首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Syndecan-2, a transmembrane heparan sulfate proteoglycan, is a critical mediator in the tumorigenesis of colon carcinoma cells. We explored the function of syndecan-2 in melanoma, one of the most invasive types of cancers, and found that the expression of this protein was elevated in tissue samples from both nevus and malignant human melanomas but not in melanocytes of the normal human skin tissues. Similarly, elevated syndecan-2 expression was observed in various melanoma cell lines. Overexpression of syndecan-2 enhanced migration and invasion of melanoma cells, whereas the opposite was observed when syndecan-2 levels were knocked down using small inhibitory RNAs. Syndecan-2 expression was enhanced by fibroblast growth factor-2, which is known to stimulate melanoma cell migration; however, α-melanocyte-stimulating hormone decreased syndecan-2 expression and melanoma cell migration and invasion in a melanin synthesis-independent manner. Furthermore, syndecan-2 overexpression rescued the migration defects induced by α-melanocyte-stimulating hormone treatment. Together, these data strongly suggest that syndecan-2 plays a crucial role in the migratory potential of melanoma cells.The syndecans, a family of four transmembrane cell surface heparan sulfate proteoglycans, mainly serving as a co-receptor, regulate the adhesion-dependent signal transduction of a variety of cell types, including cancer cells (1, 2). Cell adhesion receptors or co-receptors play a critical role in the neoplastic transformation of normal cells by regulating the induction of cancer-specific cellular behavior and morphology. Thus, cancer cells probably express and utilize a distinct set of syndecans in the regulation of cancer cell growth.Several reports have linked altered syndecan expression to various elements of cancer cell growth. Loss of syndecan-1 correlates with shorter survival times in patients with squamous cell carcinoma of the head, neck, and lung (3) as well as multiple myeloma (4); loss of syndecan-1 is also associated with an elevated potential for metastasis in patients with hepatocellular and colorectal carcinomas (5, 6). Previous studies have shown that syndecan-1 regulates tumor activity in pancreatic (7), gastric (8), and breast carcinomas (9). Syndecan-1 may thus play multiple roles in tumorigenic activity and perform various tissue- and/or tumor stage-specific functions (10). Syndecan-4 expression is reduced in colon carcinoma cells (11, 12) and appears to correlate with increased tumorigenic activity (e.g. cell migration and invasion (13)), implying that syndecan-4 functions as a tumor suppressor.Syndecan-2 is also known to play a crucial role in the regulation of cancer activity. Increased levels of syndecan-2 confer an invasive phenotype in lung (14) and colon cancer cells (15). Reduction in syndecan-2 expression induces cells to switch from the transformed phenotype to flattened monolayers (8) and reduces tumorigenic activity in colon adenocarcinoma and fibrosarcoma cells (8, 16). In addition, syndecan-2 is highly expressed in the microvasculature of mouse gliomas and has been shown to regulate angiogenesis in microvascular endothelial cells (17). On the other hand, an inverse correlation between syndecan-2 expression and metastatic potential has been found in Lewis lung carcinoma cell lines (6). Therefore, changes in syndecan-2 expression may directly or indirectly regulate cancer growth.Melanoma is the most aggressive malignant tumor of melanocytes. Although found predominantly in the skin, primary melanomas are also known to occur in the bowel and eye (18). Malignant melanoma is notoriously one of the most difficult cancers to treat (19). Therefore, identifying and understanding molecules that regulate the aggressive melanoma phenotype is essential for predicting the likelihood of metastasis. Interestingly, previous studies have shown that melanoma cells acquire the ability to recognize components of the extracellular matrix (ECM)2 via the ectopic expression of different ECM receptors during invasion of the basement membrane (20). Indeed, invadopodia, the dynamic organelle-like structures that form actin-rich protrusions with ECM proteolytic activity, adhere to and digest collagens, laminins, and fibronectin (21). The adhesive properties of invadopodia are primarily attributed to integrins, a large family of heterodimeric transmembrane receptors composed of α and β subunits (22). For example, β1 integrins localize within the invadopodia of melanoma cells (23), and the α5β1 integrins are enriched peripherally in invadopodia, where they stabilize invadopodia protrusion (24). Ectopic stimulation of α6β1 integrin with laminin peptides or with β1 or α6 integrin stimulatory antibodies increases invadopodia activity and melanoma invasiveness (23). The invasive behavior of melanoma cells can be attributed to increased cell motility caused by changes in cytoskeletal organization and altered contacts with the ECM. Thus, cell adhesion receptors may play a crucial role in the acquisition of highly migratory behavior.Syndecan-2 acts as a key regulator of cancer cells, suggesting that syndecan-2 may contribute to the aggressive phenotype and metastatic potential of melanoma. Here, we report that syndecan-2 plays a pivotal role in the migratory activity of melanoma cells.  相似文献   

