首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetic Retinopathy (DR) is one of the attenuating complications of diabetes mellitus. The key gene responsible for causing diabetic retinopathy is protein kinase C beta (PKCβ). Protein kinase C is a family of protein kinase enzymes which are involved in controlling the function of other proteins through phosphorylation mechanism and plays a crucial role in signal transduction mechanisms. Among all the PKC isoenzymes, PKCβ could be a significant isoenzyme involved in vascular dysfunction during hyperglycemia. Studies show that oral administration of PKCβ inhibitor Ruboxistaurin (LY333531), decreases vessel permeability and improves retinal condition. Thus compounds that decrease the PKCβ activation would be helpful in the treatment of diabetic retinopathy. The compounds similar to Ruboxistaurin are taken from Super Target database and docking analysis was performed. Maleimide derivative 3 showed highest binding affinities compared to Ruboxistaurin and so we advise that compound may be utilized in the treatment of diabetic retinopathy.  相似文献   

2.

Backgrounds

Early brain injury (EBI) plays a key role in the pathogenesis of subarachnoid hemorrhage (SAH). Neuronal apoptosis is involved in the pathological process of EBI. Hydrogen can inhibit neuronal apoptosis and attenuate EBI following SAH. However, the molecular mechanism underlying hydrogen-mediated anti-apoptotic effects in SAH has not been elucidated. In the present study, we aimed to evaluate whether hydrogen alleviates EBI after SAH, specifically neuronal apoptosis, partially via the Akt/GSK3β signaling pathway.

Methods

Sprague-Dawley rats (n = 85) were randomly divided into the following groups: sham group (n = 17), SAH group (n = 17), SAH + saline group (n = 17), SAH + hydrogen-rich saline (HS) group (n = 17) and SAH + HS + Ly294002 (n = 17) group. HS or an equal volume of physiological saline was administered immediately after surgery and repeated 8 hours later. The PI3K inhibitor, Ly294002, was applied to manipulate the proposed pathway. Neurological score and SAH grade were assessed at 24 hours after SAH. Western blot was used for the quantification of Akt, pAkt, GSK3β, pGSK3β, Bcl-2, Bax and cleaved caspase-3 proteins. Neuronal apoptosis was identified by double staining of terminal deoxynucleotidyl transferase mediated nick end labeling (TUNEL) staining and NeuN, and quantified by apoptosis index. Immunohistochemistry and immunofluorescent double-labeling staining was performed to clarify the relationships between neuronal apoptosis and pAkt or pGSK3β.

Results

HS significantly reduced neuronal apoptosis and improved neurological function at 24 hours after SAH. The levels of pAkt and pGSK3β, mainly expressed in neurons, were markedly up-regulated. Additionally, Bcl-2 was significantly increased while Bax and cleaved caspase-3 was decreased by HS treatment. Double staining of pAkt and TUNEL showed few colocalization of pAkt-positive cells and TUNEL-positive cells. The inhibitor of PI3K, Ly294002, suppressed the beneficial effects of HS.

Conclusions

HS could attenuate neuronal apoptosis in EBI and improve the neurofunctional outcome after SAH, partially via the Akt/GSK3β pathway.  相似文献   

3.
HYS-32 is a novel derivative of combretastatin-A4 (CA-4) previously shown to induce microtubule coiling in rat primary astrocytes. In this study, we further investigated the signaling mechanism and EB1, a microtubule-associated end binding protein, involved in HYS-32-induced microtubule catastrophes. Confocal microscopy with double immunofluorescence staining revealed that EB1 accumulates at the growing microtubule plus ends, where they exhibit a bright comet-like staining pattern in control astrocytes. HYS-32 induced microtubule catastrophes in both a dose- and time-dependent manner and dramatically increased the distances between microtubule tips and the cell border. Treatment of HYS-32 (5 μM) eliminated EB1 localization at the microtubule plus ends and resulted in an extensive redistribution of EB1 to the microtubule lattice without affecting the β-tubulin or EB1 protein expression. Time-lapse experiments with immunoprecipitation further displayed that the association between EB-1 and β-tubulin was significantly decreased following a short-term treatment (2 h), but gradually increased in a prolonged treatment (6-24 h) with HYS-32. Further, HYS-32 treatment induced GSK3β phosphorylation at Y216 and S9, where the ratio of GSK3β-pY216 to GSK3β-pS9 was first elevated followed by a decrease over time. Co-treatment of astrocytes with HYS-32 and GSK3β inhibitor SB415286 attenuated the HYS-32-induced microtubule catastrophes and partially prevented EB1 dissociation from the plus end of microtubules. Furthermore, co-treatment with PI3K inhibitor LY294002 inhibited HYS-32-induced GSK3β-pS9 and partially restored EB1 distribution from the microtubule lattice to plus ends. Together these findings suggest that HYS-32 induces microtubule catastrophes by preventing EB1 from targeting to microtubule plus ends through the GSK3β signaling pathway.  相似文献   

