首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Trypanosoma cruzi proliferate and differentiate inside different compartments of triatomines gut that is the first environment encountered by T. cruzi. Due to its complex life cycle, the parasite is constantly exposed to reactive oxygen species (ROS). We tested the influence of the pro-oxidant molecules H2O2 and the superoxide generator, Paraquat, as well as, metabolism products of the vector, with distinct redox status, in the proliferation and metacyclogenesis. These molecules are heme, hemozoin and urate. We also tested the antioxidants NAC and GSH. Heme induced the proliferation of epimastigotes and impaired the metacyclogenesis. β-hematin, did not affect epimastigote proliferation but decreased parasite differentiation. Conversely, we show that urate, GSH and NAC dramatically impaired epimastigote proliferation and during metacyclogenesis, NAC and urate induced a significant increment of trypomastigotes and decreased the percentage of epimastigotes. We also quantified the parasite loads in the anterior and posterior midguts and in the rectum of the vector by qPCR. The treatment with the antioxidants increased the parasite loads in all midgut sections analyzed. In vivo, the group of vectors fed with reduced molecules showed an increment of trypomastigotes and decreased epimastigotes when analyzed by differential counting. Heme stimulated proliferation by increasing the cell number in the S and G2/M phases, whereas NAC arrested epimastigotes in G1 phase. NAC greatly increased the percentage of trypomastigotes. Taken together, these data show a shift in the triatomine gut microenvironment caused by the redox status may also influence T. cruzi biology inside the vector. In this scenario, oxidants act to turn on epimastigote proliferation while antioxidants seem to switch the cycle towards metacyclogenesis. This is a new insight that defines a key role for redox metabolism in governing the parasitic life cycle.  相似文献   

2.
OBJECT: Nowadays, there is increasing evidence that functional magnetic resonance imaging (MRI) modalities, namely, diffusion-weighted imaging (DWI) and dynamic-contrast enhanced MRI (DCE MRI), can characterize tumor architecture like cellularity and vascularity. Previously, two formulas based on a logistic tumor growth model were proposed to predict tumor cellularity with DWI and DCE. The purpose of this study was to proof these formulas. METHODS: 16 patients with head and neck squamous cell carcinomas were included into the study. There were 2 women and 14 men with a mean age of 57.0 ± 7.5 years. In every case, tumor cellularity was calculated using the proposed formulas by Atuegwu et al. In every case, also tumor cell count was estimated on histopathological specimens as an average cell count per 2 to 5 high-power fields. RESULTS: There was no significant correlation between the calculated cellularity and histopathologically estimated cell count by using the formula based on apparent diffusion coefficient (ADC) values. A moderate positive correlation (r=0.515, P=.041) could be identified by using the formula including ADC and Ve values. CONCLUSIONS: The formula including ADC and Ve values is more sensitive to predict tumor cellularity than the formula including ADC values only.  相似文献   

3.
Pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) time-course data allows estimation of quantitative parameters such as Ktrans (rate constant for plasma/interstitium contrast agent transfer), ve (extravascular extracellular volume fraction), and vp (plasma volume fraction). A plethora of factors in DCE-MRI data acquisition and analysis can affect accuracy and precision of these parameters and, consequently, the utility of quantitative DCE-MRI for assessing therapy response. In this multicenter data analysis challenge, DCE-MRI data acquired at one center from 10 patients with breast cancer before and after the first cycle of neoadjuvant chemotherapy were shared and processed with 12 software tools based on the Tofts model (TM), extended TM, and Shutter-Speed model. Inputs of tumor region of interest definition, pre-contrast T1, and arterial input function were controlled to focus on the variations in parameter value and response prediction capability caused by differences in models and associated algorithms. Considerable parameter variations were observed with the within-subject coefficient of variation (wCV) values for Ktrans and vp being as high as 0.59 and 0.82, respectively. Parameter agreement improved when only algorithms based on the same model were compared, e.g., the Ktrans intraclass correlation coefficient increased to as high as 0.84. Agreement in parameter percentage change was much better than that in absolute parameter value, e.g., the pairwise concordance correlation coefficient improved from 0.047 (for Ktrans) to 0.92 (for Ktrans percentage change) in comparing two TM algorithms. Nearly all algorithms provided good to excellent (univariate logistic regression c-statistic value ranging from 0.8 to 1.0) early prediction of therapy response using the metrics of mean tumor Ktrans and kep (= Ktrans/ve, intravasation rate constant) after the first therapy cycle and the corresponding percentage changes. The results suggest that the interalgorithm parameter variations are largely systematic, which are not likely to significantly affect the utility of DCE-MRI for assessment of therapy response.  相似文献   

