首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ATP-binding cassette transporter A1 (ABCA1), a molecule mediating free cholesterol efflux from peripheral tissues to apoAI and high density lipoprotein (HDL), inhibits the formation of lipid-laden macrophage/foam cells and the development of atherosclerosis. ERK1/2 are important signaling molecules regulating cellular growth and differentiation. The ERK1/2 signaling pathway is implicated in cardiac development and hypertrophy. However, the role of ERK1/2 in the development of atherosclerosis, particularly in macrophage cholesterol homeostasis, is unknown. In this study, we investigated the effects of ERK1/2 activity on macrophage ABCA1 expression and cholesterol efflux. Compared with a minor effect by inhibition of other kinases, inhibition of ERK1/2 significantly increased macrophage cholesterol efflux to apoAI and HDL. In contrast, activation of ERK1/2 reduced macrophage cholesterol efflux and ABCA1 expression. The increased cholesterol efflux by ERK1/2 inhibitors was associated with the increased ABCA1 levels and the binding of apoAI to cells. The increased ABCA1 by ERK1/2 inhibitors was due to increased ABCA1 mRNA and protein stability. The induction of ABCA1 expression and cholesterol efflux by ERK1/2 inhibitors was concentration-dependent. The mechanism study indicated that activation of liver X receptor (LXR) had little effect on ERK1/2 expression and activation. ERK1/2 inhibitors had no effect on macrophage LXRα/β expression, whereas they did not influence the activation or the inhibition of the ABCA1 promoter by LXR or sterol regulatory element-binding protein (SREBP). However, inhibition of ERK1/2 and activation of LXR synergistically induced macrophage cholesterol efflux and ABCA1 expression. Our data suggest that ERK1/2 activity can play an important role in macrophage cholesterol trafficking.  相似文献   

3.
We examined cholesterol homeostasis in mice with the two major cholesterol transport pathways for catabolism interrupted by disrupting abca1, lcat, or both. Plasma HDL markedly decreased in these genotype but LDL/VLDL decreased only in the double deficiency. Fractional catabolic rate of HDL increased in the order of wild type < abca1(?/?) = lcat(?/?) < abca1(?/?)lcat(?/?). Cholesterol accumulated in the liver by disrupting either gene and more by the double disruption. HDL biogenesis by primary-cultured hepatocytes was negligible in the abca1 deficiency and substantially reduced in the lcat deficiency. Secretion of LDL/VLDL was also decreased in these cells but to a less extent. Cholesterol content in the hepatocytes was in a reciprocal order to lipoprotein generation. Expression of hepatic mRNA of the sterol-related genes reflected the cellular cholesterol increase, such as decrease in SREBP2 and HMG-CoA reductase and increase in apoA-I, apoE, and ABCG1. Cholesterol decreased in the steroidogenic organs by disruption of either gene resulting from low-plasma HDL. Cholesterol in other peripheral tissues generally decreased under normal chow feeding, and interestingly, it was recovered by high-cholesterol feeding, including the cholesterol content in the brain. No apparent vascular lipid deposition was observed in any genotype. Deletion of the two major factors in “reverse cholesterol transport” may not directly result in severe cholesterol transport stagnation in the body of mouse. Other compensatory pathways may back up cholesterol transport among the organs and tissues even when these pathways are impaired.  相似文献   

4.
5.
为探讨mi R-33s在核因子κB(NF-κB)抑制三磷酸腺苷结合盒转运体A1(ABCA1)表达及胆固醇流出中的作用,THP-1巨噬细胞源性泡沫细胞经不同浓度脂多糖(LPS)处理,活化NF-κB,或以PDTC(NF-κB抑制剂)预处理细胞后再加入LPS,实时荧光定量PCR检测细胞mi R-33s及其宿主基因胆固醇调节元件结合蛋白(SREBPs)的表达,蛋白质印迹法检测SREBPs的蛋白质表达,染色体免疫共沉淀检测NF-κB p65与SREBPs启动子区结合情况;LPS处理基础上,转染mi R-33s抑制物或mi R-33s模拟物,RT-PCR检测ABCA1 m RNA表达水平,蛋白质印迹法检测ABCA1蛋白水平,液体闪烁计数仪检测细胞内的胆固醇流出.结果显示,NF-κB活化促进mi R-33s及SREBPs的表达,使用PDTC抑制NF-κB,细胞内mi R-33s和SREBPs的表达下降;NF-κB p65可与SREBPs启动子区直接结合;转染mi R-33s抑制剂后,NF-κB活化对ABCA1的抑制作用减弱,胆固醇流出增强;相反,转染mi R-33s抑制物,NF-κB活化对ABCA1的抑制作用增强,胆固醇流出减弱.结果提示,NF-κB活化可促进mi R-33s表达,抑制ABCA1及胆固醇流出.  相似文献   