4.
Intestinal epithelial cell (IEC) apoptosis induced by hypoxia compromise intestinal epithelium barrier function. Both Akt and Hsp90 have cytoprotective function. However, the specific role of Akt and Hsp90β in IEC apoptosis induced by hypoxia has not been explored. We confirmed that hypoxia-induced apoptosis was reduced by Hsp90β overexpression but enhanced by decreasing Hsp90β expression. Hsp90β overexpression enhanced BAD phosphorylation and thus reduced mitochondrial release of cytochrome C. Reducing Hsp90β expression had opposite effects. The protective effect of Hsp90β against apoptosis was negated by LY294002, an Akt inhibitor. Further study showed that Akt phosphorylation was enhanced by Hsp90β, which was not due to the activation of upstream PI3K and PDK1 but because of stabilization of pAkt via direct interaction between Hsp90β and pAkt. These results demonstrate that Hsp90β may play a significant role in protecting IECs from hypoxia-induced apoptosis via stabilizing pAkt to phosphorylate BAD and reduce cytochrome C release. [BMB Reports 2013;46(1): 47-52]  相似文献   

5.
Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson’s model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK3β) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine473) and GSK3β (Serine9). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons.  相似文献   

6.
As important members of nuclear receptor superfamily, Peroxisome proliferator-activated receptors (PPAR) play essential roles in regulating cellular differentiation, development, metabolism, and tumorigenesis of higher organisms. The PPAR receptors have 3 identified subtypes: PPARα, PPARβ and PPARγ, all of which have been treated as attractive targets for developing drugs to treat type 2 diabetes. Due to the undesirable side-effects, many PPAR agonists including PPARα/γ and PPARβ/γ dual agonists are stopped by US FDA in the clinical trials. An alternative strategy is to design novel pan-agonist that can simultaneously activate PPARα, PPARβ and PPARγ. Under such an idea, in the current study we adopted the core hopping algorithm and glide docking procedure to generate 7 novel compounds based on a typical PPAR pan-agonist LY465608. It was observed by the docking procedures and molecular dynamics simulations that the compounds generated by the core hopping and glide docking not only possessed the similar functions as the original LY465608 compound to activate PPARα, PPARβ and PPARγ receptors, but also had more favorable conformation for binding to the PPAR receptors. The additional absorption, distribution, metabolism and excretion (ADME) predictions showed that the 7 compounds (especially Cpd#1) hold high potential to be novel lead compounds for the PPAR pan-agonist. Our findings can provide a new strategy or useful insights for designing the effective pan-agonists against the type 2 diabetes.  相似文献   

7.
8.

Objective

Tetrameric α2-macroglobulin (α2M), a plasma panproteinase inhibitor, is activated upon interaction with a proteinase, and undergoes a major conformational change exposing a receptor recognition site in each of its subunits. Activated α2M (α2M*) binds to cancer cell surface GRP78 and triggers proliferative and antiapoptotic signaling. We have studied the role of α2M* in the regulation of mTORC1 and TORC2 signaling in the growth of human prostate cancer cells.

Methods

Employing immunoprecipitation techniques and Western blotting as well as kinase assays, activation of the mTORC1 and mTORC2 complexes, as well as down stream targets were studied. RNAi was also employed to silence expression of Raptor, Rictor, or GRP78 in parallel studies.

