首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung cancer is the most frequent form of cancer. The survival rate for patients with metastatic lung cancer is ∼5%, hence alternative therapeutic strategies to treat this disease are critically needed. Recent studies suggest that lipid biosynthetic pathways, particularly fatty acid synthesis and desaturation, are promising molecular targets for cancer therapy. We have previously reported that inhibition of stearoylCoA desaturase-1 (SCD1), the enzyme that produces monounsaturated fatty acids (MUFA), impairs lung cancer cell proliferation, survival and invasiveness, and dramatically reduces tumor formation in mice. In this report, we show that inhibition of SCD activity in human lung cancer cells with the small molecule SCD inhibitor CVT-11127 reduced lipid synthesis and impaired proliferation by blocking the progression of cell cycle through the G1/S boundary and by triggering programmed cell death. These alterations resulting from SCD blockade were fully reversed by either oleic (18:1n-9), palmitoleic acid (16:1n-7) or cis-vaccenic acid (18:1n-7) demonstrating that cis-MUFA are key molecules for cancer cell proliferation. Additionally, co-treatment of cells with CVT-11127 and CP-640186, a specific acetylCoA carboxylase (ACC) inhibitor, did not potentiate the growth inhibitory effect of these compounds, suggesting that inhibition of ACC or SCD1 affects a similar target critical for cell proliferation, likely MUFA, the common fatty acid product in the pathway. This hypothesis was further reinforced by the observation that exogenous oleic acid reverses the anti-growth effect of SCD and ACC inhibitors. Finally, exogenous oleic acid restored the globally decreased levels of cell lipids in cells undergoing a blockade of SCD activity, indicating that active lipid synthesis is required for the fatty acid-mediated restoration of proliferation in SCD1-inhibited cells. Altogether, these observations suggest that SCD1 controls cell cycle progression and apoptosis and, consequently, the overall rate of proliferation in cancer cells through MUFA-mediated activation of lipid synthesis.  相似文献   

2.
The objective of this study was to investigate the effects of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR)-induced AMP-activated protein kinase (AMPK) activation on basal and insulin-stimulated glucose and fatty acid metabolism in isolated rat adipocytes. AICAR-induced AMPK activation profoundly inhibited basal and insulin-stimulated glucose uptake, lipogenesis, glucose oxidation, and lactate production in fat cells. We also describe the novel findings that AICAR-induced AMPK phosphorylation significantly reduced palmitate (32%) and oleate uptake (41%), which was followed by a 50% reduction in palmitate oxidation despite a marked increase in AMPK and acetyl-CoA carboxylase phosphorylation. Compound C, a selective inhibitor of AMPK, not only completely prevented the inhibitory effect of AICAR on palmitate oxidation but actually caused a 2.2-fold increase in this variable. Compound C also significantly increased palmitate oxidation in the presence of inhibitory concentrations of malonyl-CoA and etomoxir indicating an increase in CPT1 activity. In contrast to skeletal muscle in which AMPK stimulates fatty acid oxidation to provide ATP as a fuel, we propose that AMPK activation inhibits lipogenesis and fatty acid oxidation in adipocytes. Inhibition of lipogenesis would conserve ATP under conditions of cellular stress, although suppression of intra-adipocyte oxidation would spare fatty acids for exportation to other tissues where their utilization is crucial for energy production. Additionally, the stimulatory effect of compound C on long chain fatty acid oxidation provides a novel pharmacological approach to promote energy dissipation in adipocytes, which may be of therapeutic importance for obesity and type II diabetes.  相似文献   

