), a locus known to encode a cytokinin receptor. Although the vascular system of the primary root and hypocotyl in the wol-3 mutant was aborted, that of the adventitious roots was normally developed. In the hypocotyl of the wol-3 mutant, auxin signals accumulated around the aborted vascular system. The application of auxin to primary roots induced lateral root formation in the wol-3 mutant. Transport of radiolabeled auxin from the top of the hypocotyl to the primary root was inhibited in wol-3. Although only a single amino acid alteration had occurred in AHK4, the root morphology in the wol-3 mutant was quite similar to that in the ahk2 ahk3 ahk4 triple mutant, which is a loss-of-function mutant of the three cytokinin receptors. This implies that the functional disturbance of AHK4 affects the function of the other receptors. Our results suggest that cytokinin receptors are necessary for the formation of auxin-transporting vascular tissues in the hypocotyl, but not in adventitious roots.  相似文献   

14.
The plant growth promoting rhizobacterium Azospirillum brasilense Sp245 enhances biomass production in cereals and horticultural species and is an interesting model to study the physiology of the phytostimulation program. Although auxin production by Azospirillum appears to be critical for root architectural readjustments, the role of cytokinins in the growth promoting effects of Azospirillum remains unclear. Here, Arabidopsis thaliana seedlings were co-cultivated in vitro with A. brasilense Sp245 to assess whether direct contact of roots with bacterial colonies or exposure to the bacterial volatiles using divided Petri plates would affect biomass production and root organogenesis. Both interaction types increased root and shoot fresh weight but had contrasting effects on primary root length, lateral root formation and root hair development. Cell proliferation in root meristems analyzed with the CYCB1;1::GUS reporter decreased over time with direct contact, but was augmented by plant exposure to volatiles. Noteworthy, the expression of the cytokinin-inducible reporters TCS::GFP and ARR5::GUS increased in root tips in response to bacterial contact, without being affected by the volatiles. In A. thaliana having single (cre1-12, ahk2-2, ahk3-3), double (cre1-12/ahk2-2, cre1-12/ahk3-3, ahk2-2/ahk3-3) or triple (cre1-12/ahk2-2/ahk3-3) mutations in canonical cytokinin receptors, only the triple mutant had a marked effect on plant growth in response to A. brasilense. These results show that different mechanisms are elicited by A. brasilense, which influence the cytokinin-signaling pathway.  相似文献   

15.
The first isolated cytokinin, 6-furfurylaminopurine (kinetin or Kin), was identified almost 55 years ago. Its biological effects on plant cells and tissues include influences on such processes as gene expression, cell cycle, chloroplast development, chlorophyll biosynthesis, stimulation of vascular development, delay of senescence, and mobilization of nutrients. In the present study we prepared a series of eight N9-substituted Kin derivatives, and characterized them with available physicochemical methods such as CI+ mass spectrometry and 1H NMR spectroscopy. All compounds were tested in three classical cytokinin bioassays: a tobacco callus assay, an Amaranthus assay, and a senescence assay with excised wheat leaves. The ability of the compounds to interact with Arabidopsis cytokinin receptors CRE1/AHK4 and AHK3 was tested in a bacterial receptor assay. Prepared derivatives with certain substitutions of the N9-atom of the purine moiety enhanced the cytokinin activity of the parent compound in the bioassays to a remarkable degree but negatively affected its perception by CRE1/AHK4 and AHK3. The ability of compounds to delay the senescence of excised wheat leaves in both dark and light conditions, was highly correlated with their ability to influence membrane lipid peroxidation, which is a typical symptom of senescence. Our results were corroborated by gene expression profiling of those genes involved in cytokinin metabolism and perception, plant senescence, and the stress response, and suggest that prepared kinetin derivatives might be used as potent anti-senescence agents.  相似文献   