2.
3.
Accumulating evidence suggests a contribution of T cell-derived IL-17, IL-21 and IL-22 cytokines in skin immune homeostasis as well as inflammatory disorders. Here, we analyzed whether the cytokine-producing T lymphocytes could be induced by the different subsets of human skin dendritic cells (DCs), i.e., epidermal Langerhans cells (LCs), dermal CD1c+CD14 and CD14+ DCs (DDCs). DCs were purified following a 2-day migration from separated epidermal and dermal sheets and co-cultured with allogeneic T cells before cytokine secretion was explored. Results showed that no skin DCs could induce substantial IL-17 production by naïve CD4+ or CD8+T lymphocytes whereas all of them could induce IL-17 production by memory T cells. In contrast, LCs and CD1c+CD14DDCs were able to differentiate naïve CD4+T lymphocytes into IL-22 and IL-21-secreting cells, LCs being the most efficient in this process. Intracellular cytokine staining showed that the majority of IL-21 or IL-22 secreting CD4+T lymphocytes did not co-synthesized IFN-γ, IL-4 or IL-17. IL-21 and IL-22 production were dependent on the B7/CD28 co-stimulatory pathway and ICOS-L expression on skin LCs significantly reduced IL-21 level. Finally, we found that TGF-β strongly down-regulates both IL-21 and IL-22 secretion by allogeneic CD4+ T cells. These results add new knowledge on the functional specialization of human skin DCs and might suggest new targets in the treatment of inflammatory skin disorders.  相似文献   

4.
Aldosterone is a key regulator of the epithelial sodium channel (ENaC) and stimulates protein methylation on the β-subunit of the ENaC. We found that aldosterone (100 nM) promotes cellular migration in a wound-healing model in trophoblastic BeWo cells. Here, we tested if the positive influence of aldosterone on wound healing is related to methylation reactions. Cell migration and proliferation were measured in BeWo cells at 6 h, when mitosis is still scarce. Cell migration covered 12.4, 25.3, 19.6 and 45.1 % of the wound when cultivated under control, aldosterone (12 h), 8Br-cAMP and aldosterone plus 8Br-cAMP, respectively. Amiloride blocked the effects of aldosterone alone or in the presence of 8Br-cAMP on wound healing. Wound healing decreased in aldosterone (plus 8Br-cAMP) coexposed with the methylation inhibitor 3-deaza-adenosine (3-DZA, 12.9 % reinvasion of the wound). There was an increase in wound healing in aldosterone-, 8Br-cAMP- and 3-DZA-treated cells in the presence of AdoMet, a methyl donor, compared to cells in the absence of AdoMet (27.3 and 12.9 % reinvasion of the wound, respectively). Cell proliferation assessed with the reagent MTT was not changed in any of these treatments, suggesting that cellular migration is the main factor for reinvasion of wound healing. Electrophysiological studies showed an increase in ENaC current in the presence of aldosterone. This effect was higher with 8Br-cAMP, and there was a decrease when 3-DZA was present. AdoMet treatment partially reversed this phenomenon. We suggest that aldosterone positively influences wound healing in BeWo cells, at least in part through methylation of the ENaC.  相似文献   

