首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of creatine phosphate (CP) by mitochondrial creatine kinase during oxidative phosphorylation was terminated when the mass action ratio of the creatine kinase reaction = [ADP]·[CP][ATP]·[Cr] became equal to the apparent equilibrium constant (K eq app) of this reaction. Subsequent excess of over the K eq app was due to an increase in the ADP concentration in the medium. A comparable increase in the ADP concentration also occurred in the absence of creatine (Cr) in the incubation medium. Increase in the ADP concentration was shown to be associated with a decrease in the rate of oxidative phosphorylation and with a relative increase in the ATPase activity of mitochondria during the incubation. A low concentration of ADP (<30 M) and relatively high concentrations (1-6 mM) of other components of the creatine kinase reaction prevented the detection of the reverse reaction within 10 min after exceeded the K eq app, but the reverse reaction became evident on more prolonged incubation. The reverse reaction was accompanied by a further increase in . Low ADP concentration in the medium was also responsible for the lack of an immediate conversion of the excess creatine phosphate added although > K eq app. The findings are concluded to be in contradiction with the concept of microcompartment formation between mitochondrial creatine kinase and adenine nucleotide translocase.  相似文献   

2.
Adenine nucleotide translocase (ANT) is known as a core component of the mitochondrial permeability transition pore (MPTP) and a key player in cell death. However, its role in camptothecin (CPT)-induced apoptosis has not been examined. We showed that CPT-induced apoptosis in QGY7703 cells and down-regulated the expression of ANT3. Using ANT3 knock-out and overexpression experiments, we provide further evidence that ANT3 plays a contributive role in CPT-induced apoptosis through induction of MPTP. We speculate that the down-regulation of ANT3 upon stimulation with CPT may be part of the molecular basis underlying the mechanism of acquired resistance to CPT.  相似文献   

3.
The Bcl-2 family proteins plays a central role in apoptosis. The pro- or anti-apoptotic activities of Bcl-2 family are dependent on the Bcl-2 homology (BH) regions. Bcl-rambo, a new pro-apoptotic member, is unusual in that its pro-apoptotic activity is independent of its BH domains. However, the mechanism underlying Bcl-rambo-induced apoptosis is largely unknown. Mitochondrial localization is indispensable for the pro-apoptotic function of Bcl-rambo. Bcl-rambo interacts physically with the adenine nucleotide translocator (ANT), suppresses the ADT/ATP-dependent translocation activity of ANT. Collectively, our data indicate Bcl-rambo is a pro-apoptotic member of the Bcl-2 family, induces the permeability transition via interaction with ANT.

Structured summary of protein interactions:

Bcl-Rambo and HSP60colocalize by fluorescence microscopy (View interaction)Bcl-rambobinds to ANT1 by pull down (View interaction)  相似文献   

4.
I.T. Mak  E. Shrago  C.E. Elson 《BBA》1983,722(2):302-309
The decrease in respiration rate following thyroidectomy is preceded by changes in the lipid composition of the mitochondrial membrane (Hoch, F.L., Subramanian, C., Dhopeshwarkar, G.A. and Mead, J.F. (1981) Lipids 16, 328–334) and in concert, changes in the kinetic parameters of the adenine nucleotide translocase (Mak, I.T., Shrago, E. and Elson, C.E. (1981) Fed. Proc. 40, 398). To demonstrate that physiological adaptation also involves this sequence of events, rats were housed at 8°C for 3–4 weeks. Cold adaptation resulted in a modest (5%) increase in the unsaturation index for the mitochondrial fatty acids comprised of a significant increase in arachidonic acid and a reciprocal decrease in linoleic acid. Phospholipid analysis indicated that cold adaptation increased the mitochondrial phosphatidylethanolamine and reciprocally decreased the phosphatidylcholine content. Concomitantly, cold adaptation resulted in 25–30% increases in rat liver mitochondrial respiratory activities without changing the respiratory control or ADP/O ratios. The kinetic parameters of the adenine nucleotide translocase were determined by the back-exchange method (Pfaff, E. and Klingenberg, M. (1968) Eur. J. Biochem. 6, 66–79). At 0–4 and 10°C, the Vmax and Km of the cold-adapted rat liver adenine nucleotide translocase were not distinguishable from the control values. The Ki values determined by Dixon plot studies for atractylate and palmitoyl-CoA were also comparable between the two groups. However, at 25 and 37°C, cold-adapted rat liver adenine nucleotide translocase exhibited a 20% increase in Vmax and a 20% decrease in Km for external ADP. The results suggest that one adaption to a cold environment involves hormone-mediated changes in the lipid composition in the mitochondrial membranes which in turn modulate the adenine nucleotide translocase and subsequent respiratory activities.  相似文献   

