首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The human cysteine dioxygenase 1 (CDO1) gene is a non-heme structured, iron-containing metalloenzyme involved in the conversion of cysteine to cysteine sulfinate, and plays a key role in taurine biosynthesis. In our search for novel methylated gene promoters, we have analyzed differential RNA expression profiles of colorectal cancer (CRC) cell lines with or without treatment of 5-aza-2′-deoxycytidine. Among the genes identified, the CDO1 promoter was found to be differentially methylated in primary CRC tissues with high frequency compared to normal colon tissues. In addition, a statistically significant difference in the frequency of CDO1 promoter methylation was observed between primary normal and tumor tissues derived from breast, esophagus, lung, bladder and stomach. Downregulation of CDO1 mRNA and protein levels were observed in cancer cell lines and tumors derived from these tissue types. Expression of CDO1 was tightly controlled by promoter methylation, suggesting that promoter methylation and silencing of CDO1 may be a common event in human carcinogenesis. Moreover, forced expression of full-length CDO1 in human cancer cells markedly decreased the tumor cell growth in an in vitro cell culture and/or an in vivo mouse model, whereas knockdown of CDO1 increased cell growth in culture. Our data implicate CDO1 as a novel tumor suppressor gene and a potentially valuable molecular marker for human cancer.  相似文献   

2.
3.
NTRK3 is a member of the neurotrophin receptor family and regulates cell survival. It appears to be a dependence receptor, and thus has the potential to act as an oncogene or as a tumor suppressor gene. NTRK3 is a receptor for NT-3 and when bound to NT-3 it induces cell survival, but when NT-3 free, it induces apoptosis. We identified aberrantly methylated NTRK3 in colorectal cancers through a genome-wide screen for hypermethylated genes. This discovery led us to assess whether NTRK3 could be a tumor suppressor gene in the colon. NTRK3 is methylated in 60% of colon adenomas and 67% of colon adenocarcinomas. NTRK3 methylation suppresses NTRK3 expression. Reconstitution of NTRK3 induces apoptosis in colorectal cancers, if NT-3 is absent. Furthermore, the loss of NTRK3 expression associates with neoplastic transformation in vitro and in vivo. We also found that a naturally occurring mutant NTRK3 found in human colorectal cancer inhibits the tumor suppressor activity of NTRK3. In summary, our findings suggest NTRK3 is a conditional tumor suppressor gene that is commonly inactivated in colorectal cancer by both epigenetic and genetic mechanisms whose function in the pathogenesis of colorectal cancer depends on the expression status of its ligand, NT-3.  相似文献   

4.
5.
6.
Multiplex methylation-sensitive PCR was employed in studying the methylation of CpG islands in the RB1, p16/CDKN2A, p15/CDKN2B, p14/ARF, CDH1, HIC1, and N33 5 regions in non-small cell lung cancer (51 tumors). Methylation was observed for the two suppressor genes involved in controlling the cell cycle through the Cdk–Rb–E2F signaling pathway, RB1 (10/51, 19%) and p16 (20/51, 39%). The highest methylation frequencies were established for CDH1 (72%) and HIC1 (82%). The CpG islands of p14 and p15 proved to be nonmethylated. At least one gene was methylated in 90% (46/51) tumors and no gene, in 10% (5/51) tumors. In addition, the genes were tested for methylation in peripheral blood lymphocytes of healthy subjects. Methylation frequency significantly differed between tumors and normal cells in the case of RB1, p16, CDH1, HIC1, and N33. Gene methylation frequency was tested for association with histological type of the tumor and stage of tumor progression. Methylation index of a panel of tumor suppressor genes was established for groups of tumors varying in clinical and morphological parameters.  相似文献   

7.
Multiplex methylation-sensitive PCR was employed in studying the methylation of CpG islands in the R1, p16/CDKN2, p15/CDKN2, p14/ARF, DH1, MGMT, HIC1, and N33 promoter regions in breast cancer (105 tumors). Methylation was often observed for the two major suppressor genes involved in controlling the cell cycle through the Cdk–Rb–E2F signaling pathway, R1 (18/105, 17%) and p16 (59/105, 56%); both genes were methylated in 13 tumors. Methylation involved p15 in two (2%) tumors; CDH1, in 83 (79%) tumors; MGMT, in eight (8%) tumors, and N33, in nine (9%) tumors. The p14 promoter was not methylated in the tumors examined.  相似文献   

8.