5.
Dendritic cells (DC), including those of the skin, act as sentinels for intruding microorganisms. In the epidermis, DC (termed Langerhans cells, LC) are sessile and screen their microenvironment through occasional movements of their dendrites. The spatio-temporal orchestration of antigen encounter by dermal DC (DDC) is not known. Since these cells are thought to be instrumental in the initiation of immune responses during infection, we investigated their behavior directly within their natural microenvironment using intravital two-photon microscopy. Surprisingly, we found that, under homeostatic conditions, DDC were highly motile, continuously crawling through the interstitial space in a Gαi protein-coupled receptor–dependent manner. However, within minutes after intradermal delivery of the protozoan parasite Leishmania major, DDC became immobile and incorporated multiple parasites into cytosolic vacuoles. Parasite uptake occurred through the extension of long, highly dynamic pseudopods capable of tracking and engulfing parasites. This was then followed by rapid dendrite retraction towards the cell body. DDC were proficient at discriminating between parasites and inert particles, and parasite uptake was independent of the presence of neutrophils. Together, our study has visualized the dynamics and microenvironmental context of parasite encounter by an innate immune cell subset during the initiation of the immune response. Our results uncover a unique migratory tissue surveillance program of DDC that ensures the rapid detection of pathogens.  相似文献   

6.
Using an in vitro differentiation protocol we isolated cells with the properties of dendritic cells (DCs) from immunologically refractive pluripotent murine embryonic stem cells (ESCs). These ES-derived dendritic cells (ESDCs) expressed cytokines and were able to present antigen to a T cell line. Infection of ESDCs with Salmonella Typhimurium stimulated the expression of immune cell markers and thousands of murine genes, many associated with the immune response. Consequently, this system provides a novel in vitro model, amenable to genetic modification, for monitoring host/pathogen interactions.  相似文献   

7.
8.
Our previous research results showed that both Ras homolog family member C (RhoC) and IQ-domain GTPase-activating protein 1 (IQGAP1) were over-expressed in gastric cancer tissues and cells, but their role in tumorigenensis has not been addressed clearly. Herein we reported the proliferation stimulating effect of RhoC and IQGAP1 on gastric cancer cells and the interaction between two proteins in regulating the proliferation of gastric cancer cells. Plasmids and viral constructs encoding target siRNA and DNA were used to alter the expression of RhoC and IQGAP1. MTT method and BrdU incorporation assay were used for analyzing the effect of RhoC and different structures of IQGAP1 on proliferation. Protein levels of IQGAP1 and RhoC in cell lines were detected by Western blotting. Immunofluorescence and Co-Immunoprecipitation assays were applied to investigate the localization and binding between RhoC and IQGAP1. The results showed that RhoC, IQGAP1 and the C-terminal fragment of IQGAP1 significantly stimulated the proliferation of gastric cancer cells, and enhanced the expression of cyclin E and cyclin D1. By contrast, reduction of endogenous IQGAP1 or RhoC by siRNA attenuated cell proliferation. The depletion of IQGAP1 expression by siRNA significantly blocked the proliferative activity of constitutively active RhoC, while RhoC silencing by siRNA had no effect on IQGAP1-induced proliferation in gastric cancer cells. Co-immunoprecipitation and Immunofluorescence assays showed that RhoC and IQGAP1 bound each other. In conclusion, our results suggest that RhoC stimulates the proliferation of gastric cancer cells through recruiting IQGAP1 as an effector.  相似文献   

9.

Background

Changes in cell adhesion and migration in the tumor microenvironment are key in the initiation and progression of metastasis. R-Ras is one of several small GTPases that regulate cell adhesion and migration on the extracellular matrix, however the mechanism has not been completely elucidated. Using a yeast two-hybrid approach we sought to identify novel R-Ras binding proteins that might mediate its effects on integrins.