16.
In the budding yeast Saccharomyces cerevisiae, osmostress activates the Hog1 mitogen-activated protein kinase (MAPK), which regulates diverse osmoadaptive responses. Hkr1 is a large, highly glycosylated, single-path transmembrane protein that is a putative osmosensor in one of the Hog1 upstream pathways termed the HKR1 subbranch. The extracellular region of Hkr1 contains both a positive and a negative regulatory domain. However, the function of the cytoplasmic domain of Hkr1 (Hkr1-cyto) is unknown. Here, using a mass spectrometric method, we identified a protein, termed Ahk1 (Associated with Hkr1), that binds to Hkr1-cyto. Deletion of the AHK1 gene (in the absence of other Hog1 upstream branches) only partially inhibited osmostress-induced Hog1 activation. In contrast, Hog1 could not be activated by constitutively active mutants of the Hog1 pathway signaling molecules Opy2 or Ste50 in ahk1Δ cells, whereas robust Hog1 activation occurred in AHK1+ cells. In addition to Hkr1-cyto binding, Ahk1 also bound to other signaling molecules in the HKR1 subbranch, including Sho1, Ste11, and Pbs2. Although osmotic stimulation of Hkr1 does not activate the Kss1 MAPK, deletion of AHK1 allowed Hkr1 to activate Kss1 by cross talk. Thus, Ahk1 is a scaffold protein in the HKR1 subbranch and prevents incorrect signal flow from Hkr1 to Kss1.  相似文献   

17.
18.
19.
Cytokinins play crucial roles in diverse aspects of plant growth and development. Spatiotemporal distribution of bioactive cytokinins is finely regulated by metabolic enzymes. LONELY GUY (LOG) was previously identified as a cytokinin-activating enzyme that works in the direct activation pathway in rice (Oryza sativa) shoot meristems. In this work, nine Arabidopsis thaliana LOG genes (At LOG1 to LOG9) were predicted as homologs of rice LOG. Seven At LOGs, which are localized in the cytosol and nuclei, had enzymatic activities equivalent to that of rice LOG. Conditional overexpression of At LOGs in transgenic Arabidopsis reduced the content of N6-(Δ2-isopentenyl)adenine (iP) riboside 5′-phosphates and increased the levels of iP and the glucosides. Multiple mutants of At LOGs showed a lower sensitivity to iP riboside in terms of lateral root formation and altered root and shoot morphology. Analyses of At LOG promoter:β-glucuronidase fusion genes revealed differential expression of LOGs in various tissues during plant development. Ectopic overexpression showed pleiotropic phenotypes, such as promotion of cell division in embryos and leaf vascular tissues, reduced apical dominance, and a delay of leaf senescence. Our results strongly suggest that the direct activation pathway via LOGs plays a pivotal role in regulating cytokinin activity during normal growth and development in Arabidopsis.  相似文献   

20.
Cytokinin signaling is mediated by a multiple-step phosphorelay. Key components of the phosphorelay consist of the histidine kinase (HK)-type receptors, histidine phosphotransfer proteins (HP), and response regulators (RRs). Whereas overexpression of a nonreceptor-type HK gene CYTOKININ-INDEPENDENT1 (CKI1) activates cytokinin signaling by an unknown mechanism, mutations in CKI1 cause female gametophytic lethality. However, the function of CKI1 in cytokinin signaling remains unclear. Here, we characterize a mutant allele, cki1-8, that can be transmitted through female gametophytes with low frequency (∼0.17%). We have recovered viable homozygous cki1-8 mutant plants that grow larger than wild-type plants, show defective megagametogenesis and rarely set enlarged seeds. We found that CKI1 acts upstream of AHP (Arabidopsis HP) genes, independently of cytokinin receptor genes. Consistently, an ahp1,2-2,3,4,5 quintuple mutant, which contains an ahp2-2 null mutant allele, exhibits severe defects in megagametogenesis, with a transmission efficiency of <3.45% through female gametophytes. Rarely recovered ahp1,2-2,3,4,5 quintuple mutants are seedling lethal. Finally, the female gametophytic lethal phenotype of cki1-5 (a null mutant) can be partially rescued by IPT8 or ARR1 (a type-B Arabidopsis RR) driven by a CKI1 promoter. These results define a genetic pathway consisting of CKI1, AHPs, and type-B ARRs in the regulation of female gametophyte development and vegetative growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号