4.
The purpose of this study was to evaluate the sensitivity of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), diffusion-weighted (DW)-MRI, in vivo MR spectroscopy (MRS), and ex vivo high-resolution magic angle spinning (HR MAS) MRS for the detection of early treatment effects after docetaxel administration. Docetaxel is an antitumor agent that leads to mitotic arrest, apoptosis, and mitotic catastrophe cell death. Gene expression analysis was performed to detect altered regulation in gene expression pathways related to docetaxel treatment effects. Histopathology was used as a measure of alterations in apoptosis and proliferation due to docetaxel. Experiments were performed using MCF7 mouse xenografts, randomized into a docetaxel (30 mg/kg) treatment group and a control group given saline. MRI/MRS was performed 1 day before treatment and 1, 3, and 6 days after treatment. Parametric images of the extracellular extravascular volume fraction (ve) transfer constant (Ktrans) and the apparent diffusion coefficient (ADC) were calculated from the DCE-MRI and DW-MRI data. Biopsies were analyzed by HR MAS MRS, and histopathology and gene expression profiles were determined (Illumina). A significant increase in the ADC 3 and 6 days after treatment and a significant decrease in total choline and a higher ve were found in treated tumors 6 days after treatment. No significant difference was found in the Ktrans between the two groups. Our results show that docetaxel induces apoptosis and decreases proliferation in MCF7 xenografts. Further, these phenomena can be monitored by in vivo MRS, DW-MRI, and gene expression.  相似文献   

5.
The purpose of this study is to investigate the ability of multivariate analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted MRI (DW-MRI) parametric maps, obtained early in the course of therapy, to predict which patients will achieve pathologic complete response (pCR) at the time of surgery. Thirty-three patients underwent DCE-MRI (to estimate Ktrans, ve, kep, and vp) and DW-MRI [to estimate the apparent diffusion coefficient (ADC)] at baseline (t1) and after the first cycle of neoadjuvant chemotherapy (t2). Four analyses were performed and evaluated using receiver-operating characteristic (ROC) analysis to test their ability to predict pCR. First, a region of interest (ROI) level analysis input the mean Ktrans, ve, kep, vp, and ADC into the logistic model. Second, a voxel-based analysis was performed in which a longitudinal registration algorithm aligned serial parameters to a common space for each patient. The voxels with an increase in kep, Ktrans, and vp or a decrease in ADC or ve were then detected and input into the regression model. In the third analysis, both the ROI and voxel level data were included in the regression model. In the fourth analysis, the ROI and voxel level data were combined with selected clinical data in the regression model. The overfitting-corrected area under the ROC curve (AUC) with 95% confidence intervals (CIs) was then calculated to evaluate the performance of the four analyses. The combination of kep, ADC ROI, and voxel level data achieved the best AUC (95% CI) of 0.87 (0.77–0.98).  相似文献   

