首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

The objective of this study was to test the hypothesis that CD8+ T cells directly mediate motor disability and axon injury in the demyelinated central nervous system. We have previously observed that genetic deletion of the CD8+ T cell effector molecule perforin leads to preservation of motor function and preservation of spinal axons in chronically demyelinated mice.

Methodology/Principal Findings

To determine if CD8+ T cells are necessary and sufficient to directly injure demyelinated axons, we adoptively transferred purified perforin-competent CD8+ spinal cord-infiltrating T cells into profoundly demyelinated but functionally preserved perforin-deficient host mice. Transfer of CD8+ spinal cord-infiltrating T cells rapidly and irreversibly impaired motor function, disrupted spinal cord motor conduction, and reduced the number of medium- and large-caliber spinal axons. Likewise, immunodepletion of CD8+ T cells from chronically demyelinated wildtype mice preserved motor function and limited axon loss without altering other disease parameters.

Conclusions/Significance

In multiple sclerosis patients, CD8+ T cells outnumber CD4+ T cells in active lesions and the number of CD8+ T cells correlates with the extent of ongoing axon injury and functional disability. Our findings suggest that CD8+ T cells may directly injure demyelinated axons and are therefore a viable therapeutic target to protect axons and motor function in patients with multiple sclerosis.  相似文献   

3.
4.
Yersinia enterocolitica (Ye) evades the immune system of the host by injection of Yersinia outer proteins (Yops) via a type three secretion system into host cells. In this study, a reporter system comprising a YopE-β-lactamase hybrid protein and a fluorescent staining sensitive to β-lactamase cleavage was used to track Yop injection in cell culture and in an experimental Ye mouse infection model. Experiments with GD25, GD25-β1A, and HeLa cells demonstrated that β1-integrins and RhoGTPases play a role for Yop injection. As demonstrated by infection of splenocyte suspensions in vitro, injection of Yops appears to occur randomly into all types of leukocytes. In contrast, upon infection of mice, Yop injection was detected in 13% of F4/80+, 11% of CD11c+, 7% of CD49b+, 5% of Gr1+ cells, 2.3% of CD19+, and 2.6% of CD3+ cells. Taking the different abundance of these cell types in the spleen into account, the highest total number of Yop-injected cells represents B cells, particularly CD19+CD21+CD23+ follicular B cells, followed by neutrophils, dendritic cells, and macrophages, suggesting a distinct cellular tropism of Ye. Yop-injected B cells displayed a significantly increased expression of CD69 compared to non-Yop-injected B cells, indicating activation of these cells by Ye. Infection of IFN-γR (receptor)- and TNFRp55-deficient mice resulted in increased numbers of Yop-injected spleen cells for yet unknown reasons. The YopE-β-lactamase hybrid protein reporter system provides new insights into the modulation of host cell and immune responses by Ye Yops.  相似文献   

5.
Experimental visceral leishmaniasis (VL) represents an exquisite model to study CD8+ T cell responses in a context of chronic inflammation and antigen persistence, since it is characterized by chronic infection in the spleen and CD8+ T cells are required for the development of protective immunity. However, antigen-specific CD8+ T cell responses in VL have so far not been studied, due to the absence of any defined Leishmania-specific CD8+ T cell epitopes. In this study, transgenic Leishmania donovani parasites expressing ovalbumin were used to characterize the development, function, and fate of Leishmania-specific CD8+ T cell responses. Here we show that L. donovani parasites evade CD8+ T cell responses by limiting their expansion and inducing functional exhaustion and cell death. Dysfunctional CD8+ T cells could be partially rescued by in vivo B7-H1 blockade, which increased CD8+ T cell survival but failed to restore cytokine production. Nevertheless, B7-H1 blockade significantly reduced the splenic parasite burden. These findings could be exploited for the design of new strategies for immunotherapeutic interventions against VL.  相似文献   