5.
It has been shown previously that human rho degrees cells, deprived of mitochondrial DNA and consequently of functional oxidative phosphorylation, maintain a mitochondrial membrane potential, which is necessary for their growth. The goal of our study was to determine the precise origin of this membrane potential in three rho degrees cell lines originating from the human HepG2, 143B, and HeLa S3 cell lines. Residual cyanide-sensitive oxygen consumption suggests the persistence of residual mitochondrial respiratory chain activity, about 8% of that of the corresponding parental cells. The fluorescence emitted by the three rho degrees cell lines in the presence of a mitochondrial specific fluorochrome was partially reduced by a protonophore, suggesting the existence of a proton gradient. The mitochondrial membrane potential is maintained both by a residual proton gradient (up to 45 to 50% of the potential) and by other ion movements such as the glycolytic ATP(4-) to mitochondrial ADP(3-) exchange. The ANT2 gene, encoding isoform 2 of the adenine nucleotide translocator, is overexpressed in rho degrees HepG2 and 143B cells strongly dependent on glycolytic ATP synthesis, as compared to the corresponding parental cells, which present a more oxidative metabolism. In rho degrees HeLa S3 cells, originating from the HeLa S3 cell line, which already displays a glycolytic energy status, ANT2 gene expression was not higher as in parental cells. Mitochondrial oxygen consumption and ANT2 gene overexpression vary in opposite ways and this suggests that these two parameters have complementary roles in the maintenance of the mitochondrial membrane potential in rho degrees cells.  相似文献   

6.
7.
The oxidation of critical cysteines/related thiols of adenine nucleotide translocase (ANT) is believed to be an important event of the Ca2+-induced mitochondrial permeability transition (MPT), a process mediated by a cyclosporine A/ADP-sensitive permeability transition pores (PTP) opening. We addressed the ANT-Cys56 relative mobility status resulting from the interaction of ANT/surrounding cardiolipins with Ca2+ and/or ADP by means of computational chemistry analysis (Molecular Interaction Fields and Molecular Dynamics studies), supported by classic mitochondrial swelling assays. The following events were predicted: (i) Ca2+ interacts preferentially with the ANT surrounding cardiolipins bound to the H4 helix of translocase, (ii) weakens the cardiolipins/ANT interactions and (iii) destabilizes the initial ANT-Cys56 residue increasing its relative mobility. The binding of ADP that stabilizes the conformation “m” of ANT and/or cardiolipin, respectively to H5 and H4 helices, could stabilize their contacts with the short helix h56 that includes Cys56, accounting for reducing its relative mobility. The results suggest that Ca2+ binding to adenine nucleotide translocase (ANT)-surrounding cardiolipins in c-state of the translocase enhances (ANT)-Cys56 relative mobility and that this may constitute a potential critical step of Ca2+-induced PTP opening.  相似文献   

8.
We prepared GD3-7-aldehyde (GD3-7) and determined its apoptotic potential. GD3-7 proved to be more efficient to induce pro-apoptotic mitochondrial alterations than GD3 when tested on mouse liver mitochondria. GD3-7-induced mitochondrial swelling and depolarization was blocked by cyclosporin A (CsA) supporting a critical role of the permeability transition pore complex (PTPC) during GD3-7-mediated apoptosis. In contrast to GD3, GD3-7 was able to induce channel formation in proteoliposomes containing adenine nucleotide translocase (ANT). This suggests that ANT is the molecular target of GD3-7. Using a specific antiserum, GD3-7 was detected in the lipid extract of the myeloid tumor cell line HL-60 after apoptosis induction, but not in living cells. Therefore, GD3-7 might be a novel mediator of PTPC-dependent apoptosis in cancer cells.  相似文献   

9.
Andrew P. Halestrap  Philippe Pasdois 《BBA》2009,1787(11):1402-1415
Like Dr. Jeckyll and Mr. Hyde, mitochondria possess two distinct persona. Under normal physiological conditions they synthesise ATP to meet the energy needs of the beating heart. Here calcium acts as a signal to balance the rate of ATP production with ATP demand. However, when the heart is overloaded with calcium, especially when this is accompanied by oxidative stress, mitochondria embrace their darker side, and induce necrotic cell death of the myocytes. This happens acutely in reperfusion injury and chronically in congestive heart failure. Here calcium overload, adenine nucleotide depletion and oxidative stress combine forces to induce the opening of a non-specific pore in the mitochondrial membrane, known as the mitochondrial permeability transition pore (mPTP). The molecular nature of the mPTP remains controversial but current evidence implicates a matrix protein, cyclophilin-D (CyP-D) and two inner membrane proteins, the adenine nucleotide translocase (ANT) and the phosphate carrier (PiC). Inhibition of mPTP opening can be achieved with inhibitors of each component, but targeting CyP-D with cyclosporin A (CsA) and its non-immunosuppressive analogues is the best described. In animal models, inhibition of mPTP opening by either CsA or genetic ablation of CyP-D provides strong protection from both reperfusion injury and congestive heart failure. This confirms the mPTP as a promising drug target in human cardiovascular disease. Indeed, the first clinical trials have shown CsA treatment improves recovery after treatment of a coronary thrombosis with angioplasty.  相似文献   