6.
The purpose of this research was to test whether dynamic contrast enhanced MRI could assess the effect of green tea on the angiogenic properties of transplanted rodent tumors. Copenhagen rats bearing AT6.1 prostate tumors inoculated in the hind limbs were randomly assigned to cages in which they were allowed to only drink either plain water (control group) or water containing green tea extract (treated group). Assignments were made after a baseline MRI experiment (week 0) was performed on each rat at 4.7 T. All the rats were subsequently imaged at day 7 (week 1) and day 14 (week 2) to follow tumor growth and vascular development. The two-compartment pharmacokinetic model was used to analyze the dynamic contrast Gd-DTPA enhanced MRI data on a pixel-by-pixel basis over the tumor area to obtain the volume transfer constant (Ktrans) and extravascular extracellular space (ve). An identity Chi-squared test showed that the distributions of averaged histograms (n = 6) of Ktrans and ve were significantly different from week 0 to both weeks 1 and 2 (p < 0.001) in both the control and the treated rats due to increasing areas of tumor necrosis. However, the tumor growth rate was statistically indistinguishable between control and treated rats. There was no significant difference in the distributions of Ktrans and ve between control and treated rats. The results showed that no effects of green tea on tumor micro-vasculature were measurable by dynamic Gd-DTPA enhanced MRI.  相似文献   

7.
PURPOSE: To retrospectively investigate the quantitative background parenchymal enhancement (BPE) of the contralateral normal breast in patients with unilateral invasive breast cancer throughout multiple monitoring points of neoadjuvant chemotherapy (NAC) and to further determine whether BPE is associated with tumor response, especially at the early stage of NAC. MATERIALS AND METHODS: A total of 90 patients with unilateral breast cancer who then received six or eight cycles of NAC before surgery were analyzed retrospectively. BPE was measured in dynamic contrast-enhanced MRI at baseline and after 2nd, 4th, and 6th NAC, respectively. Correlation between BPE and tumor size was analyzed, and the association between pathologic complete remission (pCR) and BPE was also analyzed. RESULTS: The BPE of contralateral normal breast showed a constant reduction throughout NAC therapy regardless of the menopausal status (P < .001 in all). Both the BPEs and the changes of BPE in each of the three monitoring points were significantly correlated with those in tumor size (P < .05 in all), and the reduction of BPE after 2nd NAC had the largest diagnostic value for pCR (AUC = 0.726, P < .001), particularly in hormonal receptor (HR)-negative patients (OR = 0.243, 95%CI = 0.083 to 0.706, P = .009). CONCLUSION: The BPE of contralateral normal breast had a constant decreased tendency similar to the change of tumor size in NAC. Reduction of BPE at the early stage of NAC was positively associated with pCR, especially in HR-negative status.  相似文献   

8.
We report longitudinal diffusion-weighted magnetic resonance imaging (DW-MRI) and dynamic contrast enhanced (DCE)-MRI (7 T) studies designed to identify functional changes, prior to volume changes, in trastuzumab-sensitive and resistant HER2 + breast cancer xenografts. Athymic mice (N = 33) were subcutaneously implanted with trastuzumab-sensitive (BT474) or trastuzumab-resistant (HR6) breast cancer cells. Tumor-bearing animals were distributed into four groups: BT474 treated and control, HR6 treated and control. DW- and DCE-MRI were conducted at baseline, day 1, and day 4; trastuzumab (10 mg/kg) or saline was administered at baseline and day 3. Animals were sacrificed on day 4 and tumors resected for histology. Voxel-based DW- and DCE-MRI analyses were performed to generate parametric maps of ADC, Ktrans, and ve. On day 1, no differences in tumor size were observed between any of the groups. On day 4, significant differences in tumor size were observed between treated vs. control BT474, treated BT474 vs. treated HR6, and treated vs. control HR6 (P < .0001). On day 1, ve was significantly higher in the BT474 treated group compared to BT474 control (P = .002) and HR6 treated (P = .004). On day 4, ve and Ktrans were significantly higher in the treated BT474 tumors compared to BT474 controls (P = .0007, P = .02, respectively). A significant decrease in Ki67 staining reinforced response in the BT474 treated group compared to BT474 controls (P = .02). This work demonstrated that quantitative MRI biomarkers have the sensitivity to differentiate treatment response in HER2 + tumors prior to changes in tumor size.  相似文献   

