首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein kinase C (PKC) isoforms regulate a number of processes crucial for the fate of a cell. In this study we identify previously unrecognized interaction partners of PKCα and a novel role for PKCα in the regulation of stress granule formation during cellular stress. Three RNA-binding proteins, cytoplasmic poly(A)(+) binding protein (PABPC1), IGF-II mRNA binding protein 3 (IGF2BP3), and RasGAP binding protein 2 (G3BP2) all co-precipitate with PKCα. RNase treatment abolished the association with IGF2BP3 and PABPC1 whereas the PKCα-G3BP2 interaction was largely resistant to this. Furthermore, interactions between recombinant PKCα and G3BP2 indicated that the interaction is direct and PKCα can phosphorylate G3BP2 in vitro. The binding is mediated via the regulatory domain of PKCα and the C-terminal RNA-binding domain of G3BP2. Both proteins relocate to and co-localize in stress granules, but not to P-bodies, when cells are subjected to stress. Heat shock-induced stress granule assembly and phosphorylation of eIF2α are suppressed following downregulation of PKCα by siRNA. In conclusion this study identifies novel interaction partners of PKCα and a novel role for PKCα in regulation of stress granules.  相似文献   

3.
There is increasing evidence that the active contribution of hepatocytes to liver disease is strongly dependent on local cytokine environment. It has been shown in vitro that TNFα can enhance hepatocyte FasLigand (FasL)-mediated cytotoxicity. Here, we demonstrate that TNFα-induced apoptosis was associated with Fas and FasL upregulation and that a FasL-neutralizing antibody prevented TNFα-induced apoptosis. We further examined in vivo the relevance of the Fas/FasL pathway to hepatocellular apoptosis in a TNFα-driven model of acute liver failure. Livers of galactosamine/lipopolysaccharide (Gal/LPS)-exposed Fas wild-type mice highly expressed both Fas and FasL and revealed marked hepatocellular apoptosis that was almost completely blocked by soluble TNFα-receptor; this was also almost absent in Gal/LPS-exposed Fas lymphoproliferation mutant mice. Our data provide evidence for a direct link between TNFα and Fas/FasL in mediating hepatocyte apoptosis. Fratricidal death by Fas–FasL interactions of neighbouring hepatocytes may actively contribute to acute liver failure.  相似文献   

4.
5.
We have developed an in vitro assay to study actin assembly at cadherin-enriched cell junctions. Using this assay, we demonstrate that cadherin-enriched junctions can polymerize new actin filaments but cannot capture preexisting filaments, suggesting a mechanism involving de novo synthesis. In agreement with this hypothesis, inhibition of Arp2/3-dependent nucleation abolished actin assembly at cell-cell junctions. Reconstitution biochemistry using the in vitro actin assembly assay identified α-actinin-4/focal segmental glomerulosclerosis 1 (FSGS1) as an essential factor. α-Actinin-4 specifically localized to sites of actin incorporation on purified membranes and at apical junctions in Madin-Darby canine kidney cells. Knockdown of α-actinin-4 decreased total junctional actin and inhibited actin assembly at the apical junction. Furthermore, a point mutation of α-actinin-4 (K255E) associated with FSGS failed to support actin assembly and acted as a dominant negative to disrupt actin dynamics at junctional complexes. These findings demonstrate that α-actinin-4 plays an important role in coupling actin nucleation to assembly at cadherin-based cell-cell adhesive contacts.  相似文献   