6.
Memory CD8+ T cells represent an important effector arm of the immune response in maintaining long-lived protective immunity against viruses and some intracellular bacteria such as Listeria monocytogenes (L.m). Memory CD8+ T cells are endowed with enhanced antimicrobial effector functions that perfectly tail them to rapidly eradicate invading pathogens. It is largely accepted that these functions are sufficient to explain how memory CD8+ T cells can mediate rapid protection. However, it is important to point out that such improved functional features would be useless if memory cells were unable to rapidly find the pathogen loaded/infected cells within the infected organ. Growing evidences suggest that the anatomy of secondary lymphoid organs (SLOs) fosters the cellular interactions required to initiate naive adaptive immune responses. However, very little is known on how the SLOs structures regulate memory immune responses. Using Listeria monocytogenes (L.m) as a murine infection model and imaging techniques, we have investigated if and how the architecture of the spleen plays a role in the reactivation of memory CD8+ T cells and the subsequent control of L.m growth. We observed that in the mouse, memory CD8+ T cells start to control L.m burden 6 hours after the challenge infection. At this very early time point, L.m-specific and non-specific memory CD8+ T cells localize in the splenic red pulp and form clusters around L.m infected cells while naïve CD8+ T cells remain in the white pulp. Within these clusters that only last few hours, memory CD8+ T produce inflammatory cytokines such as IFN-γ and CCL3 nearby infected myeloid cells known to be crucial for L.m killing. Altogether, we describe how memory CD8+ T cells trafficking properties and the splenic micro-anatomy conjugate to create a spatio-temporal window during which memory CD8+ T cells provide a local response by secreting effector molecules around infected cells.  相似文献   

7.
In primary infection, CD8+ T cells are important for clearance of infectious herpes simplex virus (HSV) from sensory ganglia. In this study, evidence of CD4+ T-cell-mediated clearance of infectious HSV type 1 (HSV-1) from neural tissues was also detected. In immunocompetent mice, HSV-specific CD4+ T cells were present in sensory ganglia and spinal cords coincident with HSV-1 clearance from these sites and remained detectable at least 8 months postinfection. Neural CD4+ T cells isolated at the peak of neural infection secreted gamma interferon, tumor necrosis factor alpha, interleukin-2 (IL-2), or IL-4 after stimulation with HSV antigen. HSV-1 titers in neural tissues were greatly reduced over time in CD8+ T-cell-deficient and CD8+ T-cell-depleted mice, suggesting that CD4+ T cells could mediate clearance of HSV-1 from neural tissue. To examine possible mechanisms by which CD4+ T cells resolved neural infection, CD8+ T cells were depleted from perforin-deficient or FasL-defective mice. Clearance of infectious virus from neural tissues was not significantly different in perforin-deficient or FasL-defective mice compared to wild-type mice. Further, in spinal cords and brains after vaginal HSV-1 challenge of chimeric mice expressing both perforin and Fas or neither perforin nor Fas, virus titers were significantly lower than in control mice. Thus, perforin and Fas were not required for clearance of infectious virus from neural tissues. These results suggest that HSV-specific CD4+ T cells are one component of a long-term immune cell presence in neural tissues following genital HSV-1 infection and play a role in clearance of infectious HSV-1 at neural sites, possibly via a nonlytic mechanism.  相似文献   

8.
Many viruses encode proteins whose major function is to evade or disable the host T cell response. Nevertheless, most viruses are readily detected by host T cells, and induce relatively strong T cell responses. Herein, we employ transgenic CD4+ and CD8+ T cells as sensors to evaluate in vitro and in vivo antigen presentation by coxsackievirus B3 (CVB3), and we show that this virus almost completely inhibits antigen presentation via the MHC class I pathway, thereby evading CD8+ T cell immunity. In contrast, the presentation of CVB3-encoded MHC class II epitopes is relatively unencumbered, and CVB3 induces in vivo CD4+ T cell responses that are, by several criteria, phenotypically normal. The cells display an effector phenotype and mature into multi-functional CVB3-specific memory CD4+ T cells that expand dramatically following challenge infection and rapidly differentiate into secondary effector cells capable of secreting multiple cytokines. Our findings have implications for the efficiency of antigen cross-presentation during coxsackievirus infection.  相似文献   

9.