Results

Stimulation of cells with α2M* promotes phosphorylation of mTOR, TSC2, S6-Kinase, 4EBP, AktT308, and AktS473 in a concentration and time-dependent manner. Rheb, Raptor, and Rictor also increased. α2M* treatment of cells elevated mTORC1 kinase activity as determined by kinase assays of mTOR or Raptor immunoprecipitates. mTORC1 activity was sensitive to LY294002 and rapamycin or transfection of cells with GRP78 dsRNA. Down regulation of Raptor expression by RNAi significantly reduced α2M*-induced S6-Kinase phosphorylation at T389 and kinase activity in Raptor immunoprecipitates. α2M*-treated cells demonstrate about a twofold increase in mTORC2 kinase activity as determined by kinase assay of AktS473 phosphorylation and levels of p-AktS473 in mTOR and Rictor immunoprecipitates. mTORC2 activity was sensitive to LY294002 and transfection of cells with GRP78 dsRNA, but insensitive to rapamycin. Down regulation of Rictor expression by RNAi significantly reduces α2M*-induced phosphorylation of AktS473 phosphorylation in Rictor immunoprecipitates.

Conclusion

Binding of α2M* to prostate cancer cell surface GRP78 upregulates mTORC1 and mTORC2 activation and promotes protein synthesis in the prostate cancer cells.  相似文献   

9.
Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were investigated (targets in parentheses): wortmannin and LY294002 (pan-p110), PIK75 (α), GDC0941 (α, δ), TGX221 (β), AS252424 (γ), and IC87114 (δ). In addition, we characterized a new potent and selective PI3Kδ inhibitor, GS-9820, and explored roles of PI3K isoforms in regulating osteoclast function. Osteoclasts were isolated from long bones of neonatal rats and rabbits. Wortmannin, LY294002, GDC0941, IC87114, and GS-9820 induced a dramatic retraction of osteoclasts within 15–20 min to 65–75% of the initial area. In contrast, there was no significant retraction in response to vehicle, PIK75, TGX221, or AS252424. Moreover, wortmannin and GS-9820, but not PIK75 or TGX221, disrupted actin belts. We examined effects of PI3K inhibitors on osteoclast survival. Whereas PIK75, TGX221, and GS-9820 had no significant effect on basal survival, all blocked RANKL-stimulated survival. When studied on resorbable substrates, osteoclastic resorption was suppressed by wortmannin and inhibitors of PI3Kβ and PI3Kδ, but not other isoforms. These data are consistent with a critical role for PI3Kδ in regulating osteoclast cytoskeleton and resorptive activity. In contrast, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, the PI3Kδ isoform, which is predominantly expressed in cells of hematopoietic origin, is an attractive target for anti-resorptive therapeutics.  相似文献   

10.
SARA has been shown to be a regulator of epithelial cell phenotype, with reduced expression during TGF-β1-mediated epithelial-to-mesenchymal transition. Examination of the pathways that might play a role in regulating SARA expression identified phosphatidylinositol 3-kinase (PI3K) pathway inhibition as sufficient to reduce SARA expression. The mechanism of PI3K inhibition-mediated SARA down-regulation differs from that induced by TGF-β1 in that, unlike TGF-β1, PI3K-dependent depletion of SARA was apparent within 6 h and did not occur at the mRNA or promoter level but was blocked by inhibition of proteasome-mediated degradation. This effect was independent of Akt activity because neither reducing nor enhancing Akt activity modulated the expression of SARA. Therefore, this is likely a direct effect of p85α action, and co-immunoprecipitation of SARA and p85α confirmed that these proteins interact. Both SARA and PI3K have been shown to be associated with endosomes, and either LY294002 or p85α knockdown enlarged SARA-containing endocytic vesicles. Inhibition of clathrin-mediated endocytosis blocked SARA down-regulation, and a localization-deficient mutant SARA was protected against down-regulation. As inhibiting PI3K can activate the endosomal fusion-regulatory small GTPase Rab5, we expressed GTPase-deficient Rab5 and observed endosomal enlargement and reduced SARA protein expression, similar to that seen with PI3K inhibition. Importantly, either interference with PI3K via LY294002 or p85α knockdown, or constitutive activity of the Rab5 pathway, enhanced the expression of smooth muscle α-actin. Together, these data suggest that although TGF-β1 can induce epithelial-to-mesenchymal transition through reduction in SARA expression, SARA is also basally regulated by its interaction with PI3K.  相似文献   

11.