3.
Tumor cells have increased metabolic requirements to maintain rapid growth. In particular, a highly lipogenic phenotype is a hallmark of many tumor types, including prostate. Cancer cells also have increased turnover of nicotinamide adenine dinucleotide (NAD(+)), a coenzyme involved in multiple metabolic pathways. However, a specific role for NAD(+) in tumor cell lipogenesis has yet to be described. Our studies demonstrate a novel role for the NAD(+)-biosynthetic enzyme Nicotinamide phosphoribosyltransferase (Nampt) in maintaining de novo lipogenesis in prostate cancer (PCa) cells. Inhibition of Nampt reduces fatty acid and phospholipid synthesis. In particular, short chain saturated fatty acids and the phosphatidylcholine (PC) lipids into which these fatty acids are incorporated were specifically reduced by Nampt inhibition. Nampt blockade resulted in reduced ATP levels and concomitant activation of AMP-activated protein kinase (AMPK) and phosphorylation of acetyl-CoA carboxylase (ACC). In spite of this, pharmacological inhibition of AMPK was not sufficient to fully restore fatty acid synthesis. Rather, Nampt blockade also induced protein hyperacetylation in PC-3, DU145, and LNCaP cells, which correlated with the observed decreases in lipid synthesis. Moreover, the sirtuin inhibitor Sirtinol, and the simultaneous knockdown of SIRT1 and SIRT3, phenocopied the effects of Nampt inhibition on fatty acid synthesis. Altogether, these data reveal a novel role for Nampt in the regulation of de novo lipogenesis through the modulation of sirtuin activity in PCa cells.  相似文献   

4.
5.
Stearoyl-CoA desaturase 1 (SCD1) is a delta-9 fatty acid desaturase that catalyzes the synthesis of mono-unsaturated fatty acids (MUFA). SCD1 is a critical control point regulating hepatic lipid synthesis and β-oxidation. Scd1 KO mice are resistant to the development of diet-induced non-alcoholic fatty liver disease (NAFLD). Using a chronic-binge protocol of ethanol-mediated liver injury, we aimed to determine if these KO mice are also resistant to the development of alcoholic fatty liver disease (AFLD).Mice fed a low-fat diet (especially low in MUFA) containing 5% ethanol for 10 days, followed by a single ethanol (5 g/kg) gavage, developed severe liver injury manifesting as hepatic steatosis. This was associated with an increase in de novo lipogenesis and inflammation. Using this model, we show that Scd1 KO mice are resistant to the development of AFLD. Scd1 KO mice do not show accumulation of hepatic triglycerides, activation of de novo lipogenesis nor elevation of cytokines or other pro-inflammatory markers. Incubating HepG2 cells with a SCD1 inhibitor induced a similar resistance to the effect of ethanol, confirming a role for SCD1 activity in mediating ethanol-induced hepatic injury.Taken together, our study shows that SCD1 is a key player in the development of AFLD and associated deleterious effects, and suggests SCD1 inhibition as a therapeutic option for the treatment of this hepatic disease.  相似文献   

6.
Recent studies have demonstrated that human stearoylCoA desaturase-1 (SCD1), a Δ9-desaturase that converts saturated fatty acids (SFA) into monounsaturated fatty acids, controls the rate of lipogenesis, cell proliferation and tumorigenic capacity in cancer cells. However, the biological function of stearoylCoA desaturase-5 (SCD5), a second isoform of human SCD that is highly expressed in brain, as well as its potential role in human disease, remains unknown. In this study we report that the constitutive overexpression of human SCD5 in mouse Neuro2a cells, a widely used cell model of neuronal growth and differentiation, displayed a greater n-7 MUFA-to-SFA ratio in cell lipids compared to empty-vector transfected cells (controls). De novo synthesis of phosphatidylcholine and cholesterolesters was increased whereas phosphatidylethanolamine and triacylglycerol formation was reduced in SCD5-expressing cells with respect to their controls, suggesting a differential use of SCD5 products for lipogenic reactions. We also observed that SCD5 expression markedly accelerated the rate of cell proliferation and suppressed the induction of neurite outgrowth, a typical marker of neuronal differentiation, by retinoic acid indicating that the desaturase plays a key role in the mechanisms of cell division and differentiation. Critical signal transduction pathways that are known to modulate these processes, such epidermal growth factor receptor (EGFR)Akt/ERK and Wnt, were affected by SCD5 expression. Epidermal growth factor-induced phosphorylation of EGFR, Akt and ERK was markedly blunted in SCD5-expressing cells. Furthermore, the activity of canonical Wnt was reduced whereas the non-canonical Wnt was increased by the presence of SCD5 activity. Finally, SCD5 expression increased the secretion of recombinant Wnt5a, a non-canonical Wnt, whereas it reduced the cellular and secreted levels of canonical Wnt7b. Our data suggest that, by a coordinated modulation of key lipogenic pathways and transduction signaling cascades, SCD5 participates in the regulation of neuronal cell growth and differentiation.  相似文献   