9.
Dimethylfumarate (DMF) is cytotoxic to several kinds of cells and serves as an anti-tumor drug. This study was designed to investigate the effects and underlying mechanism of DMF on cervical cancer cells. HeLa cells were cultured and treated with 0, 50, 100, 150, and 200 μM DMF, respectively. After 24 h, cell growth was evaluated using Cell Counting Kit-8 (CCK-8) assay and the cell cycle was examined using flow cytometry. In addition, cell apoptosis was detected by Annexin V/propidium iodide (PI) staining and the expressions of caspase-3 and poly-ADP-ribose polymerase (PARP) were detected using western blotting. The redox-related factors were then assessed. Furthermore, all of the indicators were detected in HeLa cells after combined treatment of DMF and N-acetyl-l-cysteine (NAC, an oxygen-free radical scavenger). The cell number and cell growth of HeLa were obviously inhibited by DMF in a dose-dependent manner, as the cell cycle was arrested at G0/G1 phase (P?<?0.05). The apoptotic HeLa cells were markedly increased, and the expression levels of caspase-3 and PARP were significantly increased in a DMF concentration-dependent way (P?<?0.05). Meanwhile, loss of △Ψm, increase in reactive oxygen species and O2 ·?, and the decrease in catalase activity and glutathione (GSH) level were found after DMF treatment (P?<?0.05). All these changes were significantly attenuated and even completely disappeared by adding NAC (P?<?0.05). In conclusion, the cytotoxicity of DMF on cell proliferation and apoptosis of HeLa cells was mainly related to the intracellular redox systems by depletion of intracellular GSH.  相似文献   

10.
There are increasing concerns regarding intracellular accumulation of gadolinium (Gd) after multiple dynamic contrast enhanced (DCE) MRI scans. We investigated whether a low dose (LD) of Gd-based contrast agent is as effective as a high dose (HD) for quantitative analysis of DCE-MRI data, and evaluated the use of a split dose protocol to obtain new diagnostic parameters. Female C3H mice (n = 6) were injected with mammary carcinoma cells in the hind leg. MRI experiments were performed on 9.4 T scanner. DCE-MRI data were acquired with 1.5 s temporal resolution before and after a LD (0.04 mmol/kg), then again after 30 min followed by a HD (0.2 mmol/kg) bolus injection of Omniscan. The standard Tofts model was used to extract physiological parameters (Ktrans and ve) with the arterial input function derived from muscle reference tissue. In addition, an empirical mathematical model was used to characterize maximum contrast agent uptake (A), contrast agent uptake rate (α) and washout rate (β and γ). There were moderate to strong correlations (r = 0.69–0.97, p < 0001) for parameters Ktrans, ve, A, α and β from LD versus HD data. On average, tumor parameters obtained from LD data were significantly larger (p < 0.05) than those from HD data. The parameter ratios, Ktrans, ve, A and α calculated from the LD data divided by the HD data, were all significantly larger than 1.0 (p < 0.003) for tumor. T2* changes following contrast agent injection affected parameters calculated from HD data, but this was not the case for LD data. The results suggest that quantitative analysis of LD data may be at least as effective for cancer characterization as quantitative analysis of HD data. In addition, the combination of parameters from two different doses may provide useful diagnostic information.  相似文献   

11.
12.

Background

To find prognostic biomarkers in pretreatment dynamic contrast-enhanced MRI (DCE-MRI) water-exchange-modified (WX) kinetic parameters for advanced hepatocellular carcinoma (HCC) treated with antiangiogenic monotherapy.