Background

Physical exercise has been shown to increase adult neurogenesis in the dentate gyrus and enhances synaptic plasticity. The antiapoptotic kinase, Akt has also been shown to be phosphorylated following voluntary exercise; however, it remains unknown whether the PI3K-Akt signaling pathway is involved in exercise-induced neurogenesis and the associated facilitation of synaptic plasticity in the dentate gyrus.

Methodology/Principal Findings

To gain insight into the potential role of this signaling pathway in exercise-induced neurogenesis and LTP in the dentate gyrus rats were infused with the PI3K inhibitor, LY294002 or vehicle control solution (icv) via osmotic minipumps and exercised in a running wheel for 10 days. Newborn cells in the dentate gyrus were date-labelled with BrdU on the last 3 days of exercise. Then, they were either returned to the home cage for 2 weeks to assess exercise-induced LTP and neurogenesis in the dentate gyrus, or were killed on the last day of exercise to assess proliferation and activation of the PI3K-Akt cascade using western blotting.

Conclusions/Significance

Exercise increases cell proliferation and promotes survival of adult-born neurons in the dentate gyrus. Immediately after exercise, we found that Akt and three downstream targets, BAD, GSK3β and FOXO1 were activated. LY294002 blocked exercise-induced phosphorylation of Akt and downstream target proteins. This had no effect on exercise-induced cell proliferation, but it abolished most of the beneficial effect of exercise on the survival of newly generated dentate gyrus neurons and prevented exercise-induced increase in dentate gyrus LTP. These results suggest that activation of the PI3 kinase-Akt signaling pathway plays a significant role via an antiapoptotic function in promoting survival of newly formed granule cells generated during exercise and the associated increase in synaptic plasticity in the dentate gyrus.  相似文献   

12.
The homeostasis of protein metabolism is maintained and regulated by the rates of protein biosynthesis and degradation in living systems. Alterations of protein degradation may regulate protein biosynthesis through a feedback mechanism. Whether a change in protein biosynthesis modulates protein degradation has not been reported. In this study, we found that inhibition of protein biosynthesis induced phosphorylation/activation of AKT and led to phosphorylation of AKT target substrates, including FoxO1, GSK3α/β, p70S6K, AS160, and the E3 ubiquitin ligase MDM2. Phosphorylation of ribosomal protein S6 was also modulated by inhibition of protein biosynthesis. The AKT phosphorylation/activation was mediated mainly through the PI3K pathway because it was blocked by the PI3K inhibitor LY294002. The activated AKT phosphorylated MDM2 at Ser166 and promoted degradation of the tumor suppressor p53. These findings suggest that inhibition of protein biosynthesis can alter degradation of some proteins through activation of AKT. This study reveals a novel regulation of protein degradation and calls for caution in blocking protein biosynthesis to study the half-life of proteins.  相似文献   

13.
14.
Histamine H1 receptor (H1R) is one of the targets of histamine in the nervous system and the peripheral tissues. Protein kinase Cδ (PKCδ) signaling is involved in histamine-induced upregulation of H1R gene expression in HeLa cells. Histamine also upregulates H1R gene expression in U-373 MG cells. However, the molecular signaling of this upregulation is still unclear. Here, we investigated the molecular mechanism of histamine-induced H1R gene upregulation in U-373 MG cells. Histamine-induced H1R gene upregulation was inhibited by H1R antagonist d-chlorpheniramine, but not by ranitidine, ciproxifan, or JNJ77777120, and H2R, H3R, or H4R antagonists, respectively. Ro-31-8220 and Go6976 also suppressed this upregulation, however, the PKCδ selective inhibitor rottlerin and the PKCβ selective inhibitor Ly333531 did not. Time-course studies showed distinct kinetics of H1R gene upregulation in U-373 MG cells from that in HeLa cells. A promoter assay revealed that the promoter region responsible for H1R gene upregulation in U-373 MG cells was different from that of HeLa cells. These data suggest that the H1R-activated H1R gene expression signaling pathway in U-373 MG cells is different from that in HeLa cells, possibly by using different promoters. The involvement of PKCα also suggests that compounds that target PKCδ could work as peripheral type H1R-selective inhibitors without a sedative effect.  相似文献   

