首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
目的:比较通过慢病毒方法获得的人诱导多能性干细胞(iPSCs)与人胚胎干细胞(hESCs)分化过程中全能性基因Oct4、Nanog的表达变化。方法:收集分化不同时间点的拟胚体(EBs),检测三胚层分化基因以及全能性基因Oct4/Nanog的表达,并通过畸胎瘤组织切片的荧光染色分析Oct4的表达。结果:iPSCs获得的EB中内外三胚层分化基因表达的出现明显晚于hESCs来源的EB。不同于hESCs,iPSCs悬浮培养获得的EBs在体外培养18天未见内源性Oct4、Nanog基因表达的下调。未分化的iPSCs注射严重联合免疫缺陷(SCID)小鼠培养10周后获得的畸胎瘤中仍存在Oct4阳性的细胞,但iPS-#2中明显少于iPS-#5。结论:通过慢病毒方法获得的iPSCs虽然具有向三胚层分化的能力,但在分化过程中仍维持较高水平的全能性基因Oct4、Nanog的表达。  相似文献   

2.
目的:比较通过慢病毒方法获得的人诱导多能性干细胞(iPSCs)与人胚胎干细胞(hESCs)分化过程中全能性基因Oct4、Nanog的表达变化。方法:收集分化不同时间点的拟胚体(EBs),检测三胚层分化基因以及全能性基因Oct4/Nanog的表达,并通过畸胎瘤组织切片的荧光染色分析Oct4的表达。结果:iPSCs获得的EB中内外三胚层分化基因表达的出现明显晚于hESCs来源的EB。不同于hESCs,iPSCs悬浮培养获得的EBs在体外培养18天未见内源性Oct4、Nanog基因表达的下调。未分化的iPSCs注射严重联合免疫缺陷(SCID)小鼠培养10周后获得的畸胎瘤中仍存在Oct4阳性的细胞,但iPS-#2中明显少于iPS-#5。结论:通过慢病毒方法获得的iPSCs虽然具有向三胚层分化的能力,但在分化过程中仍维持较高水平的全能性基因Oct4、Nanog的表达。  相似文献   

3.
将4个转录因子Oct4,Sox2,Klf4和c-Myc转入成纤维细胞可以生成诱导多能干细胞(iPS细胞),转录因子和染色质修饰因子在这个过程中起重要作用。LSD1作为染色质结构的调节因子,在早期胚胎发育和ES细胞分化中发挥着关键作用。为了探索LSD1在iPS细胞产生过程中的作用,首先比较了LSD1蛋白在MEFs和ES细胞中的表达量,然后分别通过在重编程体系中过表达LSD1、加入RNAi和抑制剂的方法探索LSD1的功能,最后用免疫共沉淀的方法初步发现LSD1的作用机制。结果表明,LSD1在ES细胞中的表达量高于MEFs中,过表达LSD1对iPS细胞的形成效率没有影响,而RNAi抑制LSD1的表达和LSD1抑制剂tranylcypromine都能促进iPS细胞的形成。免疫共沉淀实验表明LSD1和Oct4/Nanog有相互作用。这些数据说明LSD1通过和Oct4/Nanog相互作用调控iPS细胞的形成。  相似文献   

4.
5.
6.
Objectives:  To explore the role of Oct3/4, Nanog and Sox2 in regeneration of rat tracheal epithelium.
Materials and methods:  An ex vivo model of rat tracheal epithelial regeneration using 5-fluorouracil (5-FU) was developed, to induce injury. Expression levels of Oct3/4, Nanog and Sox2 were examined using Western blot analysis, RT-PCR or microscopically observed immunofluorescence, and cell morphological changes were observed using HE staining, during the recovery process.
Results:  Oct3/4, Nanog and Sox2 were not detectable in normal tracheal epithelium. After treatment with 5-FU, the normally proliferating tracheal epithelium desquamated and only a few cells in G0 phase of the cell cycle were left on the basement membrane and Oct3/4, Nanog and Sox2 could be observed at this time. Thereafter, the number of Oct3/4-, Nanog- and Sox2-positive cells increased gradually. When the cells differentiated into ciliate cells, mucous cells or basal cells, and restored pseudostratified mucociliary epithelium, the number of Oct3/4-, Nanog- and Sox2-positive cells decreased and gradually disappeared.
Conclusions:  G0 phase cells with resistance to 5-FU damage expressed Oct3/4, Nanog and Sox2. This indicated that these cells were undifferentiated, but had the ability to terminally differentiate into downstream-type cells. They possessed stem cell properties. The results are consistent with Oct3/4, Nanog and Sox2-expressing cells being considered as tracheal stem cells.  相似文献   

7.
8.
9.
作者找到一种卵细胞提取物有促进293T细胞表达多能基因的作用,这将在细胞生物学有广泛的应用前景。提取鸡卵清、卵黄和全卵提取物,用于293T细胞的渗透诱导。在诱导后不同时间提取细胞的RNA,检测多能基因OCT4和NANOG的变化。在诱导后10d提取细胞的DNA,检测0c尉和NANOG基因甲基化位点的变化。卵清、卵黄和全卵提取物具有促进293T细胞生长的作用,三种提取物渗透诱导后的293T细胞OCT4和NANOG基因表达有不同程度的升高。OCT4和NANOG基因发生去甲基化,基因开放表达。鸡卵提取物具有促进293T细胞表达OCT4和NANOG基因的作用,有望成为诱导细胞向多能细胞转化的制剂。  相似文献   

