首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modular Xylanase XynA from Thermotoga maritima consists of five domains (A1-A2-B-C1-C2). Two similar N-terminal domains (A1-A2-) are family 22 carbohydrate-binding modules (CBMs), followed by the catalytic domain (-B-) belonging to glycoside hydrolase family 10, and the C-terminal domains (-C1-C2), which are members of family 9 of CBMs. The gradual deletion of the non-catalytic domains resulted in deletion derivatives (XynAΔC; XynAΔA1C and XynAΔNC) with increased maximum activities (V max) at 75°C, pH 6.2. Furthermore, these deletions led to a shift of the optimal NaCl concentration for xylan hydrolysis from 0.25 (XynA) to 0.5 M (XynAΔNC). In the presence of the family 22 CBMs, the catalytic domain retained more activity in the acidic range of the pH spectrum than without these domains. In addition to the deletion derivatives of XynA, the N-terminal domains A1 and A2 were produced recombinantly, purified, and investigated in binding studies. For soluble xylan preparations, linear β-1,4-glucans and mixed-linkage β-1,3-1,4-glucans, only the A2 domain mediated binding, not the A1 domain, in accordance with previous observations. The XynA deletion enzymes lacking the C domains displayed low affinity also to hydroxyethylcellulose and carboxymethylcellulose. With insoluble oat spelt xylan and birchwood xylan as the binding substrates, the highest affinity was observed with XynAΔC and the lowest affinity with XynAΔNC. Although the domain A1 did not bind to soluble xylan preparations, the insoluble oat spelt xylan-binding data suggest that this domain does play a role in substrate binding in that it improves the binding to insoluble xylans.  相似文献   

2.
Purification and characterization of barley-aleurone xylanase   总被引:1,自引:0,他引:1  
Xylanase (-1,4-D-xylan xylanohydrolase; EC 3.2.1.8) from aleurone layers of barley (Hordeum vulgare L. cv. Himalaya) was purified and characterized. Purification was by preparative isoelectric focusing and a Sephadex G-200 column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme showed a single protein band with an apparent molecular weight (Mr)=34000 daltons. The isoelectric point of the enzyme was 4.6. The enzyme had maximum activity on xylan at pH 5.5 and at 35° C. It was most stable between pH 5 and 6 and at temperatures between 0 and 4° C. The Km was 0.86 mg xylan·ml-1.Abbreviations GA3 gibberellic acid - kDa kilodalton - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

3.
A beta-xylanase (XynIII) of Acrophialophora nainiana was purified to homogeneity from the culture supernatant by ultrafiltration and a combination of ion exchange and gel filtration chromatographic methods. It was optimally active at 55 degrees C and pH 6.5. XynIII had molecular masses of 27.5 and 54 kDa, as estimated by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The purified enzyme hydrolyzed preferentially xylan as the substrate. The half-lives of XynIII at 50 and 60 degrees C were 96 and 1 h, respectively. It was activated by L-tryptophan, dithiothreitol, 5,5-dithio-bis(2-nitrobenzoic acid, L-cysteine and beta-mercaptoethanol and strongly inhibited by N-bromosuccinimide. The presence of carbohydrate was detected in the pure XynIII.  相似文献   

4.
Purification and characterization of xylanase from Aspergillus ficuum AF-98   总被引:1,自引:0,他引:1  
Lu F  Lu M  Lu Z  Bie X  Zhao H  Wang Y 《Bioresource technology》2008,99(13):5938-5941
The purification and characterization of xylanase from Aspergillus ficuum AF-98 were investigated in this work. The extracellular xylanase from this fungal was purified 32.6-fold to homogeneity throughout the precipitation with 50–80% (NH4)2SO4, DEAE-Sephadex A-50 ion exchange chromatography and Sephadex G-100 chromatography. The purified xylanase (specific activity at 288.7 U/ mg protein) was a monomeric protein with a molecular mass of 35.0 kDa as determined by SDS-PAGE. The optimal temperature and pH for the action of the enzyme were at 45 °C and 5.0, respectively. The xylanase was activated by Cu2+ up to 115.8% of activity, and was strongly inhibited by Hg2+, Pb2+ up to 52.8% and 89%, respectively. The xylanase exhibited Km and Vmax values of 3.267 mg/mL, 18.38 M/min/mg for beechwood xylan and 3.747 mg/mL, 11.1 M/min/mg for birchwood xylan, respectively.  相似文献   