6.
Klug W  Dietl A  Simon B  Sinning I  Wild K 《FEBS letters》2011,585(20):3229-3235
Neuronal Fe65 is a central adapter for the intracellular protein network of Alzheimer's disease related amyloid precursor protein (APP). It contains a unique tandem array of phosphotyrosine-binding (PTB) domains that recognize NPXY internalization motifs present in the intracellular domains of APP (AICD) and the low-density lipoprotein receptor-related protein LRP1 (LICD). The ternary APP/Fe65/LRP1 complex is an important mediator of APP processing and affects β-amyloid peptide production. Here we dissect by biochemical and biophysical methods the direct interactions within the ternary complex and reveal a phosphorylation-dependent insulin receptor substrate (IRS-) like interaction of the distal NPVY(4507) motif of LICD with Fe65-PTB1.  相似文献   

7.
Cellular localization and trafficking of the human ABCA1 transporter   总被引:16,自引:0,他引:16  
ABCA1, the ATP-binding cassette protein mutated in Tangier disease, mediates the efflux of excess cellular sterol to apoA-I and thereby the formation of high density lipoprotein. The intracellular localization and trafficking of ABCA1 was examined in stably and transiently transfected HeLa cells expressing a functional human ABCA1-green fluorescent protein (GFP) fusion protein. The fluorescent chimeric ABCA1 transporter was found to reside on the cell surface and on intracellular vesicles that include a novel subset of early endosomes, as well as late endosomes and lysosomes. Studies of the localization and trafficking of ABCA1-GFP in the presence of brefeldin A or monensin, agents known to block intracellular vesicular trafficking, as well as apoA-I-mediated cellular lipid efflux, showed that: (i) ABCA1 functions in lipid efflux at the cell surface, and (ii) delivery of ABCA1 to lysosomes for degradation may serve as a mechanism to modulate its surface expression. Time-lapse fluorescence microscopy revealed that ABCA1-GFP-containing early endosomes undergo fusion, fission, and tubulation and transiently interact with one another, late endocytic vesicles, and the cell surface. These studies establish a complex intracellular trafficking pathway for human ABCA1 that may play important roles in modulating ABCA1 transporter activity and cellular cholesterol homeostasis.  相似文献   

8.
9.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease and it is the most common adult onset neurodegenerative disorder affecting motor neurons. There is currently no effective treatment for ALS and our understanding of the pathological mechanism is still far away from prevention and/or treatment of this devastating disease. Amyloid precursor protein (APP) is a transmembrane protein that undergoes processing either by β-secretase or α-secretase, followed by γ-secretase. In the present study, we show that APP levels, and aberrant phosphorylation, which is associated with enhanced β-secretase cleavage, are increased in SOD1G93A ALS mouse model. Fluorescence resonance energy transfer (FRET) analysis suggests a close interaction between SOD1 and APP at hippocampal synapses. Notably, SOD1G93A mutation induces APP-SOD1 conformational changes, indicating a crosstalk between these two signaling proteins. Inhibition of APP processing via monoclonal antibody called BBS that blocks APP β-secretase cleavage site, resulted in reduction of mutant SOD1G93A levels in animal and cellular models of ALS, significantly prolonged life span of SOD1G93A mice and diminished inflammation. Beyond its effect on toxic mutant SOD1G93A, BBS treatment resulted in a reduction in the levels of APP, its processing product soluble APPβ and pro-apoptotic p53. This study demonstrates that APP and its processing products contribute to ALS pathology through several different pathways; thus BBS antibody could be a promising neuroprotective strategy for treatment of this disease.  相似文献   

10.
LXR和ABCA1对体内胆固醇代谢的调节作用   总被引:12,自引:0,他引:12  
肝外组织胆固醇返回肝脏,在肝脏通过生成胆汁酸排出,这一过程称为胆固醇逆转运。研究表明LXRs在维持体内胆固醇平衡方面起着感受器作用,通过关键靶基因转录的控制来调节胆固醇分解、储存、吸收和转运。LXR和RXR激动剂可上调巨噬细胞三磷酸腺苷结合盒转运体A1和G1(ABCAl,ABCGl)的表达,导致细胞内胆固醇流出。以LXR作为靶点的药物将为治疗高胆固醇血症和抗As提供新的希望。  相似文献   