Background

Mycobacterium-induced granulomas are the interface between bacteria and host immune response. During acute infection dendritic cells (DCs) are critical for mycobacterial dissemination and activation of protective T cells. However, their role during chronic infection in the granuloma is poorly understood.

Methodology/Principal Findings

We report that an inflammatory subset of murine DCs are present in granulomas induced by Mycobacteria bovis strain Bacillus Calmette-guerin (BCG), and both their location in granulomas and costimulatory molecule expression changes throughout infection. By flow cytometric analysis, we found that CD11c+ cells in chronic granulomas had lower expression of MHCII and co-stimulatory molecules CD40, CD80 and CD86, and higher expression of inhibitory molecules PD-L1 and PD-L2 compared to CD11c+ cells from acute granulomas. As a consequence of their phenotype, CD11c+ cells from chronic lesions were unable to support the reactivation of newly-recruited, antigen 85B-specific CD4+IFNγ+ T cells or induce an IFNγ response from naïve T cells in vivo and ex vivo. The mechanism of this inhibition involves the PD-1:PD-L signaling pathway, as ex vivo blockade of PD-L1 and PD-L2 restored the ability of isolated CD11c+ cells from chronic lesions to stimulate a protective IFNγ T cell response.

Conclusions/Significance

Our data suggest that DCs in chronic lesions may facilitate latent infection by down-regulating protective T cell responses, ultimately acting as a shield that promotes mycobacterium survival. This DC shield may explain why mycobacteria are adapted for long-term survival in granulomatous lesions.  相似文献   

10.
In Chagas disease, CD8+ T-cells are critical for the control of Trypanosoma cruzi during acute infection. Conversely, CD8+ T-cell accumulation in the myocardium during chronic infection may cause tissue injury leading to chronic chagasic cardiomyopathy (CCC). Here we explored the role of CD8+ T-cells in T. cruzi-elicited heart injury in C57BL/6 mice infected with the Colombian strain. Cardiomyocyte lesion evaluated by creatine kinase-MB isoenzyme activity levels in the serum and electrical abnormalities revealed by electrocardiogram were not associated with the intensity of heart parasitism and myocarditis in the chronic infection. Further, there was no association between heart injury and systemic anti-T. cruzi CD8+ T-cell capacity to produce interferon-gamma (IFNγ) and to perform specific cytotoxicity. Heart injury, however, paralleled accumulation of anti-T. cruzi cells in the cardiac tissue. In T. cruzi infection, most of the CD8+ T-cells segregated into IFNγ+ perforin (Pfn)neg or IFNγnegPfn+ cell populations. Colonization of the cardiac tissue by anti-T. cruzi CD8+Pfn+ cells paralleled the worsening of CCC. The adoptive cell transfer to T. cruzi-infected cd8 −/− recipients showed that the CD8+ cells from infected ifnγ−/− pfn +/+ donors migrate towards the cardiac tissue to a greater extent and caused a more severe cardiomyocyte lesion than CD8+ cells from ifnγ +/+ pfn −/− donors. Moreover, the reconstitution of naïve cd8 −/− mice with CD8+ cells from naïve ifnγ +/+ pfn −/− donors ameliorated T. cruzi-elicited heart injury paralleled IFNγ+ cells accumulation, whereas reconstitution with CD8+ cells from naïve ifnγ −/− pfn +/+ donors led to an aggravation of the cardiomyocyte lesion, which was associated with the accumulation of Pfn+ cells in the cardiac tissue. Our data support a possible antagonist effect of CD8+Pfn+ and CD8+IFNγ+ cells during CCC. CD8+IFNγ+ cells may exert a beneficial role, whereas CD8+Pfn+ may play a detrimental role in T. cruzi-elicited heart injury.  相似文献   