7.
Dietary fatty acids are major contributors to the development and progression of insulin resistance and nonalcoholic fatty liver disease (NAFLD). Dietary fatty acids also alter hepatic NKT cells that are activated by antigens presented by CD1d. In the current study, we examine the mechanism of dietary fatty acid induced hepatic NKT cell deficiency and its causal relationship to insulin resistance and NAFLD. We discover that dietary saturated fatty acids (SFA) or monounsaturated fatty acids (MUFA), but not polyunsaturated fatty acids (PUFA), cause hepatic NKT cell depletion with increased apoptosis. Dietary SFA or MUFA also impair hepatocyte presentation of endogenous, but not exogenous, antigen to NKT cells, indicating alterations of the endogenous antigen processing or presenting pathway. In vitro treatment of normal hepatocytes with fatty acids also demonstrates impaired ability of CD1d to present endogenous antigen by dietary fatty acids. Furthermore, dietary SFA and MUFA activate the NFκB signaling pathway and lead to insulin resistance and hepatic steatosis. In conclusion, both dietary SFA and MUFA alter endogenous antigen presentation to hepatic NKT cells and contribute to NKT cell depletion, leading to further activation of inflammatory signaling, insulin resistance, and hepatic steatosis.  相似文献   

8.
The precise role of monounsaturated fatty acid (MUFA) synthesis in cell proliferation and programmed cell death remains unknown. The strong correlation of high levels of MUFA and neoplastic phenotype suggest that the regulation of stearoyl CoA desaturase (SCD) must play a significant role in cancer development. In this study, the levels of SCD protein and activity were investigated in normal (WI38) and SV40-transformed (SV40-WI38) human lung fibroblasts. Thus, the activity of SCD on exogenous [14C]stearic acid and endogenous [14C]acetate-labeled fatty acids was increased by 2.2- and 2.6-fold, respectively, in SV40-WI38 compared to WI38 fibroblasts. Concomitantly, a 3.3-fold increase in SCD protein content was observed in SV40-transformed cells. Cell transformation also led to high levels of MUFA, which was paralleled by a more fluid membrane environment. Furthermore, the levels of PPAR-gamma, a well-known activator of SCD expression, were highly increased in SV40-transformed fibroblasts. SCD activity appeared linked to the events of programmed cell death, since incubations with 40 microM etoposide induced apoptosis in SV40 cells, and led to a decrease in fatty acid synthesis, SCD activity and in MUFA cellular levels. Taken together, these results suggest that SCD protein and activity levels are associated with the events of neoplastic cell transformation and programmed cell death.  相似文献   

9.
Stearoyl-CoA desaturase (SCD) is a rate-limiting enzyme that catalyzes the synthesis of monounsaturated fatty acids. It plays an important role in regulating skeletal muscle metabolism. Lack of the SCD1 gene increases the rate of fatty acid β-oxidation through activation of the AMP-activated protein kinase (AMPK) pathway and the upregulation of genes that are related to fatty acid oxidation. The mechanism of AMPK activation under conditions of SCD1 deficiency has been unclear. In the present study, we found that the ablation/inhibition of SCD1 led to AMPK activation in skeletal muscle through an increase in AMP levels whereas muscle-specific SCD1 overexpression decreased both AMPK phosphorylation and the adenosine monophosphate/adenosine triphosphate (AMP/ATP) ratio. Changes in AMPK phosphorylation that were caused by SCD1 down- and upregulation affected NAD+ levels following changes in NAD+-dependent deacetylase sirtuin-1 (SIRT1) activity and histone 3 (H3K9) acetylation and methylation status. Moreover, mice with muscle-targeted overexpression of SCD1 were more susceptible to high-fat diet-induced lipid accumulation and the development of insulin resistance compared with wild-type mice. These data show that SCD1 is involved in nucleotide (ATP and NAD+) metabolism and suggest that the SCD1-dependent regulation of muscle steatosis and insulin sensitivity are mediated by cooperation between AMPK- and SIRT1-regulated pathways. Altogether, the present study reveals a novel mechanism that links SCD1 with the maintenance of metabolic homeostasis and insulin sensitivity in skeletal muscle.  相似文献   