11.
12.
ATP-binding cassette transporter A1 (ABCA1) is a cell membrane protein that exports excess cholesterol from cells to apolipoprotein (apo) A-I, the major protein in high density lipoproteins. Genetic studies have shown that ABCA1 protects against cardiovascular disease. The interaction of apoA-I with ABCA1 promotes cholesterol removal and activates signaling molecules, such as Janus kinase 2 (JAK2), that optimize the lipid export activity of ABCA1. Here we show that the ABCA1-mediated activation of JAK2 also activates STAT3, which is independent of the lipid transport function of ABCA1. ABCA1 contains two candidate STAT3 docking sites that are required for the apoA-I/ABCA1/JAK2 activation of STAT3. The interaction of apoA-I with ABCA1-expressing macrophages suppressed the ability of lysopolysaccaride to induce the inflammatory cytokines interleukin-1β, interleukin-6, and tumor necrosis factor-α, which was reversed by silencing STAT3 or ABCA1. Thus, the apoA-I/ABCA1 pathway in macrophages functions as an anti-inflammatory receptor through activation of JAK2/STAT3. These findings implicate ABCA1 as a direct molecular link between the cardioprotective effects of cholesterol export from arterial macrophages and suppressed inflammation.  相似文献   

13.
Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the contribution of the LDL receptor-related protein 1 (LRP1) to this process is not known. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR)-deficient background (macLRP1-/-). After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp +/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.  相似文献   

14.
脑是富含胆固醇的器官,机体大约有25%的胆固醇集中在脑组织中.ATP结合盒超家族转运蛋白对脑组织中胆固醇的膜外转运和动态平衡起着重要的调节作用.研究发现,ATP结合盒超家族转运蛋白亚体ABCG1、ABCG4和ABCA1在成体脑组织中存在不同程度的表达,一种或多种亚体的缺失可以导致神经退行性病变.然而,ATP结合盒超家族转运蛋白亚体对脑发育过程中脑胆固醇动态变化的调节缺乏相关性的报道.在本研究中,从低胆固醇饮食喂养的C57BL/6J小鼠中获取出生后不同发育时期的脑组织,对ABCG1、ABCG4和ABCA1的mRNA与蛋白质表达水平进行测定,并对脑组织和血清中ATP结合盒超家族转运蛋白的表达水平与胆固醇水平的相关性进行研究.同时,使用ABCG1、ABCG4单一基因敲除鼠和ABCG1、ABCG4双基因敲除鼠,研究ATP结合盒超家族转运蛋白对与胆固醇合成的相关基因表达的影响以及对脑组织胆固醇代谢的调节作用.结果发现,ABCG1、ABCG4和ABCA1在机体多个器官中均有表达,但ABCG1和ABCG4在小鼠脑组织中表达量最高.在脑组织发育过程中,ABCG1和ABCG4mRNA水平呈现明显的表达时效性,小鼠于出生后42天达到峰值,而ABCA1 mRNA的表达水平无明显变化.血清和脑组织中中酯化型胆固醇水平呈双高峰分布,也于出生后42天达到最高.基因敲除鼠模型显示,单一敲除ABCG1或者ABCG4基因对脑组织胆固醇水平无明显影响,而ABCG1和ABCG4基因的同时缺失导致脑胆固醇水平显著升高,并明显降低胆固醇合成相关基因的表达水平.本研究表明,在脑发育成熟过程中,ATP结合盒超家族转运蛋白亚体ABCG1和ABCG4,而非ABCA1,以调节脑胆固醇的膜外转运;ABCG1和ABCG4互补调控脑胆固醇的动态平衡.  相似文献   

15.
《Biochimie》2013,95(4):957-961
It is now well established that the ATP-binding cassette transporter A1 (ABCA1) plays a pivotal role in HDL metabolism, reverse cholesterol transport and net efflux of cellular cholesterol and phospholipids. We aimed to resolve some uncertainties related to the putative function of ABCA1 as a mediator of lipid transport by using a methodology developed in the laboratory to isolate a protein and study its interactions with other compounds. ABCA1 was tagged with the 1D4 peptide at the C terminus and expressed in human HEK 293 cells. Preliminary experiments showed that the tag modified neither the protein expression/localization within the cells nor the ability of ABCA1 to promote cholesterol cellular efflux to apolipoprotein A-I. ABCA1-1D4 was then purified and reconstituted in liposomes. ABCA1 displayed an ATPase activity in phospholipid liposomes that was significantly decreased by cholesterol. Finally, interactions with either cholesterol or apolipoprotein A-I were assessed by binding experiments with protein immobilized on an immunoaffinity matrix. Solid-phase binding assays showed no direct binding of cholesterol or apolipoprotein A-I to ABCA1. Overall, our data support the hypothesis that ABCA1 is able to mediate the transport of cholesterol from cells without direct interaction and that apo A-I primarily binds to membrane surface or accessory protein(s).  相似文献   