10.
《Cell reports》2020,30(5):1478-1490.e6
  1. Download : Download high-res image (164KB)
  2. Download : Download full-size image
  相似文献   

11.
DNA methylation plays an important role in gene silencing in mammals. Two de novo methyltransferases, Dnmt3a and Dnmt3b, are required for the establishment of genomic methylation patterns in development. However, little is known about their coordinate function in the silencing of genes critical for embryonic development and how their activity is regulated. Here we show that Dnmt3a and Dnmt3b are the major components of a native complex purified from embryonic stem cells. The two enzymes directly interact and mutually stimulate each other both in vitro and in vivo. The stimulatory effect is independent of the catalytic activity of the enzyme. In differentiating embryonic carcinoma or embryonic stem cells and mouse postimplantation embryos, they function synergistically to methylate the promoters of the Oct4 and Nanog genes. Inadequate methylation caused by ablating Dnmt3a and Dnmt3b is associated with dysregulated expression of Oct4 and Nanog during the differentiation of pluripotent cells and mouse embryonic development. These results suggest that Dnmt3a and Dnmt3b form a complex through direct contact in living cells and cooperate in the methylation of the promoters of Oct4 and Nanog during cell differentiation. The physical and functional interaction between Dnmt3a and Dnmt3b represents a novel regulatory mechanism to ensure the proper establishment of genomic methylation patterns for gene silencing in development.  相似文献   

12.
13.
14.
Chen T  Du J  Lu G 《Molecular biology reports》2012,39(2):1855-1861
It has been clear that both Oct4 and Nanog play essential roles in maintaining embryonic stem cells (ESCs) undifferentiation. However, the roles of Oct4 and Nanog in ESCs growth and apoptosis have been much less explored. In this study, we systematically examined the effects of Oct4 or Nanog knockdown on mouse ESCs (mESCs) growth and apoptosis as well as potential mechanisms. Our results show that Oct4 or Nanog knockdown induces growth arrest and apoptosis in mESCs, indicating that the two genes also play important roles in mESCs survival and growth. Moreover, upregulation in Trp53 and its downstream genes expression was detected in Oct4 or Nanog knockdown mESCs, suggesting a possible role of Trp53 in Oct4 or Nanog knockdown induced mESCs growth arrest and apoptosis.  相似文献   

15.
Ectopically expressed Cre recombinase in extrapancreatic tissues in RIP-Cre mice has been well documented. The objective of this study was to find a simple solution that allows for improved beta-cell specific targeting. To this end, the RIP-Cre and reporter CMV-loxP-DsRed-loxP-EGFP expression cassettes were configurated into a one-plasmid and two-plasmid systems, which labeled approximately 80% insulin-positive INS-1 cells after 48 h transfection. However, off-target labeling was robustly found in more than 15% insulin-negative Ad293 cells. When an IRES element was inserted in front of Cre to reduce the translation efficiency, the ratio of recombination between INS-1 and Ad293 cells increased 3-4-fold. Further, a series of Cre mutants were generated by site-directed mutagenesis. When one of the mutants, Cre(H289P) in both configurations, was used in the experiment, the percentage of recombination dropped to background levels in a number of insulin-negative cell lines, but decreased only slightly in INS-1 cells. Consistently, DNA substrate digestion assay showed that the enzymatic activity of Cre(H289P) was reduced by 30-fold as compared to that of wild-type. In this study, we reported the generation of constructs containing RIP and Cre mutants, which enabled enhanced beta-cell specific labeling in vitro. These tools could be invaluable for beta-cell targeting and to the study of islet development.  相似文献   

16.
17.
为了降低由人碱性成纤维细胞生长因子(hbFGF)的广谱促分裂活性引起的潜在副作用,用中性氨基酸丙氨酸取代了hbFGF第108位的丝氨酸,构建了促分裂活性降低的hbFGF突变体(mhbFGF)。IPTG诱导突变体在大肠杆菌BL21(DE3)中高效表达。mhbFGF的表达量约为全菌体蛋白的30%。通过离子交换和肝素亲和层析从菌体上清中纯化目标蛋白。MTT法检测促分裂活性表明,mhbFGF的促分裂活性显著低于野生型hbFGF。纯化的:mhbFGF可用于进一步的药效和安全性研究。  相似文献   

18.
The rising prevalence of gestational diabetes mellitus (GDM) affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM) and obese pregnant women with normal glucose tolerance (ONGT). Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I) subunits (NDUFS3, NDUFV2) and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4) in OGDM (n = 6) vs. ONGT (n = 6). Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (−60–75%) in the OGDM (n = 8) compared with ONGT (n = 10) subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.  相似文献   

19.
20.
We report here genome-wide mapping of DNA methylation patterns at proximal promoter regions in mouse embryonic stem (mES) cells. Most methylated genes are differentiation associated and repressed in mES cells. By contrast, the unmethylated gene set includes many housekeeping and pluripotency genes. By crossreferencing methylation patterns to genome-wide mapping of histone H3 lysine (K) 4/27 trimethylation and binding of Oct4, Nanog, and Polycomb proteins on gene promoters, we found that promoter DNA methylation is the only marker of this group present on approximately 30% of genes, many of which are silenced in mES cells. In demethylated mutant mES cells, we saw upregulation of a subset of X-linked genes and developmental genes that are methylated in wild-type mES cells, but lack either H3K4 and H3K27 trimethylation or association with Polycomb, Oct4, or Nanog. Our data suggest that in mES cells promoter methylation represents a unique epigenetic program that complements other regulatory mechanisms to ensure appropriate gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号