11.
To better understand the initiation of CD8+ T cell responses during infection, the primary response to the intracellular parasite Toxoplasma gondii was characterized using 2-photon microscopy combined with an experimental system that allowed visualization of dendritic cells (DCs) and parasite specific CD8+ T cells. Infection with T. gondii induced localization of both these populations to the sub-capsular/interfollicular region of the draining lymph node and DCs were required for the expansion of the T cells. Consistent with current models, in the presence of cognate antigen, the average velocity of CD8+ T cells decreased. Unexpectedly, infection also resulted in modulation of the behavior of non-parasite specific T cells. This TCR-independent process correlated with the re-modeling of the lymph node micro-architecture and changes in expression of CCL21 and CCL3. Infection also resulted in sustained interactions between the DCs and CD8+ T cells that were visualized only in the presence of cognate antigen and were limited to an early phase in the response. Infected DCs were rare within the lymph node during this time frame; however, DCs presenting the cognate antigen were detected. Together, these data provide novel insights into the earliest interaction between DCs and CD8+ T cells and suggest that cross presentation by bystander DCs rather than infected DCs is an important route of antigen presentation during toxoplasmosis.  相似文献   

12.
During Yersinia pseudotuberculosis infection of C57BL/6 mice, an exceptionally large CD8+ T cell response to a protective epitope in the type III secretion system effector YopE is produced. At the peak of the response, up to 50% of splenic CD8+ T cells recognize the epitope YopE69-77. The features of the interaction between pathogen and host that result in this large CD8+ T cell response are unknown. Here, we used Y. pseudotuberculosis strains defective for production, secretion and/or translocation of YopE to infect wild-type or mutant mice deficient in specific dendritic cells (DCs). Bacterial colonization of organs and translocation of YopE into spleen cells was measured, and flow cytometry and tetramer staining were used to characterize the cellular immune response. We show that the splenic YopE69-77-specific CD8+ T cells generated during the large response are polyclonal and are produced by a “translocation-dependent” pathway that requires injection of YopE into host cell cytosol. Additionally, a smaller YopE69-77-specific CD8+ T cell response (~10% of the large expansion) can be generated in a “translocation-independent” pathway in which CD8α+ DCs cross present secreted YopE. CCR2-expressing inflammatory DCs were required for the large YopE69-77-specific CD8+ T cell expansion because this response was significantly reduced in Ccr2-/- mice, YopE was translocated into inflammatory DCs in vivo, inflammatory DCs purified from infected spleens activated YopE69-77-specific CD8+ T cells ex vivo and promoted the expansion of YopE69-77-specific CD8+ T cells in infected Ccr2-/- mice after adoptive transfer. A requirement for inflammatory DCs in producing a protective CD8+ T cell response to a bacterial antigen has not previously been demonstrated. Therefore, the production of YopE69-77-specific CD8+ T cells by inflammatory DCs that are injected with YopE during Y. pseudotuberculosis infection represents a novel mechanism for generating a massive and protective adaptive immune response.  相似文献   

13.
Kupffer cells (KCs) represent the major phagocytic population within the liver and provide an intracellular niche for the survival of a number of important human pathogens. Although KCs have been extensively studied in vitro, little is known of their in vivo response to infection and their capacity to directly interact with antigen-specific CD8+ T cells. Here, using a combination of approaches including whole mount and thin section confocal microscopy, adoptive cell transfer and intra-vital 2-photon microscopy, we demonstrate that KCs represent the only detectable population of mononuclear phagocytes within granulomas induced by Leishmania donovani infection that are capable of presenting parasite-derived peptide to effector CD8+ T cells. This restriction of antigen presentation to KCs within the Leishmania granuloma has important implications for the identification of new candidate vaccine antigens and for the design of novel immuno-therapeutic interventions.  相似文献   

14.
Specific intestinal microbiota has been shown to induce Foxp3+ regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103+ dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103+ DCs from Il10 −/−, Tlr2 −/−, and Myd88 −/− mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103+ DCs failed to induce IL-10 production from co-cultured Il27ra −/− T cells. B. breve treatment of Tlr2 −/− mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103+ DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4+ T cells from wild-type mice, but not Il10 −/− mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells.  相似文献   