10.
Stearoyl-CoA desaturase 1 (SCD1) deficiency partitions fatty acids away from lipid synthesis towards fatty acid oxidation in liver and skeletal muscle in part due to activation of AMP-activated protein kinase (AMPK) pathway. The mechanism of AMPK activation by SCD1 mutation is unknown, however since SCD1-/- animals have increased relative amounts of polyunsaturated fatty acids (PUFA), we hypothesized that the increased levels of PUFA might be responsible for the activation of AMPK in SCD1 deficient mice. Therefore, the present study was undertaken to analyze the effect of PUFA on AMPK in liver, skeletal muscle, and heart. We fed mice ad libitum for 14 days with diet supplemented with fish oil (5% fat). As expected, fish oil supplementation significantly increased n-3 PUFA content in each of the analyzed tissues. Hepatic mRNA levels of fatty acid synthase and acyl-CoA oxidase decreased by 92% and increased by 60%, respectively, consistent with known PUFA effects. However, after 14 days of PUFA feeding, we did not find any changes in AMPK phosphorylation and protein content in mouse liver, skeletal muscle, and heart. The data suggest that PUFA are not involved in AMPK activation in mouse tissues and that the increased activity of AMPK in SCD1-/- mice is probably PUFA-independent.  相似文献   

11.
Invadopodia are membrane protrusions that facilitate matrix degradation and cellular invasion. Although lipids have been implicated in several aspects of invadopodia formation, the contributions of de novo fatty acid synthesis and lipogenesis have not been defined. Inhibition of acetyl-CoA carboxylase 1 (ACC1), the committed step of fatty acid synthesis, reduced invadopodia formation in Src-transformed 3T3 (3T3-Src) cells, and also decreased the ability to degrade gelatin. Inhibition of fatty acid synthesis through AMP-activated kinase (AMPK) activation and ACC phosphorylation also decreased invadopodia incidence. The addition of exogenous 16∶0 and 18∶1 fatty acid, products of de novo fatty acid synthesis, restored invadopodia and gelatin degradation to cells with decreased ACC1 activity. Pharmacological inhibition of ACC also altered the phospholipid profile of 3T3-Src cells, with the majority of changes occurring in the phosphatidylcholine (PC) species. Exogenous supplementation with the most abundant PC species, 34∶1 PC, restored invadopodia incidence, the ability to degrade gelatin and the ability to invade through matrigel to cells deficient in ACC1 activity. On the other hand, 30∶0 PC did not restore invadopodia and 36∶2 PC only restored invadopodia incidence and gelatin degradation, but not cellular invasion through matrigel. Pharmacological inhibition of ACC also reduced the ability of MDA-MB-231 breast, Snb19 glioblastoma, and PC-3 prostate cancer cells to invade through matrigel. Invasion of PC-3 cells through matrigel was also restored by 34∶1 PC supplementation. Collectively, the data elucidate the novel metabolic regulation of invadopodia and the invasive process by de novo fatty acid synthesis and lipogenesis.  相似文献   

12.

Background

Cancer cells present a sustained de novo fatty acid synthesis with an increase of saturated and monounsaturated fatty acid (MUFA) production. This change in fatty acid metabolism is associated with overexpression of stearoyl-CoA desaturase 1 (Scd1), which catalyses the transformation of saturated fatty acids into monounsaturated fatty acids (e.g., oleic acid). Several reports demonstrated that inhibition of Scd1 led to the blocking of proliferation and induction of apoptosis in cancer cells. Nevertheless, mechanisms of cell death activation remain to be better understood.