5.
Abstract Alkali-tolerant Aspergillus fischeri Fxn1 produced two extracellular xylanases. The major xylanase ( M r 31000) was purified to electrophoretic homogeneity by ammonium sulfate precipitation, anion exchange chromatography and preparatory PAGE. Xylose was the major hydrolysis product from oat spelt and birch wood xylans. It was completely free of cellulolytic activities. The optimum pH and temperature were 6.0 and 60 °C, respectively. pH stability ranged from 5 to 9.5 and the t1 / 2 at 50 °C was 490 min. It had a K m of 4.88 mg ml−1and a V max of 588 μmol min−1 mg−1. The activity was inhibited (95%) by AlCl3 (10 mM). This enzyme appears to be novel and will be useful for studies on the mechanism of hydrolysis of xylan by xylanolytic enzymes.  相似文献   

6.
There is a great interest in xylanases due to the wide variety of industrial applications for these enzymes. We cloned a xylanase gene (xyn8) from an environmental genomic DNA library. The encoded enzyme was predicted to be 399 amino acids with a molecular weight of 45.9 kD. The enzyme was categorized as a glycosyl hydrolase family 8 member based on sequence analysis of the putative catalytic domain. The purified enzyme was thermolabile, had an activity temperature optimum of 20°C on native xylan substrate, and retained significant activity at lower temperatures. At 4°C, the apparent K m was 3.7 mg/ml, and the apparent k cat was 123/s.Reference to a company and/or products is only for the purposes of information and does not imply approval or recommendation of the product to the exclusion of others which may also be suitable. All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, age, marital status, or handicap.  相似文献   

7.
《Process Biochemistry》2014,49(3):451-456
An extracellular and cellulase-free xylanase (EX624) was produced by Streptomyces sp. CS624 using an agricultural residue (wheat bran) as a growth substrate. EX624 was purified from culture supernatant using ammonium sulfate precipitation, ion exchange and gel filtration chromatography. The SDS-PAGE and the zymogram analysis of the purified xylanase indicated molecular mass of 40 kDa. Biochemical characterization of the purified EX624 revealed its highest activity at a temperature of 60 °C and pH 6.0. The xylanase was adequately stable in the pH range 4.5–10.0 and at temperatures ≤50 °C. EX624 displayed enhanced activity in the presence of several metal ions including Fe2+, Co2+ and Ca2+. HPLC results showed that EX624 was not only able to hydrolyze commercially available pure beechwood xylan to xylose, xylobiose and xylotriose, but also abundantly available lignocellulosic agricultural residues in nature such as wheat bran to xylooligosaccharides.  相似文献   

8.
Fishery‐independent sampling was used to determine growth patterns, life span, mortality rates and timing of maturation and sex change in 12 common parrotfishes (Labridae: tribe Scarinae) from five genera (Calotomus, Cetoscarus, Chlorurus, Hipposcarus and Scarus) in Micronesia. Interspecific variation in life‐history traits was explored using multivariate analysis. All species displayed strong sex‐specific patterns of length‐at‐age among which males reached larger asymptotic lengths. There was a high level of correlation among life‐history traits across species. Relationships between length‐based and age‐based variables were weakest, with a tenuous link between maximum body size and life span. Cluster analysis based on similarities among life‐history traits demonstrated that species were significantly grouped at two major levels. The first grouping was driven by length‐based variables (lengths at maturity and sex change and maximum length) and separated the small‐ and large‐bodied species. Within these, species were grouped by age‐based variables (age at maturity, mortality and life span). Groupings based on demographic and life‐history features were independent of phylogenetic relationships at the given taxonomic level. The results reiterate that body size is an important characteristic differentiating species, but interspecific variation in age‐based traits complicates its use as a life‐history proxy. Detailed life‐history metrics should facilitate future quantitative assessments of vulnerability to overexploitation in multispecies fisheries.  相似文献   

9.
The distribution of two xylanase genes was examined by Southern hybridization among 26 strains of the rumen anaerobic bacterium Prevotella (Bacteroides) ruminicola. Hybridization with a xylanase/endoglucanase gene from the type strain 23 was found in six strains while hybridization with a xylanase gene from strain D31d was found in 14 strains. Sequences related to both genes were present, on different restriction fragments, in six strains, whereas no hybridization to either gene was detected in five other strains capable of hydrolysing xylan, or in seven strains that showed little or no xylanase activity. Zymogram analyses of seven xylanolytic strains of P. ruminicola demonstrated interstrain variation in the apparent molecular masses of the major xylanases and carboxymethylcellulases that could be renatured following SDS polyacrylamide gel electrophoresis.  相似文献   