15.
Control of infection with Mycobacterium tuberculosis (Mtb) requires Th1-type immunity, of which CD8+ T cells play a unique role. High frequency Mtb-reactive CD8+ T cells are present in both Mtb-infected and uninfected humans. We show by limiting dilution analysis that nonclassically restricted CD8+ T cells are universally present, but predominate in Mtb-uninfected individuals. Interestingly, these Mtb-reactive cells expressed the Vα7.2 T-cell receptor (TCR), were restricted by the nonclassical MHC (HLA-Ib) molecule MR1, and were activated in a transporter associated with antigen processing and presentation (TAP) independent manner. These properties are all characteristics of mucosal associated invariant T cells (MAIT), an “innate” T-cell population of previously unknown function. These MAIT cells also detect cells infected with other bacteria. Direct ex vivo analysis demonstrates that Mtb-reactive MAIT cells are decreased in peripheral blood mononuclear cells (PBMCs) from individuals with active tuberculosis, are enriched in human lung, and respond to Mtb-infected MR1-expressing lung epithelial cells. Overall, these findings suggest a generalized role for MAIT cells in the detection of bacterially infected cells, and potentially in the control of bacterial infection.  相似文献   

16.

Background

Recently we and others have identified CD8 and CD4 T cell epitopes within the highly expressed M. tuberculosis protein TB10.4. This has enabled, for the first time, a comparative study of the dynamics and function of CD4 and CD8 T cells specific for epitopes within the same protein in various stages of TB infection.

Methods and Findings

We focused on T cells directed to two epitopes in TB10.4; the MHC class I restricted epitope TB10.4 3–11 (CD8/10.4 T cells) and the MHC class II restricted epitope TB10.4 74–88 (CD4/10.4 T cells). CD4/10.4 and CD8/10.4 T cells displayed marked differences in terms of expansion and contraction in a mouse TB model. CD4/10.4 T cells dominated in the early phase of infection whereas CD8/10.4 T cells were expanded after week 16 and reached 5–8 fold higher numbers in the late phase of infection. In the early phase of infection both CD4/10.4 and CD8/10.4 T cells were characterized by 20–25% polyfunctional cells (IL-2+, IFN-γ+, TNF-α+), but whereas the majority of CD4/10.4 T cells were maintained as polyfunctional T cells throughout infection, CD8/10.4 T cells differentiated almost exclusively into effector cells (IFN-γ+, TNF-α+). Both CD4/10.4 and CD8/10.4 T cells exhibited cytotoxicity in vivo in the early phase of infection, but whereas CD4/10.4 cell mediated cytotoxicity waned during the infection, CD8/10.4 T cells exhibited increasing cytotoxic potential throughout the infection.

Conclusions/Significance

Our results show that CD4 and CD8 T cells directed to epitopes in the same antigen differ both in their kinetics and functional characteristics throughout an infection with M. tuberculosis. In addition, the observed strong expansion of CD8 T cells in the late stages of infection could have implications for the development of post exposure vaccines against latent TB.  相似文献   

17.

Background

The emergence of antibiotic-resistant strains of Salmonella enterica serovar Typhi (S. Typhi), the etiologic agent of typhoid fever, has aggravated an already important public health problem and added new urgency to the development of more effective typhoid vaccines. To this end it is critical to better understand the induction of immunity to S. Typhi. CD8+ T cells are likely to play an important role in host defense against S. Typhi by several effector mechanisms, including killing of infected cells and IFN-γ secretion. However, how S. Typhi regulates the development of specific CD8+ responses in humans remains unclear. Recent studies in mice have shown that dendritic cells (DC) can either directly (upon uptake and processing of Salmonella) or indirectly (by bystander mechanisms) elicit Salmonella-specific CD8+ T cells.