Methods

Twenty patients with advanced HCC underwent DCE-MRI and were subsequently treated with sunitinib. Pretreatment DCE-MRI data on advanced HCC were analyzed using five different WX kinetic models: the Tofts-Kety (WX-TK), extended TK (WX-ETK), two compartment exchange, adiabatic approximation to tissue homogeneity (WX-AATH), and distributed parameter (WX-DP) models. The total hepatic blood flow, arterial flow fraction (γ), arterial blood flow (BF A), portal blood flow, blood volume, mean transit time, permeability-surface area product, fractional interstitial volume (v I), extraction fraction, mean intracellular water molecule lifetime (τ C), and fractional intracellular volume (v C) were calculated. After receiver operating characteristic analysis with leave-one-out cross-validation, individual parameters for each model were assessed in terms of 1-year-survival (1YS) discrimination using Kaplan-Meier analysis, and association with overall survival (OS) using univariate Cox regression analysis with permutation testing.

Results

The WX-TK-model-derived γ (P = 0.022) and v I (P = 0.010), and WX-ETK-model-derived τ C (P = 0.023) and v C (P = 0.042) were statistically significant prognostic biomarkers for 1YS. Increase in the WX-DP-model-derived BF A (P = 0.025) and decrease in the WX-TK, WX-ETK, WX-AATH, and WX-DP-model-derived v C (P = 0.034, P = 0.038, P = 0.028, P = 0.041, respectively) were significantly associated with an increase in OS.

Conclusions

The WX-ETK-model-derived v C was an effective prognostic biomarker for advanced HCC treated with sunitinib.  相似文献   

13.
The objective of this study was to determine concentrations of follicle stimulating hormone (FSH), luteinizing hormone (LH), progesterone (P4) and 17β-estradiol (E2) in sows from a line selected on an index which emphasized ovulation rate (Select) and from a control line. A further classification of the sows in each line was made according to the estimated number of ovulations during an estrous cycle. Sows in the Select line were ranked into a high (HI) or low group (LI) when their estimated number of ovulations were 25 or more and 14 to 15, respectively. Sows of the control line were classified into groups as high (HC) or low (LC) when the estimated values for ovulation rate were 14–15 and 8–9 ovulations, respectively. Blood samples were collected every 12 h during a complete estrous cycle and samples were analyzed for concentrations of FSH and LH. Samples collected every 24 h were assayed for P4 and E2. Mean concentrations of FSH, LH, P4 and E2 did not differ (P>0.10) between lines or between HI and LI or HC and LC groups. Selection of pigs for ovulation rate and embryonal survival did not affect concentrations of FSH, LH, P4 and E2 in sows during the estrous cycle.  相似文献   

14.
PurposeTo investigate the accuracy of predicted time-integrated activity coefficients (TIACs) in peptide-receptor radionuclide therapy (PRRT) using simulated dynamic PET data and a physiologically based pharmacokinetic (PBPK) model.MethodsPBPK parameters were estimated using biokinetic data of 15 patients after injection of (152 ± 15) MBq of 111In-DTPAOC (total peptide amount (5.78 ± 0.25) nmol). True mathematical phantoms of patients (MPPs) were the PBPK model with the estimated parameters. Dynamic PET measurements were simulated as being done after bolus injection of 150 MBq 68Ga-DOTATATE using the true MPPs. Dynamic PET scans around 35 min p.i. (P1), 4 h p.i. (P2) and the combination of P1 and P2 (P3) were simulated. Each measurement was simulated with four frames of 5 min each and 2 bed positions. PBPK parameters were fitted to the PET data to derive the PET-predicted MPPs. Therapy was simulated assuming an infusion of 5.1 GBq of 90Y-DOTATATE over 30 min in both true and PET-predicted MPPs. TIACs of simulated therapy were calculated, true MPPs (true TIACs) and predicted MPPs (predicted TIACs) followed by the calculation of variabilities v.ResultsFor P1 and P2 the population variabilities of kidneys, liver and spleen were acceptable (v < 10%). For the tumours and the remainders, the values were large (up to 25%). For P3, population variabilities for all organs including the remainder further improved, except that of the tumour (v > 10%).ConclusionTreatment planning of PRRT based on dynamic PET data seems possible for the kidneys, liver and spleen using a PBPK model and patient specific information.  相似文献   