6.
7.
Regulation of catalase (CAT) by peroxisome proliferator-activated receptor-γ (PPARγ) was investigated to determine if PPARγ activation provides cardioprotection from oxidative stress caused by hydrogen peroxide (H(2)O(2)) in an age-dependent manner. Left ventricular developed pressure (LVDP) was measured in Langendorff perfused newborn or adult rabbit hearts, exposed to 200μM H(2)O(2), with perfusion of rosiglitazone (RGZ) or pioglitazone (PGZ), PPARγ agonists. We found: (1) H(2)O(2) significantly decreased sarcomere shortening in newborn ventricular cells but not in adult cells. Lactate dehydrogenase (LDH) release occurred earlier in newborn than in adult heart, which may be due, in part, to the lower expression of CAT in newborn heart. (2) RGZ increased CAT mRNA and protein as well as activity in newborn but not in adult heart. GW9662 (PPARγ blocker) eliminated the increased CAT mRNA by RGZ. (3) In newborn heart, RGZ and PGZ treatment inhibited release of LDH in response to H(2)O(2) compared to H(2)O(2) alone. GW9662 decreased this inhibition. (4) LVDP was significantly higher in both RGZ+H(2)O(2) and PGZ+H(2)O(2) groups than in the H(2)O(2) group. Block of PPARγ abolished this effect. In contrast, there was no effect of RGZ in adult. (5) The cardioprotective effects of RGZ were abolished by inhibition of CAT. In conclusion, PPARγ activation is cardioprotective to H(2)O(2)-induced stress in the newborn heart by upregulation of catalase. These data suggest that PPARγ activation may be an effective therapy for the young cardiac patient.  相似文献   

8.
9.
10.
11.
Brefeldin A (BFA), an endoplasmic reticulum (ER)-Golgi transport inhibitor, has been shown to cause accumulation of proteins in the ER, ER stress, and ultimately apoptosis. In this paper, we demonstrate that the knockdown of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm), a mitochondrial NADPH-generating enzyme, by small interfering RNA (siRNA) enhanced BFA-induced apoptosis. However, attenuated IDPm activity results in the suppression of ER stress response, presumably, via the inhibition of the PI3K/Akt pathway. Collectively, our data suggest that the association of IDPm expression and ER stress confers a survival mechanism in A549 cells against BFA-induced apoptosis.  相似文献   

12.
The processing and regulated secretion of IL-1β are critical points of control of the biological activity of this important pro-inflammatory cytokine. IL-1β is produced by both monocytes and macrophages, but the rate and mechanism of release differ according to the differentiation status and the origin of these cells. We aimed to study the control of processing and release in human blood monocytes and human monocyte-derived macrophages. Toll-like receptor (TLR)-induced IL-1β production and release were investigated for dependence upon caspase-1, P2X7 receptor activation, and loss of membrane asymmetry associated with microvesicle shedding. TLR agonists induced P2X7 receptor-dependent IL-1β release in both monocytes and macrophages; however, only monocytes also showed P2X7 receptor-independent release of mature IL-1β. Furthermore, in monocytes ATP-mediated PS exposure could be activated independently of IL-1β production. Release of IL-1β from monocytes showed selectivity for specific TLR agonists and was accelerated by P2X7 receptor activation. Human monocytes released more IL-1β/cell than macrophages. These data have important implications for inflammatory diseases that involve monocyte activation and IL-1 release.  相似文献   

13.
Peroxisome proliferator-activated receptors (PPARs) control energy homeostasis. In this study, we showed that farnesol, a naturally occurring ligand of PPARs, could ameliorate metabolic diseases. Obese KK-Ay mice fed a high-fat diet (HFD) containing 0.5% farnesol showed significantly decreased serum glucose level, glucosuria incidence, and hepatic triglyceride contents. Farnesol-containing HFD upregulated the mRNA expressions of PPARα target genes involved in fatty acid oxidation in the liver. On the other hand, farnesol was not effective in upregulating the mRNA expressions of PPARγ target genes in white adipose tissues. Experiments using PPARα-deficient [(-/-)] mice revealed that the upregulation of fatty acid oxidation-related genes required PPARα function, but the suppression of hepatic triglyceride accumulation was partially PPARα-dependent. In hepatocytes isolated from the wild-type and PPARα (-/-) mice, farnesol suppressed triglyceride synthesis. In luciferase assay, farnesol activated both PPARα and the farnesoid X receptor (FXR) at similar concentrations. Moreover, farnesol increased the mRNA expression level of a small heterodimer partner known as one of the FXR target genes and decreased those of sterol regulatory element-binding protein-1c and fatty acid synthase in both the wild-type and PPARα (-/-) hepatocytes. These findings suggest that farnesol could improve metabolic abnormalities in mice via both PPARα-dependent and -independent pathways and that the activation of FXR by farnesol might contribute partially to the PPARα-independent hepatic triglyceride content-lowering effect. To our knowledge, this is the first study on the effect of the dual activators of PPARα and FXR on obesity-induced metabolic disorders.  相似文献   