10.
Mammalian calreticulin (CRT) is a key molecular chaperone and regulator of Ca2+ homeostasis in endoplasmic reticulum (ER), also being implicated in a variety of physiological/pathological processes outside the ER. Importantly, it is involved in assembly of MHC class I molecules. In this work, sea bass (Dicentrarchus labrax) CRT (Dila-CRT) gene and cDNA have been isolated and characterized. The mature protein retains two conserved motifs, three structural/functional domains (N, P and C), three type 1 and 2 motifs repeated in tandem, a conserved pair of cysteines and ER-retention motif. It is a single-copy gene composed of 9 exons. Dila-CRT three-dimensional homology models are consistent with the structural features described for mammalian molecules. Together, these results are supportive of a highly conserved structure of CRT through evolution. Moreover, the present data provides information that will allow further studies on sea bass CRT involvement in immunity and in particular class I antigen presentation.  相似文献   

11.
A synthetic xylanase as a novel reporter in plants   总被引:2,自引:0,他引:2  
Transient gene expression assays are often used to screen promoters before stable transformation. Current transient quantification methods have several problems, including a lack of reporter gene stability and expense. Here we report a synthetic, codon-optimised xylanase gene (sXynA) as a reporter gene for quantitative transient analyses in plants. Azurine-crosslinked xylan (AZCL-xylan) was used as a substrate for assaying xylanase activity. The enzymatic nature of the protein allows for sensitive assays at the low levels of transgene protein found in transiently transformed tissue extracts. The xylanase (XYN) protein is stable, activity slopes are linear over long time periods and assays are cost-effective. Coupled with the GUSPlus reporter gene, the XYN reporter allows sensitive and accurate quantification of gene control sequences in transient expression systems.Abbreviations Act1 Rice actin promoter - AZCL-xylan Azurine cross-linked xylan - AU absorbance units - Blt4.9 Barley lipid transfer protein promoter - GEB GUS extraction buffer - GFP Green fluorescent protein - GluB-1 Rice glutelin B-1 promoter - GUS -Glucuronidase - LUC Luciferase - sXynA Synthetic xylanase A gene - Ubi-1 Maize ubiquitin promoter - XAB Xylanase assay buffer - XYN Xylanase Communicated by P. Lakshmanan  相似文献   

12.
Abstract The xynC gene from mesophilic Cellulomonas fimi encodes a large 125 kDa modular xylanase (XYLC), consisting of six distinct functional domains. In addition to a single Family 10 catalytic domain, XYLC contains a domain homologous with the nodulation protein, NodB, from nitrogen-fixing bacteria and therrnostabilizing and cellulose-binding domains found previously only in xylanases from thermophilic bacteria.  相似文献   

13.
Principle component analysis in F/10 and G/11 xylanase   总被引:13,自引:0,他引:13  
A bioinformatics method was used to analyze F/10 and G/11 xylanase basing on principle component analysis, and a model was made to classify between these two folds with an ideal result. The principle components were predicated to be secondary structures, the components were analyzed with the architecture of each family, and found comparable with (beta/alpha)(8)-barrel of F/10 xylanase and right-hand structure of G/11 xylanase. Compared with sequence similarities, this method gave discriminating features a clear meaning. The largest component did not appear in the model, which revealed no difference between these two families.  相似文献   

14.
The xylanase R8 gene (xynR8) from uncultured rumen fungi was cloned and successfully expressed in Lactobacillus reuteri. A xylanase activity of 132.1 U/mL was found in the broth of L. reuteri R8, the transformant containing pNZ3004 vector with xynR8 gene insertion. Two distinct forms of recombinant xylanase with different hydrophobicities and molecular weights were found in the broth after purification. According to the results of Western blotting, only the T7-tag, fused in the N-terminus of XynR8, could be bound to the expressed proteins, which indicated that the C-terminus of XynR8 had been truncated. These results, combined with tryptic digestion and mass spectrometry analyses, allow us to attribute the two xylanase forms to an optional cleavage of C-terminal sequences, and XynR8A, a 13 amino acid residues truncated form, and XynR8B, a 22 amino acid residues truncated form, were the main products in the extracellular fraction of L. reuteri R8. The specific activities of XynR8A and R8B were 1028 and 395 U/mg protein. Both forms of recombinant xylanase displayed a typical endoxylanase activity when they were reacted with xylan, but XynR8A demonstrated a better specific activity, catalytic efficiency and thermostability than XynR8B according to the results of enzyme characterization. These changes in enzyme properties were highly possibly caused by the present of the β-sheet in the C-terminal undeleted fragment of XynR8A. This study demonstrates that modified forms with different enzyme properties could be produced when a gene was recombinantly expressed by a L. reuteri transformant.  相似文献   