Methods and Findings

We identified Filamin A (FLNa) as a candidate interacting protein. FLNa is an actin-binding scaffold protein that also binds to integrin β1, β2 and β7 tails and is associated with diverse cell processes including cell migration. Indeed, M2 melanoma cells require FLNa for motility. We further show that R-Ras and FLNa interact in co-immunoprecipitations and pull-down assays. Deletion of FLNa repeat 3 (FLNaΔ3) abrogated this interaction. In M2 melanoma cells active R-Ras co-localized with FLNa but did not co-localize with FLNa lacking repeat 3. Thus, activated R-Ras binds repeat 3 of FLNa. The functional consequence of this interaction was that active R-Ras and FLNa coordinately increased cell migration. In contrast, co-expression of R-Ras and FLNaΔ3 had a significantly reduced effect on migration. While there was enhancement of integrin activation and fibronectin matrix assembly, cell adhesion was not altered. Finally, siRNA knockdown of endogenous R-Ras impaired FLNa-dependent fibronectin matrix assembly.

Conclusions

These data support a model in which R-Ras functionally associates with FLNa and thereby regulates integrin-dependent migration. Thus in melanoma cells R-Ras and FLNa may cooperatively promote metastasis by enhancing cell migration.  相似文献   

10.
The successful use of specialized cells in regenerative medicine requires an optimization in the differentiation protocols that are currently used. Understanding the molecular events that take place during the differentiation of human pluripotent cells is essential for the improvement of these protocols and the generation of high quality differentiated cells. In an effort to understand the molecular mechanisms that govern differentiation we identify the methyltransferase SETD7 as highly induced during the differentiation of human embryonic stem cells and differentially expressed between induced pluripotent cells and somatic cells. Knock-down of SETD7 causes differentiation defects in human embryonic stem cell including delay in both the silencing of pluripotency-related genes and the induction of differentiation genes. We show that SETD7 methylates linker histone H1 in vitro causing conformational changes in H1. These effects correlate with a decrease in the recruitment of H1 to the pluripotency genes OCT4 and NANOG during differentiation in the SETD7 knock down that might affect the proper silencing of these genes during differentiation.  相似文献   

11.
In this protocol we provide a method to isolate dendritic cells (DC) and epithelial cells (TEC) from the human thymus. DC and TEC are the major antigen presenting cell (APC) types found in a normal thymus and it is well established that they play distinct roles during thymic selection. These cells are localized in distinct microenvironments in the thymus and each APC type makes up only a minor population of cells. To further understand the biology of these cell types, characterization of these cell populations is highly desirable but due to their low frequency, isolation of any of these cell types requires an efficient and reproducible procedure. This protocol details a method to obtain cells suitable for characterization of diverse cellular properties. Thymic tissue is mechanically disrupted and after different steps of enzymatic digestion, the resulting cell suspension is enriched using a Percoll density centrifugation step. For isolation of myeloid DC (CD11c+), cells from the low-density fraction (LDF) are immunoselected by magnetic cell sorting. Enrichment of TEC populations (mTEC, cTEC) is achieved by depletion of hematopoietic (CD45hi) cells from the low-density Percoll cell fraction allowing their subsequent isolation via fluorescence activated cell sorting (FACS) using specific cell markers. The isolated cells can be used for different downstream applications.  相似文献   

12.
The presence of neural stem cells in the adult brain is currently widely accepted and efforts are made to harness the regenerative potential of these cells. The dentate gyrus of the hippocampal formation, and the subventricular zone (SVZ) of the anterior lateral ventricles, are considered the main loci of adult neurogenesis. The rostral migratory stream (RMS) is the structure funneling SVZ progenitor cells through the forebrain to their final destination in the olfactory bulb. Moreover, extensive proliferation occurs in the RMS. Some evidence suggest the presence of stem cells in the RMS, but these cells are few and possibly of limited differentiation potential. We have recently demonstrated the specific expression of the cytoskeleton linker protein radixin in neuroblasts in the RMS and in oligodendrocyte progenitors throughout the brain. These cell populations are greatly altered after intracerebroventricular infusion of epidermal growth factor (EGF). In the current study we investigate the effect of EGF infusion on the rat RMS. We describe a specific increase of radixin+/Olig2+ cells in the RMS. Negative for NG2 and CNPase, these radixin+/Olig2+ cells are distinct from typical oligodendrocyte progenitors. The expanded Olig2+ population responds rapidly to EGF and proliferates after only 24 hours along the entire RMS, suggesting local activation by EGF throughout the RMS rather than migration from the SVZ. In addition, the radixin+/Olig2+ progenitors assemble in chains in vivo and migrate in chains in explant cultures, suggesting that they possess migratory properties within the RMS. In summary, these results provide insight into the adaptive capacity of the RMS and point to an additional stem cell source for future brain repair strategies.  相似文献   