Principal Findings

In this study, we demonstrated that Scd1 extinction by siRNA triggered abolition of de novo MUFA synthesis in cancer and non-cancer cells. Scd1 inhibition-activated cell death was only observed in cancer cells with induction of caspase 3 activity and PARP-cleavage. Exogenous supplementation with oleic acid did not reverse the Scd1 ablation-mediated cell death. In addition, Scd1 depletion induced unfolded protein response (UPR) hallmarks such as Xbp1 mRNA splicing, phosphorylation of eIF2α and increase of CHOP expression. However, the chaperone GRP78 expression, another UPR hallmark, was not affected by Scd1 knockdown in these cancer cells indicating a peculiar UPR activation. Finally, we showed that CHOP induction participated to cell death activation by Scd1 extinction. Indeed, overexpression of dominant negative CHOP construct and extinction of CHOP partially restored viability in Scd1-depleted cancer cells.

Conclusion

These results suggest that inhibition of de novo MUFA synthesis by Scd1 extinction could be a promising anti-cancer target by inducing cell death through UPR and CHOP activation.  相似文献   

13.
S-Allyl cysteine (SAC), a nontoxic garlic compound, has a variety of pharmacological properties, including antioxidant and hepatoprotective properties. In this report, we provide evidence that SAC prevented free fatty acid (FFA)-induced lipid accumulation and lipotoxicity in hepatocytes. SAC significantly reduced FFA-induced generation of reactive oxygen species, caspase activation and subsequent cell death. Also, SAC mitigated total cellular lipid and triglyceride accumulation in steatotic HepG2 cells. SAC significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in HepG2 cells. Additionally, SAC down-regulated the levels of sterol regulatory element binding protein-1 (SREBP-1) and its target genes, including ACC and fatty acid synthase. Use of a specific inhibitor showed that SAC activated AMPK via calcium/calmodulin-dependent kinase kinase (CaMKK) and silent information regulator T1. Our results demonstrate that SAC activates AMPK through CaMKK and inhibits SREBP-1-mediated hepatic lipogenesis. Therefore, SAC has therapeutic potential for preventing nonalcoholic fatty liver disease.  相似文献   

14.
15.
Vascular calcification is recognized as an independent predictor of cardiovascular mortality, particularly in subjects with chronic kidney disease. However, the pathways by which dysregulation of lipid and mineral metabolism simultaneously occur in this particular population remain unclear. We have shown that activation of the farnesoid X receptor (FXR) blocks mineralization of bovine calcifying vascular cells (CVCs) and in ApoE knock-out mice with 5/6 nephrectomy. In contrast to FXR, this study showed that liver X receptor (LXR) activation by LXR agonists and adenovirus-mediated LXR overexpression by VP16-LXRα and VP16-LXRβ accelerated mineralization of CVCs. Conversely, LXR inhibition by dominant negative (DN) forms of LXRα and LXRβ reduced calcium content in CVCs. The regulation of mineralization by FXR and LXR agonists was highly correlated with changes in lipid accumulation, fatty acid synthesis, and the expression of sterol regulatory element binding protein-1 (SREBP-1). The rate of lipogenesis in CVCs through the SREBP-1c dependent pathway was reduced by FXR activation, but increased by LXR activation. SREBP-1c overexpression augmented mineralization in CVCs, whereas SREBP-1c DN inhibited alkaline phosphatase activity and mineralization induced by LXR agonists. LXR and SREBP-1c activations increased, whereas FXR activation decreased, saturated and monounsaturated fatty acids derived from lipogenesis. In addition, we found that stearate markedly promoted mineralization of CVCs as compared with other fatty acids. Furthermore, inhibition of either acetyl-CoA carboxylase or acyl-CoA synthetase reduced mineralization of CVCs, whereas inhibition of stearoyl-CoA desaturase induced mineralization. Therefore, a stearate metabolite derived from lipogenesis might be a risk factor for the development of vascular calcification.  相似文献   