Background & Aims

Gastric cancer is the most frequent gastrointestinal tumor in adults and is the most lethal form of human cancer. Despite of the improvements in treatments, the underlying mechanism of gastric carcinogenesis is not well known. To define novel modulators that regulate susceptibility to tumorgenesis, we focused on miR-219-2-3p.

Methods

Quantitative RT-PCR was employed to investigate the level of miR-219-2-3p in gastric cancer (GC) tissues (n = 113) and their matched adjacent normal tissues (n = 113). In vitro cell proliferation, apoptosis assays, cell migration, and invasion assays were performed to elucidate biological effects of miR-219-2-3p. Since silencing of miRNA by promoter CpG island methylation may be an important mechanism in tumorgenesis, GC cells were treated with 5-aza-2′-deoxycytidine and trichostatin A, and expression changes of miR-219-2-3p were subsequently examined by quantitative RT-PCR. Finally, the methylation status of CpG island upstream of miR-219-2-3p was analyzed by methylation-specific PCR in GC tissues (n = 22).

Results

miR-219-2-3p was down-regulated in GC and cell lines. In addition, the experiments documented the lower expression of miR-219-2-3p in GC specimens with higher grade and later stage tumors. Meanwhile, miR-219-2-3p exerted antiproliferative, proapoptotic, and antimetastatic roles and reduced levels of p-ERK1/2 in GC cells. Furthermore, 5-aza-2′-deoxycytidine and trichostatin A increased the expression (∼2 fold) of miR-219-2-3p in GC cells. By methylation-specific PCR, DNA methylation in the upstream region of miR-219-2-3p was detected in both adjacent normal tissues and cancer tissues. As expected, the methylation level was considerably higher in the miR-219-2-3p down-regulated group than up-regulated group.

Conclusions

miR-219-2-3p is potentially involved in gastric cancer progression and metastasis by regulating ERK1/2-related signal pathways, which may provide a novel therapeutic strategy for treatment of gastric cancer. Methylation mechanism may be involved in modulating the expression level of miR-219-2-3p in gastric cancer.  相似文献   

9.
Prostate cancer (PCa) is the most frequently diagnosed cancer for men in the developed world. Androgen receptor signaling pathway plays an important role in prostate cancer progression. Recent studies show that microRNA miR-124 exerts a tumor suppressive function in prostate cancer. However, the relationship between AR and miR-124 is unclear. In the present study, we found a negative feedback loop between AR and miR-124 expression. On one hand, miR-124 was a positively regulated target gene of the AR, on the other hand, overexpression of miR-124 inhibited the expression of AR. In addition, we found that miR-124-2 and miR-124-3 promoters were hypermethylated in AR-negative PCa cells. Furthermore, overexpression of miR-124 inhibited proliferation rates and invasiveness capacity of PCa cells in vitro, and suppressed xenograft tumor growth in vivo. Taken together, our results support a negative feedback loop between AR and miR-124 expression. Methylation of miR-124-2 and miR-124-3 may serve as a biomarker for AR-negative PCa cells, and overexpression of miR-124 might be of potential therapeutic value for the treatment of PCa.  相似文献   

10.
11.
Head and neck squamous cell carcinoma (HNSCC) accounts for a bulk of the oral and laryngeal cancers, the majority (70%) of which are associated with smoking and excessive drinking, major known risk factors for the development of HNSCC. In contrast to reports that suggest an inverse relationship between smoking and global DNA CpG methylation, hypermethylation of promoters of a number of genes was detected in saliva collected from patients with HNSCC. Using a sensitive methylation-specific polymerase chain reaction (MSP) assay to determine specific methylation events in the promoters of RASSF1A, DAPK1, and p16 genes, we demonstrate that we can detect tumor presence with an overall accuracy of 81% in the DNA isolated from saliva of patients with HNSCC (n = 143) when compared with the DNA isolated from the saliva of healthy nonsmoker controls (n = 31). The specificity for this MSP panel was 87% and the sensitivity was 80% (with a Fisher exact test P < .0001). In addition, the test panel performed extremely well in the detection of the early stages of HNSCCs, with a sensitivity of 94% and a specificity of 87%, and a high κ concordance value of 0.8, indicating an excellent overall agreement between the presence of HNSCC and a positive MSP panel result. In conclusion, we demonstrate that the promoter methylation of RASSF1A, DAPK1, and p16 MSP panel is useful in detecting hypermethylation events in a noninvasive manner in patients with HNSCC.  相似文献   