13.
We have shown that ex vivo pre-conditioning of bone marrow-derived dendritic cells (DC) with low molecular weight hyaluronan (LMW HA) induces antitumor immunity against colorectal carcinoma (CRC) in mice. In the present study we investigated the effects of LMW HA priming on human-tumor-pulsed monocytes-derived dendritic cells (DC/TL) obtained from healthy donors and patients with CRC. LMW HA treatment resulted in an improved maturation state of DC/TL and an enhanced mixed leucocyte reaction activity in vivo. Importantly, pre-conditioning of DC/TL with LMW HA increased their ability to migrate and reduced their attraction to human tumor derived supernatants. These effects were associated with increased CCR7 expression levels in DC. Indeed, a significant increase in migratory response toward CCL21 was observed in LMW HA primed tumor-pulsed monocyte-derived dendritic cells (DC/TL/LMW HA) when compared to LWM HA untreated cells (DC/TL). Moreover, LMW HA priming modulated other mechanisms implicated in DC migration toward lymph nodes such as the metalloproteinase activity. Furthermore, it also resulted in a significant reduction in DC migratory capacity toward tumor supernatant and IL8 in vitro. Consistently, LMW HA dramatically enhanced in vivo DC recruitment to tumor-regional lymph nodes and reduced DC migration toward tumor tissue. This study shows that LMW HA –a poorly immunogenic molecule- represents a promising candidate to improve human DC maturation protocols in the context of DC-based vaccines development, due to its ability to enhance their immunogenic properties as well as their migratory capacity toward lymph nodes instead of tumors.  相似文献   

14.

Objective

To investigate the effects of CCL21/CCR7 on the proliferation, migration, and invasion of T24 cells and the possible associated mechanisms: expression of MMP-2 and MMP-9, and regulation of BCL-2 and BAX proteins.

Methods

T24 cells received corresponding treatments including vehicle control, antibody (20ng/mL CCR7 antibody and 50 ng/ml CCL21), and 50, 100, and 200 ng/ml CCL21. Proliferation was evaluated by MTT assay; cell migration and invasion were assayed using a transwell chamber. Cell apoptosis was induced by Adriamycin (ADM). The rate of cell apoptosis was examined by flow cytometry using annexin V-FITC/PI staining. Western-blot was used to analyze MMP-2 and MMP-9 and BCL-2 and BAX proteins.

Results

CCL21 promoted T24 cell proliferation in concentration-dependent manner with that 200 ng/mL induced the largest amount of proliferation. Significant differences of cell migration were found between CCL21treatment groups and the control group in both the migration and invasion studies (P < 0.001 for all). The expressions of MMP-2 and MMP-9 proteins were significantly increased after CCL21 treatment (p < 0.05 for all). Protein expression of Bcl-21 follows an ascending trend while the expression of Bax follows a descending trend as the concentration of CCL21 increases. No difference was found between the control group and antibody group for all assessments.