10.
Cardioprotection by preconditioning is a central issue of current research on heart function. Several reports indicate that preventing the assembly and opening of the mitochondrial permeability transition pore (mPTP) protects the heart against ischemia–reperfusion injury. We have previously reported that brief episodes of tachycardia decrease the infarct size produced by subsequent prolonged occlusion of a coronary artery, indicating that controlled tachycardia is an effective preconditioning manoeuvre. The effects of preconditioning tachycardia on mPTP activity have not been reported. Therefore, in this work we investigated if preconditioning tachycardia protects against calcium-induced mitochondrial swelling, a measure of mPTP activity. We found that tachycardia decreased by 2.5-fold the rate of mitochondrial calcium-induced swelling, a factor that presumably contributes to the cardioprotective effects of tachycardia. The oxidative status of the cell increased after tachycardia, as evidenced by the decrease in the cellular and mitochondrial GSH/GSSG ratio. We also observed increased S-glutathionylation of cyclophilin-D, an essential mPTP component, after tachycardia. This reversible redox modification of cyclophilin-D may account, al least in part, for the decreased mPTP activity produced by preconditioning tachycardia.  相似文献   

11.
Over the past decades there has been considerable progress in understanding the multifunctional roles of mitochondrial ion channels in metabolism, energy transduction, ion transport, signaling, and cell death. Recent data have suggested that some of these channels function under physiological condition, and others may be activated in response to pathological insults and play a key role in cytoprotection. This review outlines our current understanding of the molecular identity and pathophysiological roles of the mitochondrial ion channels in the heart with particular emphasis on cardioprotection against ischemia/reperfusion injury, and future research on mitochondrial ion channels.  相似文献   

12.
Mitochondrial ion channels as therapeutic targets   总被引:1,自引:0,他引:1  
Pablo M. Peixoto 《FEBS letters》2010,584(10):2142-2152
The study of mitochondrial ion channels changed our perception of these double-wrapped organelles from being just the power house of a cell to the guardian of a cell’s fate. Mitochondria communicate with the cell through these special channels. Most of the time, the message is encoded by ion flow across the mitochondrial outer and inner membranes. Potassium, sodium, calcium, protons, nucleotides, and proteins traverse the mitochondrial membranes in an exquisitely regulated manner to control a myriad of processes, from respiration and mitochondrial morphology to cell proliferation and cell death. This review is an update on both well established and putative mitochondrial channels regarding their composition, function, regulation, and therapeutic potential.  相似文献   

13.
Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.  相似文献   

14.
15.
Glutamate transporters are involved in the maintenance of synaptic glutamate concentrations. Because of its potential neurotoxicity, clearance of glutamate from the synaptic cleft may be critical for neuronal survival. Inhibition of glutamate uptake from the synapse has been implicated in several neurodegenerative disorders. In particular, glutamate uptake is inhibited in Alzheimer's disease (AD); however, the mechanism of decreased transporter activity is unknown. Oxidative damage in brain is implicated in models of neurodegeneration, as well as in AD. Glutamate transporters are inhibited by oxidative damage from reactive oxygen species and lipid peroxidation products such as 4-hydroxy-2-nonenal (HNE). Therefore, we have investigated a possible connection between the oxidative damage and the decreased glutamate uptake known to occur in AD brain. Western blots of immunoprecipitated HNE-immunoreactive proteins from the inferior parietal lobule of AD and control brains suggest that HNE is conjugated to GLT-1 to a greater extent in the AD brain. A similar analysis of beta amyloid (Abeta)-treated synaptosomes shows for the first time that Abeta1-42 also increases HNE conjugation to the glutamate transporter. Together, our data provide a possible link between the oxidative damage and neurodegeneration in AD, and supports the role of excitotoxicity in the pathogenesis of this disorder. Furthermore, our data suggests that Abeta may be a possible causative agent in this cascade.  相似文献   