15.
BACKGROUND: Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) can characterize perfusion and vascularization of tissues. DCE MRI parameters can differentiate between malignant and benign lesions and predict tumor grading. The purpose of this study was to correlate DCE MRI findings and various histopathological parameters in head and neck squamous cell carcinoma (HNSCC). PATIENTS AND METHODS: Sixteen patients with histologically proven HNSCC (11 cases primary tumors and in 5 patients with local tumor recurrence) were included in the study. DCE imaging was performed in all cases and the following parameters were estimated: Ktrans, Ve, Kep, and iAUC. The tumor proliferation index was estimated on Ki 67 antigen stained specimens. Microvessel density parameters (stained vessel area, total vessel area, number of vessels, and mean vessel diameter) were estimated on CD31 antigen stained specimens. Spearman''s non-parametric rank sum correlation coefficients were calculated between DCE and different histopathological parameters. RESULTS: The mean values of DCE perfusion parameters were as follows: Ktrans 0.189 ± 0.056 min−1, Kep 0.390 ± 0.160 min−1, Ve 0.548 ± 0.119%, and iAUC 22.40 ± 12.57. Significant correlations were observed between Kep and stained vessel areas (r = 0.51, P = .041) and total vessel areas (r = 0.5118, P = .043); between Ve and mean vessel diameter (r = −0.59, P = .017). Cell count had a tendency to correlate with Ve (r = −0.48, P = .058). In an analysis of the primary HNSCC only, a significant inverse correlation between Ktrans and KI 67 was identified (r = −0.62, P = .041). Our analysis showed significant correlations between DCE parameters and histopathological findings in HNSCC.Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) has been reported as a technique which is able to characterize perfusion and vascularization of tissues [1], [2]. It has been shown that DCE MRI can be helpful to differentiate between malignant and benign lesions [1]. For example, Yuan et al. reported that lung cancer had a larger volume transfer constant (Ktrans) and a lower volume of the extravascular extracellular leakage space (Ve) in comparison to benign lesions [3]. Similar results were reported by Li et al. for breast lesions [4]. Furthermore, according to Cho et al., DCE MRI parameters can be used to distinguish prostatic cancer from benign changes [5]. Moreover, DCE MRI parameters can also predict tumor grading. As reported previously, Ktrans correlated well with Gleason score in prostatic cancer [5], [6]. According to other reports, Ktrans and Ve correlated with glioma grade [7], [8].DCE MRI parameters were also associated with prognosis in several malignancies [9], [10]. Koo et al. showed that breast cancers with higher Ktrans or lower Ve had poor prognostic factors and were often of the triple-negative subtype [10].According to the literature, DCE MRI parameters can predict response to therapy in different tumors. For instance, some authors mentioned that low pretreatment Ktrans in regional lymph node metastases in head and neck cancer was associated with a poor response to concurrent chemoradiation therapy [11].Furthermore, Andersen et al. showed that DCE MR parameters obtained prior to chemoradiotherapy predicted survival of patients with cervical cancer [12].Presumably, DCE MRI parameters may be based on tissue composition, such as cellularity and vascular density. However, in this regard there are contradictory data in the literature. While some studies identified significant correlations between DCE MRI and histopathological parameters, others did not [13], [14], [15], [16].The purpose of this study was to correlate DCE MRI findings and various histopathological parameters in head and neck squamous cell carcinoma (HNSCC).  相似文献   