12.
13.
The effects of 2-chloro-2′-deoxyadenosine, 9-β-D-arabinofuranosyl-2-fluoroadenine, and 5-aza-2′-deoxycytidine on promoter methylation of the selected tumor suppressor genes (i.e., ERα, BRCA1, RARβ2, E-cadherin, PTEN, and APC) were estimated using methylation-sensitive restriction analysis. The studies were carried out in hormone-responsive, low-invasive cell line MCF-7 and hormone-insensitive, highly invasive cell line MDA-MB-231. The results demonstrate an implication of the tested adenosine analogues and 5-aza-dCyd in regulation of DNA methylation process. Moreover, the effects of nucleoside analogues on PTEN promoter methylation suggest distinct mechanism of regulation of the epigenetic DNA modification in low-invasive compared to highly invasive breast cancer cells.  相似文献   

14.
15.
The methylation of the promoter CpG island of the RASSF1A tumor suppressor gene in primary tumors of 172 Muscovites with renal cell carcinoma (RCC), breast cancer (BC), or ovarian epithelial tumors (OET) was assayed by means of methylation-specific PCR (MSP) and PCR-based methylation-sensitive restriction enzyme analysis (MSRA). The MSP, MSRA, and previous bisulfite sequencing data correlated significantly with each other (P 10–6 for Spearman's rank correlation coefficients). By MSP and MSRA, the respective methylation frequencies of the RASSF1A promoter were 86% (25/29) and 94% (50/53) in RCC, 64% (18/28) and 78% (32/41) in BC, and 59% (17/29) and 73% (33/45) in OET. Methylation-sensitive restriction enzymes (HpaII, HhaI, Bsh1236I, AciI) increased the analysis sensitivity and made it possible to establish the methylation status for 18 CpG dinucleotides of the RASSF1A promoter region. With the MSRA data, the density of methylation of the CpG island was estimated at 72% in RCC, 63% in BC, and 58% in OET (the product of the number of CpG dinucleotides and the number of specimens with RASSF1A methylation was taken as 100%). Methylation of the RASSF1A promoter region was observed in 11–35% of the DNA specimens from the histologically normal tissue adjacent to the tumor but not in the peripheral blood DNA of 15 healthy subjects. The RASSF1A methylation frequency showed no significant correlation with the stage, grade, and metastatic potential of the tumor. On the other hand, epigenetic modification of RASSF1A was considerably more frequent than hemizygous or homozygous deletions from the RASSF1A region. These results testify that methylation of the RASSF1A promoter region takes place early in carcinogenesis and is a major mechanism inactivating RASSF1A in epithelial tumors.  相似文献   

16.
17.

Purpose

Aberrant promoter DNA methylation can serve as a predictive biomarker for improved clinical responses to certain chemotherapeutics. One of the major advantages of methylation biomarkers is the ease of detection and clinical application. In order to identify methylation biomarkers predictive of a response to a taxane-platinum based chemotherapy regimen in advanced NSCLC we performed an unbiased methylation analysis of 1,536 CpG dinucleotides in cancer-associated gene loci and correlated results with clinical outcomes.

Methods

We studied a cohort of 49 patients (median age 62 years) with advanced NSCLC treated at the Atlanta VAMC between 1999 and 2010. Methylation analysis was done on the Illumina GoldenGate Cancer panel 1 methylation microarray platform. Methylation data were correlated with clinical response and adjusted for false discovery rates.

Results

Cav1 methylation emerged as a powerful predictor for achieving disease stabilization following platinum taxane based chemotherapy (p = 1.21E-05, FDR significance  = 0.018176). In Cox regression analysis after multivariate adjustment for age, performance status, gender, histology and the use of bevacizumab, CAV1 methylation was significantly associated with improved overall survival (HR 0.18 (95%CI: 0.03–0.94)). Silencing of CAV1 expression in lung cancer cell lines(A549, EKVX)by shRNA led to alterations in taxane retention.

Conclusions

CAV1 methylation is a predictor of disease stabilization and improved overall survival following chemotherapy with a taxane-platinum combination regimen in advanced NSCLC. CAV1 methylation may predict improved outcomes for other chemotherapeutic agents which are subject to cellular clearance mediated by caveolae.  相似文献   