16.
17.
The purpose of our study was to assess mitochondrial biogenesis and distribution in murine primary neurons. Using 5-bromo-2-deoxyuridine (BrdU) incorporation and primary neurons, we studied the mitochondrial biogenesis and mitochondrial distribution in hippocampal neurons from amyloid beta precursor protein (AβPP) transgenic mice and wild-type (WT) neurons treated with oxidative stressors, rotenone and H2O2. We found that after 20 h of labeling, BrdU incorporation was specific to porin-positive mitochondria. The proportion of mitochondrial area labeled with BrdU was 40.3 ± 6.3% at 20 h. The number of mitochondria with newly synthesized DNA was higher in AβPP neuronal cell bodies than in the cell bodies of WT neurons (AβPP, 45.23 ± 2.67 BrdU-positive/cell body; WT, 32.92 ± 2.49 BrdU-positive/cell body; p = 0.005). In neurites, the number of BrdU-positive mitochondria decreased in AβPP cultures compared to WT neurons (AβPP, 0.105 ± 0.008 BrdU-positive/μm neurite; WT, 0.220 ± 0.036 BrdU-positive/μm neurite; p = 0.010). Further, BrdU in the cell body increased when neurons were treated with low doses of H2O2 (49.6 ± 2.7 BrdU-positive/cell body, p = 0.0002 compared to untreated cells), while the neurites showed decreased BrdU staining (0.122 ± 0.010 BrdU-positive/μm neurite, p = 0.005 compared to the untreated). BrdU labeling was increased in the cell body under rotenone treatment. Additionally, under rotenone treatment, the content of BrdU labeling decreased in neurites. These findings suggest that Aβ and mitochondrial toxins enhance mitochondrial fragmentation in the cell body, and may cause impaired axonal transport of mitochondria leading to synaptic degeneration.  相似文献   

18.
After a brief review of the early history of mitochondrial electrophysiology, the contribution of this approach to the study of the mitochondrial permeability transition (MPT) is recapitulated. It has for example provided evidence for a dimeric nature of the MPT pore, allowed the distinction between two levels of control of its activity, and underscored the relevance of redox events for the phenomenon. Single-channel recording provides a means to finally solve the riddle of the biochemical entity underlying it by comparing the characteristics of the pore with those of channels formed by candidate molecules or complexes. The possibility that this entity may be the protein import machinery of the inner mitochondrial membrane is emphasized.  相似文献   

19.
The voltage-dependent anion channel (VDAC) is the most abundant protein of the mitochondrial outer membrane (MOM) where it regulates transport of ions and metabolites in and out of the organelle. VDAC function is extensively studied in a lipid bilayer system that allows conductance monitoring of reconstituted channels under applied voltage. The process of switching from a high-conductance state, open to metabolites, to a variety of low-conducting states, which excludes metabolite transport, is termed voltage gating and the mechanism remains poorly understood. Recent studies have implicated the involvement of the membrane-solvated residue E73 in the gating process through β-barrel destabilization. However, there has been no direct experimental evidence of E73 involvement in VDAC1 voltage gating. Here, using electrophysiology measurements, we exclude the involvement of E73 in murine VDAC1 (mVDAC1) voltage gating process. With an established protocol of assessing voltage gating of VDACs reconstituted into planar lipid membranes, we definitively show that mVDAC1 gating properties do not change when E73 is replaced by either a glutamine or an alanine. We further demonstrate that cholesterol has no effect on mVDAC1 gating characteristics, though it was shown that E73 is coordinating residue in the cholesterol binding site. In contrast, we found a pronounced gating effect based on the charge of the phospholipid headgroup, where the positive charge stimulates and negative charge suppresses gating. These findings call for critical evaluation of the existing models of VDAC gating and contribute to our understanding of VDAC's role in control of MOM permeability and regulation of mitochondrial respiration and metabolism.  相似文献   

20.
This study has shown that purified recombinant human α‐synuclein (20 μM) causes membrane depolarization and loss of phosphorylation capacity of isolated purified rat brain mitochondria by activating permeability transition pore complex. In intact SHSY5Y (human neuroblastoma cell line) cells, lactacystin (5 μM), a proteasomal inhibitor, causes an accumulation of α‐synuclein with concomitant mitochondrial dysfunction and cell death. The effects of lactacystin on intact SHSY5Y cells are, however, prevented by knocking down α‐synuclein expression by specific siRNA. Furthermore, in wild‐type (non‐transfected) SHSY5Y cells, the effects of lactacystin on mitochondrial function and cell viability are also prevented by cyclosporin A (1 μM) which blocks the activity of the mitochondrial permeability transition pore. Likewise, in wild‐type SHSY5Y cells, typical mitochondrial poison like antimycin A (50 nM) produces loss of cell viability comparable to that of lactacystin (5 μM). These data, in combination with those from isolated brain mitochondria, strongly suggest that intracellularly accumulated α‐synuclein can interact with mitochondria in intact SHSY5Y cells causing dysfunction of the organelle which drives the cell death under our experimental conditions. The results have clear implications in the pathogenesis of sporadic Parkinson's disease.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号