16.
ATP-binding cassette transporter A1 (ABCA1) plays an essential role in mediating cholesterol efflux to apolipoprotein A-I (apoA-I), a major housekeeping mechanism for cellular cholesterol homeostasis. After initial engagement with ABCA1, apoA-I directly interacts with the plasma membrane to acquire cholesterol. This apoA-I lipidation process is also known to require cellular signaling processes, presumably to support cholesterol trafficking to the plasma membrane. We report here that one of major signaling pathways in mammalian cells, Akt, is also involved. In several cell models that express ABCA1 including macrophages, pancreatic beta cells and hepatocytes, inhibition of Akt increases cholesterol efflux to apoA-I. Importantly, Akt inhibition has little effect on cells expressing non-functional mutant of ABCA1, implicating a specific role of Akt in ABCA1 function. Furthermore, we provide evidence that mTORC1, a major downstream target of Akt, is also a negative regulator of cholesterol efflux. In cells where mTORC1 is constitutively activated due to tuberous sclerosis complex 2 deletion, cholesterol efflux to apoA-I is no longer sensitive to Akt activity. This suggests that Akt suppresses cholesterol efflux through mTORC1 activation. Indeed, inhibition of mTORC1 by rapamycin or Torin-1 promotes cholesterol efflux. On the other hand, autophagy, one of the major pathways of cholesterol trafficking, is increased upon Akt inhibition. Furthermore, Akt inhibition disrupts lipid rafts, which is known to promote cholesterol efflux to apoA-I. We therefore conclude that Akt, through its downstream targets, mTORC1 and hence autophagy, negatively regulates cholesterol efflux to apoA-I.  相似文献   

17.
High cholesterol and diabetes are major risk factors for atherosclerosis. Regression of atherosclerosis is mediated in part by the Liver X Receptor (LXR) through the induction of genes involved in cholesterol transport and efflux. In the context of diabetes, regression of atherosclerosis is impaired. We proposed that changes in glucose levels modulate LXR-dependent gene expression. Using a mouse macrophage cell line (RAW 264.7) and primary bone marrow derived macrophages (BMDMs) cultured in normal or diabetes relevant high glucose conditions we found that high glucose inhibits the LXR-dependent expression of ATP-binding cassette transporter A1 (ABCA1), but not ABCG1. To probe for this mechanism, we surveyed the expression of a host of chromatin-modifying enzymes and found that Protein Arginine Methyltransferase 2 (PRMT2) was reduced in high compared to normal glucose conditions. Importantly, ABCA1 expression and ABCA1-mediated cholesterol efflux were reduced in Prmt2 -/- compared to wild type BMDMs. Monocytes from diabetic mice also showed decreased expression of Prmt2 compared to non-diabetic counterparts. Thus, PRMT2 represents a glucose-sensitive factor that plays a role in LXR-mediated ABCA1-dependent cholesterol efflux and lends insight to the presence of increased atherosclerosis in diabetic patients.  相似文献   

18.
19.
The cell surface low-density lipoprotein receptor-related protein 1, LRP1, plays a major role in lipid metabolism. The question that remains open concerns the function of LRP1 in adipogenesis. Here, we show that LRP1 is highly expressed in murine preadipocytes as well as in primary culture of human adipocytes. Moreover, LRP1 remains abundantly synthesised during mouse and human adipocyte differentiation. We demonstrate that LRP1 silencing in 3T3F442A murine preadipocytes significantly inhibits the expression of PPARγ, HSL and aP2 adipocyte differentiation markers after adipogenesis induction, and leads to lipid-depleted cells. We further show that the absence of lipids in LRP1-silenced preadipocytes is not caused by lipolysis induction. In addition, we provide the first evidences that LRP1 is significantly up-regulated in obese C57BI6/J mouse adipocytes and obese human adipose tissues. Interestingly, silencing of LRP1 in fully-differentiated adipocytes also reduces cellular lipid level and is associated with an increase of basal lipolysis. However, the ability of mature adipocytes to induce lipolysis is independent of LRP1 expression. Altogether, our findings highlight the dual role of LRP1 in the control of adipogenesis and lipid homeostasis, and suggest that LRP1 may be an important therapeutic target in obesity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号