15.
Autophagy can lead to cell death in response to stress, but it can also act as a protective mechanism for cell survival. We show that TGF-β1 induces autophagy and protects glomerular mesangial cells from undergoing apoptosis during serum deprivation. Serum withdrawal rapidly induced autophagy within 1 h in mouse mesangial cells (MMC) as determined by increased microtubule-associated protein 1 light chain 3 (LC3) levels and punctate distribution of the autophagic vesicle-associated-form LC3-II. We demonstrate that after 1 h there was a time-dependent decrease in LC3 levels that was accompanied by induction of apoptosis, evidenced by increases in cleaved caspase 3. However, treatment with TGF-β1 resulted in induction of the autophagy protein LC3 while suppressing caspase 3 activation. TGF-β1 failed to rescue MMC from serum deprivation-induced apoptosis upon knockdown of LC3 by siRNA and in MMC from LC3 null (LC3−/−) mice. We show that TGF-β1 induced autophagy through TAK1 and Akt activation, and inhibition of PI3K-Akt pathway by LY294002 or dominant-negative Akt suppressed LC3 levels and enhanced caspase 3 activation. TGF-β1 also up-regulated cyclin D1 and E protein levels while down-regulating p27, thus stimulating cell cycle progression. Bafilomycin A1, but not MG132, blocked TGF-β1 down-regulation of p27, suggesting that p27 levels were regulated through autophagy. Taken together, our data indicate that TGF-β1 rescues MMC from serum deprivation-induced apoptosis via induction of autophagy through activation of the Akt pathway. The autophagic process may constitute an adaptive mechanism to glomerular injury by inhibiting apoptosis and promoting mesangial cell survival.  相似文献   

16.
Though hypoxia has been implicated as a cause of inflammation, the underlying mechanism is not well understood. Folic acid has been shown to provide protection against oxidative stress and inflammation in patients with cardiovascular disease and various models approximating insult to tissue via inflammation. It has been reported that hypoxia-induced inflammation is associated with oxidative stress, upregulation of hypoxia-inducible factor 1-alpha (HIF-1α), and production of pro-inflammatory molecules. Whether folic acid protects human monocytic cells (THP-1 cells) against hypoxia-induced damage, however, remains unknown. We used THP-1 cells to establish a hypoxia-induced cellular injury model. Pretreating THP-1 cells with folic acid attenuated hypoxia-induced inflammatory responses, including a decrease in protein and mRNA levels of interleukin (IL)-1β and tumor necrosis factor-alpha (TNF-α), coupled with increased levels of IL-10. Folic acid also reduced hypoxia-induced Akt phosphorylation and decreased nuclear accumulation of HIF-1α protein. Both LY294002 (a selective inhibitor of phosphatidyl inositol-3 kinase, PI3K) and KC7F2 (a HIF-1α inhibitor) reduced levels of hypoxia-induced inflammatory cytokines. We also found that insulin (an Akt activator) and dimethyloxallyl glycine (DMOG, a HIF-1α activator) induced over-expression of inflammatory cytokines, which could be blocked by folic acid. Taken together, these findings demonstrate how folic acid attenuates the hypoxia-induced inflammatory responses of THP-1 cells through inhibition of the PI3K/Akt/HIF-1α pathway.  相似文献   

17.

Background

Hypoxia-inducible factor-1 alpha (HIF-1α) is one of the key regulators of hypoxia/ischemia. MicroRNA-494 (miR-494) had cardioprotective effects against ischemia/reperfusion (I/R)-induced injury, but its functional relationship with HIF-1α was unknown. This study was undertaken to determine if miR-494 was involved in the induction of HIF-1α.

Results

Quantitative RT-PCR showed that miR-494 was up-regulated to peak after 4 hours of hypoxia in human liver cell line L02. To investigate the role of miR-494, cells were transfected with miR-494 mimic or miR-negative control, followed by incubation under normoxia or hypoxia. Our results indicated that overexpression of miR-494 significantly induced the expression of p-Akt, HIF-1α and HO-1 determined by qRT-PCR and western blot under normoxia and hypoxia, compared to negative control (p < 0.05). While LY294002 treatment markedly abolished miR-494-inducing Akt activation, HIF-1α and HO-1 increase under both normoxic and hypoxic conditions (p < 0.05). Moreover, apoptosis detection using Annexin V indicated that overexpression of miR-494 significantly decreased hypoxia-induced apoptosis in L02 cells, compared to control (p < 0.05). MiR-494 overexpression also decreased caspase-3/7 activity by 1.27-fold under hypoxia in L02 cells.