15.
ABSTRACT

Many phenolic compounds, derived from lignin during the pretreatment of lignocellulosic biomass, could obviously inhibit the activity of cellulolytic and hemicellulolytic enzymes. Acetosyringone (AS) is one of the phenolic compounds produced from lignin degradation. In this study, we investigated the inhibitory effects of AS on xylanase activity through kinetic experiments. The results showed that AS could obviously inhibit the activity of xylanase in a reversible and noncompetitive binding manner (up to 50% activity loss). Inhibitory kinetics and constants of xylanase on AS were conducted by the HCH-1 model (β = 0.0090 ± 0.0009 mM?1). Furthermore, intrinsic and 8-anilino-1-naphthalenesulfonic (ANS)-binding fluorescence results showed that the tertiary structure of AS-mediated xylanase was altered. These findings provide new insights into the role of AS in xylanase activity. Our results also suggest that AS was an inhibitor of xylanase and targeting AS was a potential strategy to increase xylose production.  相似文献   

16.
摘要:【目的】从耐碱性木聚糖酶高产短小芽孢杆菌中克隆得到带有自身启动子的木聚糖酶基因,将其在巨大芽孢杆菌中进行表达,并对表达产物进行性质分析。【方法】将克隆得到的木聚糖酶基因xynA以及带有自身启动子序列的结构基因, 构建在芽孢杆菌表达载体pWH1520和改造后的载体pWG03中,得到重组质粒pWTEJX和pWGXYN,分别转化到巨大芽孢杆菌BM70中,获得重组巨大芽孢杆菌BMJXH9和BMGpp12;经过诱导产酶培养,均得到分泌表达。【结论】重组巨大芽孢杆菌BMGpp12比BMJXH9产酶活力提高了三倍  相似文献   

17.
18.
The heterologous secretion of xylanase B from Penicillium purpurogenum using glucose as inducer was performed in Aspergillus nidulans. For this purpose, plasmid pEVXB, containing the xylanase B cDNA (including its own signal peptide) under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter, was constructed and used to transform A. nidulans. Analysis of transformed clones showed that several of them secreted extracellular xylanase activity when grown in a medium containing glucose. The clone showing the highest xylanase activity was chosen for further work. When this clone was grown on glucose, xylanase activity (0.72 U/ml), was detected in the culture supernatant. This was confirmed by a zymogram analysis and by the amplification of xynB cDNA from this clone. To our knowledge, this is the first example of the production of a xylanase from Penicillium in heterologous fungal hosts using glucose as inducer.  相似文献   

19.
Screening interesting biocatalysts directly from soil samples is a more convenient and applicable approach than conventional cultivation-dependent ones. In our present work, a soil-derived metagenomic library containing 24,000 transformants was constructed with an efficient strategy for cloning xylanase genes. A gene encoding the enzyme (XynH) able to hydrolyze xylan was obtained. Similarity analysis revealed that this enzyme is a new member in the family 10 of xylanases. The molecular mass of XynH purified from Escherichia coli was estimated to be 39 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. It was found to display the maximal activity at lower temperature, under weakly alkaline conditions, different from most of xylanases. The K m and Vmax values of XynH with birchwood xylan as substrate are 7.5 mg/ml and 190 μmol min−1 mg−1, respectively. It is greatly interesting to note that the activity of XynH was not reduced significantly by Mn2+, Zn2+, Co2+, Ag+, and Cu2+, even at the concentration of 5 mM, which strongly inhibits most of the other xylanases studied previously. Yong Hu and Guimin Zhang contributed equally to this work.  相似文献   

20.
Small ubiquitin-related modifier (SUMO) genes regulate various functions of target proteins through post-translational modification. The SUMO proteins have a similar 3-dimensional structure as that of ubiquitin proteins and occur through a cascade of enzymatic reactions. In the present study we have cloned a new SUMO gene from Tomato (Solanum lycopersicum L.), cv Saudi-1, named SlS-SUMO1 gene by PCR using specific primers. This gene has SUMO member's features such as C-terminal diglycine (GG) motif as processing site by ULP (ubiquitin-like SUMO protease) and has SUMO consensus ΨKXE/D sequence. Phylogenetic analysis showed that SlS-SUMO1 gene is highly conserved and homologous to Potatoes Ca-SUMO1 and Ca-SUMO2 genes based on sequence similarity. Expression protein of SlS-SUMO1 gene found to be localized in the nucleus, cytoplasm, and nuclear envelop or nuclear pore complex. SUMO conjugating enzyme SCE1a with SlS-SUMO1 protein co-expressed and co-localized in nucleus and formed nuclear subdomains. This study reported that the SlS-SUMO1 gene is a member of SUMO family and its SUMO protein processing using GG motif and activate and transport to nucleus through Sumoylation system in the plant cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号