Conclusion

CCL21/CCR7 promoted T24 cell proliferation and enhanced its migration and invasion via the increased expression of MMP-2 and MMP-9. CCL21/CCR7 had antiapoptotic activities on T24 cells via regulation of Bcl-2 and Bax proteins. CCL21/CCR7 may promote bladder cancer development and metastasis.  相似文献   

15.
Myeloid dendritic cells (mDCs) are the antigen-presenting cells best capable of promoting peripheral induction of regulatory T cells (Tregs), and are among the first targets of HIV. It is thus important to understand whether HIV alters their capacity to promote Treg conversion. Monocyte-derived DCs (moDCs) from uninfected donors induced a Treg phenotype (CD25(+)FOXP3(+)) in autologous conventional T cells. These converted FOXP3(+) cells suppressed the proliferation of responder T cells similarly to circulating Tregs. In contrast, the capacity of moDCs to induce CD25 or FOXP3 was severely impaired by their in vitro infection with CCR5-utilizing virus. MoDC exposure to inactivated HIV was sufficient to impair FOXP3 induction. This DC defect was not dependent on IL-10, TGF-β or other soluble factors, but was due to preferential killing of Tregs by HIV-exposed/infected moDCs, through a caspase-dependent pathway. Importantly, similar results were obtained with circulating primary myeloid DCs. Upon infection in vitro, these mDCs also killed Treg through mechanisms at least partially caspase-dependent, leading to a significantly lower proportion of induced Tregs. Taken together, our data suggest that Treg induction may be defective when DCs are exposed to high levels of virus, such as during the acute phase of infection or in AIDS patients.  相似文献   

16.

Background

Sampling the microenvironment at sites of microbial exposure by dendritic cells (DC) and their subsequent interaction with T cells in the paracortical area of lymph nodes are key events for initiating immune responses. Most of our knowledge of such events in human is based on in vitro studies performed in the absence of extracellular matrix (ECM) proteins. ECM in basement membranes and interstitial spaces of different tissues, including lymphoid organs, plays an important role in controlling specific cellular functions such as migration, intracellular signalling and differentiation. The aim of this study was, therefore, to investigate the impact of two abundant ECM components, fibronectin and laminin, on the phenotypical and functional properties of DC and how that might influence DC induced T-cell differentiation.

Methodology/Principal Findings

Human monocyte derived DC were treated with laminin and fibronectin for up to 48 hours and their morphology and phenotype was analyzed using scanning electron microscopy, flow cytometry and real time PCR. The endocytic ability of DC was determined using flow cytometry. Furthermore, co-culture of DC and T cells were established and T cell proliferation and cytokine profile was measured using H3-thymidine incorporation and ELISA respectively. Finally, we assessed formation of DC-T cell conjugates using different cell trackers and flow cytometry. Our data show that in the presence of ECM, DC maintain a ‘more immature’ phenotype and express higher levels of key endocytic receptors, and as a result become significantly better endocytic cells, but still fully able to mature in response to stimulation as evidenced by their superior ability to induce antigen-specific T cell differentiation.

Conclusion

These studies underline the importance of including ECM components in in vitro studies investigating DC biology and DC-T cell interaction. Within the context of antigen specific DC induced T cell proliferation, inclusion of ECM proteins could lead to development of more sensitive assays.  相似文献   

17.
Polysialic acid (PSA) is a homopolymeric glycan that plays crucial roles in the developing and adult nervous system. So far only a few PSA-binding proteins have been identified. Here, we identify myristoylated alanine-rich C kinase substrate (MARCKS) as novel PSA binding partner. Binding assays showed a direct interaction between PSA and a peptide comprising the effector domain of MARCKS (MARCKS-ED). Co-immunoprecipitation of PSA-carrying neural cell adhesion molecule (PSA-NCAM) with MARCKS and co-immunostaining of MARCKS and PSA at the cell membrane of hippocampal neurons confirm the interaction between PSA and MARCKS. Co-localization and an intimate interaction of PSA and MARCKS at the cell surface was seen by confocal microscopy and fluorescence resonance energy transfer (FRET) analysis after the addition of fluorescently labeled PSA or PSA-NCAM to live CHO cells or hippocampal neurons expressing MARCKS as a fusion protein with green fluorescent protein (GFP). Cross-linking experiments showed that extracellularly applied PSA or PSA-NCAM and intracellularly expressed MARCKS-GFP are in close contact, suggesting that PSA and MARCKS interact with each other at the plasma membrane from opposite sides. Insertion of PSA and MARCKS-ED peptide into lipid bilayers from opposite sides alters the electric properties of the bilayer confirming the notion that PSA and the effector domain of MARCKS interact at and/or within the plane of the membrane. The MARCKS-ED peptide abolished PSA-induced enhancement of neurite outgrowth from cultured hippocampal neurons indicating an important functional role for the interaction between MARCKS and PSA in the developing and adult nervous system.  相似文献   