Conclusions

Overexpression of miR-494 upregulated HIF-1α expression through activating PI3K/Akt pathway under both normoxia and hypoxia, and had protective effects against hypoxia-induced apoptosis in L02 cells. Thus, these findings suggested that miR-494 might be a target of therapy for hepatic hypoxia/ischemia injury.  相似文献   

18.
Bacterial flagellin triggers inflammatory responses. Phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) regulate the production of pro- and anti-inflammatory cytokines that are induced by extrinsic antigens, but the function of mTORC1 in flagellin-induced inflammatory response is unknown. The purpose of this study was to examine the role and the mechanism of PI3K/Akt/mTOR pathway in flagellin-induced cytokine expression in mouse macrophages. We observed that flagellin upregulated TNF-α time- and dose-dependently. Flagellin stimulated rapid (<15 min) PI3K/Akt/mTOR phosphorylation that was mediated by TLR5. Inhibition of PI3K with LY294002 and wortmannin, and of mTORC1 with rapamycin decreased flagellin-induced TNF-α and IL-6 expression and cell proliferation. The activation of NF-κB p65 and STAT3 was regulated by mTORC1 via degradation of IκBα and phosphorylation of STAT3 in response to flagellin, respectively. Thus, the PI3K/Akt/mTORC1 pathway regulates the innate immune response to bacterial flagellin. Rapamycin is potential therapy that can regulate host defense against pathogenic infections.  相似文献   

19.
Perlecan Domain V (DV) promotes brain angiogenesis by inducing VEGF release from brain endothelial cells (BECs) following stroke. In this study, we define the specific mechanism of DV interaction with the α5β1 integrin, identify the downstream signal transduction pathway, and further investigate the functional significance of resultant VEGF release. Interestingly, we found that the LG3 portion of DV, which has been suggested to possess most of DV’s angio-modulatory activity outside of the brain, binds poorly to α5β1 and induces less BEC proliferation compared to full length DV. Additionally, we implicate DV’s DGR sequence as an important element for the interaction of DV with α5β1. Furthermore, we investigated the importance of AKT and ERK signaling in DV-induced VEGF expression and secretion. We show that DV increases the phosphorylation of ERK, which leads to subsequent activation and stabilization of eIF4E and HIF-1α. Inhibition of ERK activity by U0126 suppressed DV-induced expression and secretion of VEGR in BECs. While DV was capable of phosphorylating AKT we show that AKT phosphorylation does not play a role in DV’s induction of VEGF expression or secretion using two separate inhibitors, LY294002 and Akt IV. Lastly, we demonstrate that VEGF activity is critical for DV increases in BEC proliferation, as well as angiogenesis in a BEC-neuronal co-culture system. Collectively, our findings expand our understanding of DV’s mechanism of action on BECs, and further support its potential as a novel stroke therapy.  相似文献   

20.
Chemotaxis is a process by which cells polarize and move up a chemical gradient through the spatiotemporal regulation of actin assembly and actomyosin contractility, which ultimately control front protrusions and back retractions. We previously demonstrated that in neutrophils, mammalian target of rapamycin complex 2 (mTORC2) is required for chemoattractant-mediated activation of adenylyl cyclase 9 (AC9), which converts ATP into cAMP and regulates back contraction through MyoII phosphorylation. Here we study the mechanism by which mTORC2 regulates neutrophil chemotaxis and AC9 activity. We show that inhibition of protein kinase CβII (PKCβII) by CPG53353 or short hairpin RNA knockdown severely inhibits chemoattractant-induced cAMP synthesis and chemotaxis in neutrophils. Remarkably, PKCβII-inhibited cells exhibit specific and severe tail retraction defects. In response to chemoattractant stimulation, phosphorylated PKCβII, but not PKCα, is transiently translocated to the plasma membrane, where it phosphorylates and activates AC9. mTORC2-mediated PKCβII phosphorylation on its turn motif, but not its hydrophobic motif, is required for membrane translocation of PKCβII. Inhibition of mTORC2 activity by Rictor knockdown not only dramatically decreases PKCβII activity, but it also strongly inhibits membrane translocation of PKCβII. Together our findings show that PKCβII is specifically required for mTORC2-dependent AC9 activation and back retraction during neutrophil chemotaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号