14.
Mitochondrial biogenesis is an orchestrated process that presides to the regulation of the organelles homeostasis within a cell. We show that γ-rays, at doses commonly used in the radiation therapy for cancer treatment, induce an increase in mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence, in the presence of a functional p53. Although the main effector of the response to γ-rays is the p53-p21 axis, we demonstrated that mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a murine double minute 2 (MDM2)-mediated hypoxia-inducible factor 1α (HIF1α) degradation, leading to the release of peroxisome-proliferator activated receptor gamma co-activator 1β inhibition by HIF1α, thus promoting mitochondrial biogenesis. Mimicking hypoxia by HIF1α stabilization, in fact, blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally, we also show in vivo that post-radiotherapy mitochondrial DNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of cell senescence.  相似文献   

15.
It is known that siRNAs are capable of reducing expression of non-target genes due to the interaction of the siRNA guide strand with a partially complementary site on the ‘off-target’ mRNA. In the current study, we show that reduction of cellular Ago2 levels has no effect on off-target reduction of endogenous genes and that off-target degradation of mRNA can occur even in an Ago2 knockout cell line. Using antisense mediated reduction of Ago proteins and chemically modified cleavage- and binding-deficient siRNAs, we demonstrate that siRNA mediated off-target reduction is Ago2 cleavage independent, but does require siRNA interaction with either Ago1 or Ago2 and the RISC-loading complex. We also show that depletion of P-body associated proteins results in a reduction of off-target siRNA-mediated degradation of mRNA. Finally, we present data suggesting that a significant portion of on-target siRNA activity is also Ago2 cleavage independent, however, this activity does not appear to be P-body associated.  相似文献   

16.
Zhao  Min  Liu  Qin  Zhang  Yue  Yang  Ning  Wu  Guofan  Li  Qiaoxia  Wang  Wei 《Journal of plant research》2020,133(3):393-407
Journal of Plant Research - Hydrogen sulfide (H2S) is an important gaseous molecule responding to osmotic stress in plant. Phospholipase Dα1 (PLDα1) and reactive oxygen species (ROS) are...  相似文献   

17.
Progranulin (PGRN) has recently emerged as an important regulator for glucose metabolism and insulin sensitivity. However, the direct effects of PGRN in vivo and the underlying mechanisms between PGRN and impaired insulin sensitivity are not fully understood. In this study, mice treated with PGRN for 21 d exhibited the impaired glucose tolerance and insulin sensitivity, remarkable ER stress as well as attenuated insulin signaling in liver and adipose tissue but not in skeletal muscle. Furthermore, treatment of mice with phenyl butyric acid (PBA), a chemical chaperone alleviating ER stress, resulted in a significant restoration of systemic insulin sensitivity and recovery of insulin signaling induced by PGRN. Consistent with these findings in vivo, we also observed that PGRN treatment induced ER stress, impaired insulin signaling in cultured hepatocytes and adipocytes, with such effects being partially nullified by blockade of PERK. Whereas PGRN-deficient hepatocytes and adipocytes were more refractory to palmitate-induced insulin resistance, indicating the causative role of the PERK-eIF2α axis of the ER stress response in action of PGRN. Collectively, our findings supported the notion that PGRN is a key regulator of insulin resistance and that PGRN may mediate its effects, at least in part, by inducing ER stress via the PERK-eIF2α dependent pathway.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号