16.
Smooth muscle cell (SMC) proliferation plays an important role in the pathogenesis of vascular diseases such as atherosclerosis and postangioplasty restenosis. Recently we demonstrated the thiol antioxidantN-acetylcysteine (NAC) inhibits constitutive NF-κB/Rel activity and growth of vascular SMCs. Here we show that treatment of human and bovine aortic SMC with the thiol antioxidant NAC causes cells to exit the cell cycle and remain quiescent as determined by a greatly reduced incorporation of [3H]thymidine and G0/G1DNA content. Removal of NAC from the culture medium stimulates SMCs to synchronously reenter the cell cycle as judged by induction of cyclin D1 and B-mybgene expression during mid and late G1phase, respectively, and induction of histone gene expression and [3H]thymidine incorporation during S phase. The time course of cyclin D1, B-myb,and histone gene expression after NAC removal was similar to that of serum-deprived cells induced to resume cell cycle progression by the addition of fetal bovine serum to the culture medium. Taken together, these results indicate that NAC treatment causes SMCs to enter a reversible G0quiescent, growth-arrested state. Thus, NAC provides an important new method for synchronizing SMCs in culture.  相似文献   

17.
PURPOSE: To prospectively investigate ultrasound-guided diffuse optical tomography (US-guided DOT) in predicting breast cancer response to neoadjuvant chemotherapy (NAC). MATERIALS AND METHODS: Eighty-eight breast cancer patients, with a total of 93 lesions, were included in our study. Pre– and post–last chemotherapy, size and total hemoglobin concentration (THC) of each lesion were measured by conventional US and US-guided DOT 1 day before biopsy (time point t0, THC THC0, SIZE S0) and 1 to 2 days before surgery (time point tL, THCL, SL). The relative changes in THC and SIZE of lesions after the first and last NAC cycles were considered as the variables ΔTHC and ΔSIZE. Receiver operating characteristic curve was performed to calculate ΔTHC and ΔSIZE cutoff values to evaluate pathologic response of 93 breast cancers to NAC, which were then prospectively used to predicate response of 61 breast cancers to NAC. RESULTS: The cutoff values of ΔTHC and ΔSIZE for evaluation of breast cancers NAC treatment response were 23.9% and 42.6%. At ΔTHC 23.9%, the predicted treatment response in 61 breast lesions for the time points t1 to t3 was calculated by area under the curve (AUC), which were AUC1 0.534 (P = .6668), AUC2 0.604 (P = .1893), and AUC3 0.674(P =. 0.027), respectively; for ΔSIZE 42.6%, at time points t1 to t3, AUC1 0.505 (P = .9121), AUC2 0.645 (P = .0115), and AUC3 0.719 (P = .0018). CONCLUSION: US-guided DOT ΔTHC 23.9% and US ΔSIZE 42.6% can be used for the response evaluation and earlier prediction of the pathological response after three rounds of chemotherapy.  相似文献   

18.
Trehalose was supplied to wheat (Triticum aestivum L.) seedlings just before a high temperature (40 °C) treatment and some physiological parameters were measured during the heat stress and recovery. The application of trehalose decreased the net photosynthetic rate (PN) of wheat seedlings under the heat stress, but to a small extent increased the dry mass (DM) and leaf water content (LWC) after recovery from the heat stress. The trehalose-induced decrease in PN under the heat stress was not associated with a stomatal response. The heat stress slightly decreased the maximal efficiency of photosystem II (PS II) photochemistry (the variable to maximum chlorophyll a fluorescence ratio, Fv/Fm) similarly in the trehalose treated or non-treated plants. Under the heat stress, the actual efficiency of PS II photochemistry (ΦPSII) and the efficiency of excitation energy capture by open reaction centers (Fv′/Fm′) were lower in the trehalose-pretreated seedlings, whereas they were higher after the recovery. The patterns of changes in nonphotochemical quenching (NPQ) were contrary to those of ?PS II and Fv′/Fm′. The chlorophyll content was lower, whereas the β-carotene content and the degree of de-epoxidation (DEPS) of xanthophyll cycle pigments were higher in the trehalose-pretreated wheat seedlings under the heat stress. These results suggest that exogenous trehalose partially promotes recovery of wheat by the increase of NPQ, β-carotene content, and DEPS.  相似文献   