16.
Rat hearts were perfused for 1 h with 5 mm glucose with or without palmitate or oleate at concentrations characteristic of the fasting state. The inclusion of fatty acids resulted in increased activities of the alpha-1 or the alpha-2 isoforms of AMP-activated protein kinase (AMPK), increased phosphorylation of acetyl-CoA carboxylase and a decrease in the tissue content of malonyl-CoA. Activation of AMPK was not accompanied by any changes in the tissue contents of ATP, ADP, AMP, phosphocreatine or creatine. Palmitate increased phosphorylation of Thr172 within AMPK alpha-subunits and the activation by palmitate of both AMPK isoforms was abolished by protein phosphatase 2C leading to the conclusion that exposure to fatty acid caused activation of an AMPK kinase or inhibition of an AMPK phosphatase. In vivo, 24 h of starvation also increased heart AMPK activity and Thr172 phosphorylation of AMPK alpha-subunits. Perfusion with insulin decreased both alpha-1 and alpha-2 AMPK activities and increased malonyl-CoA content. Palmitate prevented both of these effects. Perfusion with epinephrine decreased malonyl-CoA content without an effect on AMPK activity but prevented the activation of AMPK by palmitate. The concept is discussed that activation of AMPK by an unknown fatty acid-driven signalling process provides a mechanism for a 'feed-forward' activation of fatty acid oxidation.  相似文献   

17.
One of the most common molecular changes in cancer is the increased endogenous lipid synthesis, mediated primarily by overexpression and/or hyperactivity of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). The changes in these key lipogenic enzymes are critical for the development and maintenance of the malignant phenotype. Previous efforts to control oncogenic lipogenesis have been focused on pharmacological inhibitors of FAS and ACC. Although they show anti-tumor effects in culture and in mouse models, these inhibitors are nonselective blockers of lipid synthesis in both normal and cancer cells. To target lipid anabolism in tumor cells specifically, it is important to identify the mechanism governing hyperactive lipogenesis in malignant cells. In this study, we demonstrate that lysophosphatidic acid (LPA), a growth factor-like mediator present at high levels in ascites of ovarian cancer patients, regulates the sterol regulatory element binding protein-FAS and AMP-activated protein kinase-ACC pathways in ovarian cancer cells but not in normal or immortalized ovarian epithelial cells. Activation of these lipogenic pathways is linked to increased de novo lipid synthesis. The pro-lipogenic action of LPA is mediated through LPA(2), an LPA receptor subtype overexpressed in ovarian cancer and other malignancies. Downstream of LPA(2), the G(12/13) and G(q) signaling cascades mediate LPA-dependent sterol regulatory element-binding protein activation and AMP-activated protein kinase inhibition, respectively. Moreover, inhibition of de novo lipid synthesis dramatically attenuated LPA-induced cell proliferation. These results demonstrate that LPA signaling is causally linked to the hyperactive lipogenesis in ovarian cancer cells, which can be exploited for development of new anti-cancer therapies.  相似文献   

18.
Recent studies suggest that the AMP-activated protein kinase (AMPK) acts as a major energy sensor and regulator in adipose tissues. The objective of this study was to investigate the role of AMPK in nicotine-induced lipogenesis and lipolysis in 3T3L1 adipocytes. Exposure of 3T3L1 adipocytes to smoking-related concentrations of nicotine increased lipolysis and inhibited fatty acid synthase (FAS) activity in a time- and dose-dependent manner. The effects of nicotine on FAS activity were accompanied by phosphorylation of both AMPK (Thr(172)) and acetyl-CoA carboxylase (ACC; Ser(79)). Nicotine-induced AMPK phosphorylation appeared to be mediated by reactive oxygen species based on the finding that nicotine significantly increased superoxide anions and 3-nitrotyrosine-positive proteins, exogenous peroxynitrite (ONOO(-)) mimicked the effects of nicotine on AMPK, and N-acetylcysteine (NAC) abolished nicotine-enhanced AMPK phosphorylation. Inhibition of AMPK using either pharmacologic (insulin, compound C) or genetic means (overexpression of dominant negative AMPK; AMPK-DN) abolished FAS inhibition induced by nicotine or ONOO(-). Conversely, activation of AMPK by pharmacologic (nicotine, ONOO(-), metformin, and AICAR) or genetic (overexpression of constitutively active AMPK) means inhibited FAS activity. Notably, AMPK activation increased threonine phosphorylation of FAS, and this effect was blocked by adenovirus encoding dominant negative AMPK. Finally, AMPK-dependent FAS phosphorylation was confirmed by (32)P incorporation into FAS in adipocytes. Taken together, our results strongly suggest that nicotine, via ONOO(-) activates AMPK, resulting in enhanced threonine phosphorylation and consequent inhibition of FAS.  相似文献   