18.
Selenium-Binding Protein 1 (SBP1, SELENBP1, hSP56) is a selenium-associated protein shown to be at lower levels in tumors, and its lower levels are frequently predictive of a poor clinical outcome. Distinguishing indolent from aggressive prostate cancer is a major challenge in disease management. Associations between SBP1 levels, tumor grade, and disease recurrence following prostatectomy were investigated by duplex immunofluorescence imaging using a tissue microarray containing tissue from 202 prostate cancer patients who experienced biochemical (PSA) recurrence after prostatectomy and 202 matched control patients whose cancer did not recur. Samples were matched by age, ethnicity, pathological stage and Gleason grade, and images were quantified using the Vectra multispectral imaging system. Fluorescent labels were targeted for SBP1 and cytokeratins 8/18 to restrict scoring to tumor cells, and cell-by-cell quantification of SBP1 in the nucleus and cytoplasm was performed. Nuclear SBP1 levels and the nuclear to cytoplasm ratio were inversely associated with tumor grade using linear regression analysis. Following classification of samples into quartiles based on the SBP1 levels among controls, tumors in the lowest quartile were more than twice as likely to recur compared to those in any other quartile. Inducible ectopic SBP1 expression reduced the ability of HCT-116 human tumor cells to grow in soft agar, a measure of transformation, without affecting proliferation. Cells expressing SBP1 also demonstrated a robust induction in the phosphorylation of the p53 tumor suppressor at serine 15. These data indicate that loss of SBP1 may play an independent contributing role in prostate cancer progression and its levels might be useful in distinguishing indolent from aggressive disease.  相似文献   

19.

Introduction

Despite improvements in treatment strategies for head and neck squamous cell carcinoma (HNSCC), outcomes have not significantly improved; highlighting the importance of identifying novel therapeutic approaches to target this disease. To address this challenge, we proceeded to evaluate the role of iron in HNSCC.

Experimental Design

Expression levels of iron-related genes were evaluated in HNSCC cell lines using quantitative RT-PCR. Cellular phenotypic effects were assessed using viability (MTS), clonogenic survival, BrdU, and tumor formation assays. The prognostic significance of iron-related proteins was determined using immunohistochemistry.

Results

In a panel of HNSCC cell lines, hemochromatosis (HFE) was one of the most overexpressed genes involved in iron regulation. In vitro knockdown of HFE in HNSCC cell lines significantly decreased hepcidin (HAMP) expression and intracellular iron level. This in turn, resulted in a significant decrease in HNSCC cell viability, clonogenicity, DNA synthesis, and Wnt signalling. These cellular changes were reversed by re-introducing iron back into HNSCC cells after HFE knockdown, indicating that iron was mediating this phenotype. Concordantly, treating HNSCC cells with an iron chelator, ciclopirox olamine (CPX), significantly reduced viability and clonogenic survival. Finally, patients with high HFE expression experienced a reduced survival compared to patients with low HFE expression.

Conclusions

Our data identify HFE as potentially novel prognostic marker in HNSCC that promotes tumour progression via HAMP and elevated intracellular iron levels, leading to increased cellular proliferation and tumour formation. Hence, these findings suggest that iron chelators might have a therapeutic role in HNSCC management.  相似文献   

20.
The objective of this retrospective cohort study was to determine the effect of tumor necrosis factor inhibitor (TNFi) therapy on the risk of head and neck cancer (HNC) recurrence or HNC-attributable death in patients with rheumatoid arthritis (RA). RA patients with HNC were assembled from the US national Veterans’ Affairs (VA) administrative databases, and diagnoses confirmed and data collected by electronic medical record review. The cohort was divided into those treated with non-biologic disease-modifying anti-rheumatic drugs (nbDMARDs) versus TNF inhibitors (TNFi) after a diagnosis of HNC. Likelihood of a composite endpoint of recurrence or HNC-attributable death was determined by Cox proportional hazards regression. Of 180 patients with RA and HNC, 31 were treated with TNFi and 149 with nbDMARDs after the diagnosis of HNC. Recurrence or HNC-attributable death occurred in 5/31 (16.1%) patients in the TNFi group and 44/149 (29.5%) patients in the nbDMARD group (p = 0.17); it occurred in 2/16 (13%) patients who received TNFi in the year prior to HNC diagnosis but not after. Overall stage at diagnosis (p = 0.03) and stage 4 HNC (HR 2.49 [CI 1.06–5.89]; p = 0.04) were risk factors for recurrence or HNC-attributable death; treatment with radiation or surgery was associated with a lower risk (HR 0.35 [CI 0.17–0.74]; p = 0.01 and HR 0.39 [CI 0.20–0.76]; p = 0.01 respectively). Treatment with TNFi was not a risk factor for recurrence or HNC-attributable death (HR 0.75; CI 0.31–1.85; p = 0.54). We conclude that treatment with TNFi may be safe in patients with RA and HNC, especially as the time interval between HNC treatment and non-recurrence increases. In this study, TNF inhibition was not associated with an increase in recurrence or HNC-attributable death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号