19.
In ruminants, methane (CH4) is a by-product of digestion and contributes significantly to the greenhouse gas emissions attributed to agriculture. Grazed grass is a relatively cheap and nutritious feed but herbage species and nutritional quality vary between pastures, with management, land type and season all potentially impacting on animal performance and CH4 production. The objective of this study was to evaluate performance and compare CH4 emissions from cattle of dairy and beef origin grazing two grassland ecosystems: lowland improved grassland (LG) and upland semi-natural grassland (UG). Forty-eight spring-born beef cattle (24 Holstein–Friesian steers, 14 Charolais crossbred steers and 10 Charolais crossbred heifers of 407 (s.d. 29), 469 (s.d. 36) and 422 (s.d. 50) kg BW, respectively), were distributed across two balanced groups that grazed the UG and LG sites from 1 June to 29 September at stocking rates (number of animals per hectare) of 1.4 and 6.7, respectively. Methane emissions and feed dry matter (DM) intake were estimated by the SF6 tracer and n-alkane techniques, respectively, and BW was recorded across three experimental periods that reflected the progression of the grazing season. Overall, cattle grazed on UG had significantly lower (P<0.001) mean daily DM intake (8.68 v. 9.55 kg/day), CH4 emissions (176 v. 202 g/day) and BW gain (BWG; 0.73 v. 1.08 kg/day) than the cattle grazed on LG but there was no difference (P>0.05) in CH4 emissions per unit of feed intake when expressed either on a DM basis (20.7 and 21.6 g CH4 per kg DM intake for UG and LG, respectively) or as a percentage of the gross energy intake (6.0% v. 6.5% for UG and LG, respectively). However, cattle grazing UG had significantly (P<0.001) greater mean daily CH4 emissions than those grazing LG when expressed relative to BWG (261 v. 197 g CH4/kg, respectively). The greater DM intake and BWG of cattle grazing LG than UG reflected the poorer nutritive value of the UG grassland. Although absolute rates of CH4 emissions (g/day) were lower from cattle grazing UG than LG, cattle grazing UG would be expected to take longer to reach an acceptable finishing weight, thereby potentially off-setting this apparent advantage. Methane emissions constitute an adverse environmental impact of grazing by cattle but the contribution of cattle to ecosystem management (i.e. promoting biodiversity) should also be considered when evaluating the usefulness of different breeds for grazing semi-natural or unimproved grassland.  相似文献   

20.
PiT1 is a Na+-phosphate (Pi) cotransporter located at the plasma membrane that enables Pi entry into the cell. Its broad tissue expression pattern has led to the idea that together with the closely related family member PiT2, PiT1 is the ubiquitous supplier of Pi to the cell. Moreover, the role of Pi in phosphorylation reactions, ATP production, DNA structure, and synthesis has led to the view that Pi availability could be an important determinant of cell growth. However, these issues have not been clearly addressed to date, and the role of either Pi or PiT proteins in cell proliferation is unknown. Using RNA interference in HeLa and HepG2 cells, we show that transient or stable PiT1 depletion markedly reduces cell proliferation, delays cell cycle, and impairs mitosis and cytokinesis. In vivo, PiT1 depletion greatly reduced tumor growth when engineered HeLa cells were injected into nude mice. We provide evidence that this effect on cell proliferation is specific to PiT1 and not shared by PiT2 and is not the consequence of impaired membrane Na+-Pi transport. Moreover, we show that modulation of cell proliferation by PiT1 is independent from its transport function because the proliferation of PiT1-depleted cells can be rescued by non-transporting PiT1 mutants. PiT1 depletion leads to the phosphorylation of p38 mitogen-activated protein (MAP) kinase, whereas other MAP kinases and downstream targets of mammalian target of rapamycin (mTOR) remain unaffected. This study is the first to describe the effects of a Pi transporter in cell proliferation, tumor growth, and cell signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号