Methodology/Principal Findings

We report here that upon infection with live S. Typhi, human DC produced high levels of pro-inflammatory cytokines IL-6, IL-8 and TNF-α, but low levels of IL-12 p70 and IFN-γ. In contrast, DC co-cultured with S. Typhi-infected cells, through suicide cross-presentation, uptake S. Typhi-infected human cells and release high levels of IFN-γ and IL-12p70, leading to the subsequent presentation of bacterial antigens and triggering the induction of memory T cells, mostly CD3+CD8+CD45RACD62L effector/memory T cells.

Conclusions/Significance

This study is the first to demonstrate the effect of S. Typhi on human DC maturation and on their ability to prime CD8+ cells and highlights the significance of these phenomena in eliciting adaptive immunity to S. Typhi.  相似文献   

18.
Stimulating naïve CD8+ T cells with specific antigens and costimulatory signals is insufficient to induce optimal clonal expansion and effector functions. In this study, we show that the activation and differentiation of CD8+ T cells require IL-2 provided by activated CD4+ T cells at the initial priming stage within 0–2.5 hours after stimulation. This critical IL-2 signal from CD4+ cells is mediated through the IL-2Rβγ of CD8+ cells, which is independent of IL-2Rα. The activation of IL-2 signaling advances the restriction point of the cell cycle, and thereby expedites the entry of antigen-stimulated CD8+ T-cell into the S phase. Besides promoting cell proliferation, IL-2 stimulation increases the amount of IFNγ and granzyme B produced by CD8+ T cells. Furthermore, IL-2 at priming enhances the ability of P14 effector cells generated by antigen activation to eradicate B16.gp33 tumors in vivo. Therefore, our studies demonstrate that a full CD8+ T-cell response is elicited by a critical temporal function of IL-2 released from CD4+ T cells, providing mechanistic insights into the regulation of CD8+ T cell activation and differentiation.  相似文献   

19.
IL-10 is a critical regulatory cytokine involved in the pathogenesis of visceral leishmaniasis caused by Leishmania donovani and clinical and experimental data indicate that disease progression is associated with expanded numbers of CD4+ IFNγ+ T cells committed to IL-10 production. Here, combining conditional cell-specific depletion with adoptive transfer, we demonstrate that only conventional CD11chi DCs that produce both IL-10 and IL-27 are capable of inducing IL-10-producing Th1 cells in vivo. In contrast, CD11chi as well as CD11cint/lo cells isolated from infected mice were capable of reversing the host protective effect of diphtheria toxin-mediated CD11c+ cell depletion. This was reflected by increased splenomegaly, inhibition of NO production and increased parasite burden. Thus during chronic infection, multiple CD11c+ cell populations can actively suppress host resistance and enhance immunopathology, through mechanisms that do not necessarily involve IL-10-producing Th1 cells.  相似文献   

20.
Recovery from infection with the Friend murine leukemia retrovirus complex (FV) requires T-helper cells and cytotoxic T cells as well as neutralizing antibodies. Several host genes, including genes of the major histocompatibility complex (H-2) and an H-2-unlinked gene, Rfv-3, influence these FV-specific immune responses. (B10.A × A/Wy)F1 mice, which have the H-2a/a Rfv-3r/s genotype, fail to mount a detectable FV-specific T-cell proliferative response but nevertheless produce FV-specific neutralizing immunoglobulin M (IgM) antibodies and can eliminate FV viremia. Thus, this IgM response, primarily influenced by the Rfv-3 gene, may be T-cell independent. To test this idea, mice were depleted of either CD4+ or CD8+ T-cell populations in vivo and were monitored for the effect on the neutralizing antibody response following FV infection. Surprisingly, mice in which CD4+ cells were depleted showed undetectable FV-neutralizing antibody responses and high viremia levels compared to nondepleted or CD8-depleted animals. In addition to knocking out the FV antibody response, CD4+ T-cell depletion reduced survival time significantly, further indicating the importance of CD4+ T cells. These studies revealed the first evidence for a functional T-cell response following FV infection in these low-recovery mice and showed that CD4+ T-helper cells are required for the Rfv-3-controlled FV antibody response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号