18.
Fucosylated glycans on pathogens are known to shape the immune response through their interaction with pattern recognition receptors, such as C-type lectin receptors (CLRs), on dendritic cells (DCs). Similar fucosylated structures are also commonly found in a variety of allergens, but their functional significance remains unclear. To test a hypothesis that allergen-associated glycans serve as the molecular patterns in functional interaction with CLRs, an enzyme-linked immunosorbent assay-based binding assay was performed to determine the binding activity of purified allergens and allergen extracts. THP-1 cells and monocyte-derived DCs (MDDCs) were investigated as a model for testing the functional effects of allergen-CLR interaction using enzyme-linked immunosorbent assay, Western blotting, and flow cytometry. Significant and saturable bindings of allergens and allergen extracts with variable binding activities to DC-specific ICAM3-grabbing non-integrin (DC-SIGN) and its related receptor, L-SIGN, were found. These include bovine serum albumin coupled with a common glycoform (fucosylated glycan lacking the α1,3-linked mannose) of allergens and a panel of purified allergens, including BG60 (Cyn dBG-60; Bermuda grass pollen) and Der p2 (house dust mite). The binding activity was calcium-dependent and inhibitable by fucose and Lewis-x trisaccharides (Lex). In THP-1 cells and human MDDCs, BG60-DC-SIGN interaction led to the activation of Raf-1 and ERK kinases and the induction of tumor necrosis factor-α expression. This effect could be blocked, in part, by Raf-1 inhibitor or anti-DC-SIGN antibodies and was significantly reduced in cells with DC-SIGN knockdown. These results suggest that allergens are able to interact with DC-SIGN and induce tumor necrosis factor-α expression in MDDCs via, in part, Raf-1 signaling pathways.  相似文献   

19.
Subvisible proteinaceous particles which are present in all therapeutic protein formulations are in the focus of intense discussions between health authorities, academics and biopharmaceutical companies in the context of concerns that such particles could promote unwanted immunogenicity via anti-drug antibody formation. In order to provide further understanding of the subject, this study closely examines the specific biological effects proteinaceous particles may exert on dendritic cells (DCs) as the most efficient antigen-presenting cell population crucial for the initiation of the adaptive immune response. Two different model IgG antibodies were subjected to three different types of exaggerated physical stress to generate subvisible particles in far greater concentrations than the ones typical for the currently marketed biotherapeutical antibodies. The aggregated samples were used in in vitro biological assays in order to interrogate the early DC-driven events that initiate CD4 T-cell dependent humoral adaptive immune responses – peptide presentation capacity and co-stimulatory activity of DCs. Most importantly, antigen presentation was addressed with a unique approach called MHC-associated Peptide Proteomics (MAPPs), which allows for identifying the sequences of HLA-DR associated peptides directly from human dendritic cells.The experiments demonstrated that highly aggregated solutions of two model mAbs generated under controlled conditions can induce activation of human monocyte-derived DCs as indicated by upregulation of typical maturation markers including co-stimulatory molecules necessary for CD4 T-cell activation. Additional data suggest that highly aggregated proteins could induce in vitro T-cell responses. Intriguingly, strong aggregation-mediated changes in the pattern and quantity of antigen-derived HLA-DR associated peptides presented on DCs were observed, indicating a change in protein processing and presentation. Increasing the amounts of subvisible proteinaceous particles correlated very well with the pronounced increase in the peptide number and clusters presented in the context of class II HLA-DR molecules, suggesting a major involvement of a mass-action mechanism of altering the presentation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号