19.
Glial cells play a pivotal role in brain fatty acid metabolism and membrane biogenesis. However, the potential regulation of lipogenesis and cholesterologenesis by fatty acids in glial cells has been barely investigated. Here, we show that physiologically relevant concentrations of various saturated, monounsaturated, and polyunsaturated fatty acids significantly reduce [1-(14)C]acetate incorporation into fatty acids and cholesterol in C6 cells. Oleic acid was the most effective at depressing lipogenesis and cholesterologenesis; a decreased label incorporation into cellular palmitic, stearic, and oleic acids was detected, suggesting that an enzymatic step(s) of de novo fatty acid biosynthesis was affected. To clarify this issue, the activities of acetyl-coenzyme A carboxylase (ACC) and FAS were determined with an in situ digitonin-permeabilized cell assay after incubation of C6 cells with fatty acids. ACC activity was strongly reduced ( approximately 80%) by oleic acid, whereas no significant change in FAS activity was observed. Oleic acid also reduced the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). The inhibition of ACC and HMGCR activities is corroborated by the decreases in ACC and HMGCR mRNA abundance and protein levels. The downregulation of ACC and HMGCR activities and expression by oleic acid could contribute to the reduced lipogenesis and cholesterologenesis.  相似文献   

20.
We evaluated the effects of genotype (Muscovy, Pekin and their crossbreed hinny and mule ducks) and feeding levels (overfeeding between 12 and 14 weeks of age vs ad libitum feeding) on energy metabolism and lipid deposition in breast muscle of ducks. Samples of breast muscle (Pectoralis major) were collected at 14 weeks of age from 8 birds per group. Overfeeding induced an accumulation of lipids in breast muscle (1.5- to 1.7-fold, depending on genotype) mainly induced by triglyceride deposition. It also induced a considerable increase in the amounts (expressed as g/100 g of tissue) of saturated and mono-unsaturated fatty acids (SFA, MUFA), while the amounts of poly-unsaturated fatty acids (PUFA) remained unchanged in hinny and Muscovy ducks or slightly increased in Pekin and mule ducks. In breast muscle, overfeeding decreased the activity of the main enzymes involved in lipogenesis from glucose (glucose-6-phosphate dehydrogenase, G6PDH, malic enzyme, ME, acetyl CoA carboxylase, ACX). Lipoprotein lipase (LPL) activity in Pectoralis major muscle was also significantly decreased (-21%). The ability of muscle tissues to catabolize long-chain fatty acids, as assessed by beta-hydroxyacyl CoA dehydrogenase (HAD) activity, was increased in Pectoralis major muscle, as was cytochrome-c oxidase (COX) activity. Hybrid and Pekin ducks exhibited higher levels of ACX and LPL activity in Pectoralis major muscle than Muscovy ducks, suggesting a greater ability to synthesise lipids in situ, and to take up circulating lipids. Total lipid content in breast muscle of hybrid and Pekin ducks was higher than in that of Muscovy ducks. In hybrid and Pekin ducks, lipid composition of breast muscle was characterized by higher amounts of triglycerides, SFA and MUFA than in Muscovy ducks. Finally, oxidative metabolism was greater in Pectoralis major muscles of hybrid and Pekin ducks than in Muscovy ducks, suggesting an adaptative strategy of muscle energy metabolism according to lipid level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号