首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The presence of parasite interference signals could cause serious problems in the registration of ECG signals and many works have been done to suppress electromyogram (EMG) artifacts noises and disturbances from electrocardiogram (ECG). Recently, new developed techniques based on global and local transforms have become popular such as wavelet shrinkage approaches (1995) and time-frequency dependent threshold (1998). Moreover, other techniques such as artificial neural networks (2003), energy thresholding and Gaussian kernels (2006) are used to improve previous works. This review summarizes windowed techniques of the concerned issue. METHODS AND RESULTS: We conducted a mathematical method based on two sets of information, which are dominant scale of QRS complexes and their domain. The task is proposed by using a varying-length window that is moving over the whole signals. Both the high frequency (noise) and low frequency (base-line wandering) removal tasks are evaluated for manually corrupted ECG signals and are validated for actual recorded ECG signals. CONCLUSIONS: Although, the simplicity of the method, fast implementation, and preservation of characteristics of ECG waves represent it as a suitable algorithm, there may be some difficulties due to pre-stage detection of QRS complexes and specification of algorithm's parameters for varying morphology cases.  相似文献   

2.
In this work, we propose a novel denoising method based on evaluation of higher-order statistics at different Wavelet bands for an electrocardiogram (ECG) signal. Higher-order statistics at different Wavelet bands provides significant information about the statistical nature of the data in time and frequency. The fourth order cumulant, Kurtosis, and the Energy Contribution Efficiency (ECE) of signal in a Wavelet subband are combined to assess the noise content in the signal. Accordingly, four denoising factors are proposed. Performance of the denoising factors is evaluated and compared with the soft thresholding method. The filtered signal quality is assessed using Percentage Root Mean Square Difference (PRD), Wavelet Weighted Percentage Root Mean Square Difference (WWPRD), and Wavelet Energy-based Diagnostic Distortion (WEDD) measures. It is observed that the proposed denoising scheme not only filters the signal effectively but also helps retain the diagnostic information.  相似文献   

3.
基于小波变换的混合二维ECG数据压缩方法   总被引:5,自引:0,他引:5  
提出了一种新的基于小波变换的混合二维心电(electrocardiogram,ECG)数据压缩方法。基于ECG数据的两种相关性,该方法首先将一维ECG信号转化为二维信号序列。然后对二维序列进行了小波变换,并利用改进的编码方法对变换后的系数进行了压缩编码:即先根据不同系数子带的各自特点和系数子带之间的相似性,改进了等级树集合分裂(setpartitioninghierarchicaltrees,SPIHT)算法和矢量量化(vectorquantization,VQ)算法;再利用改进后的SPIHT与VQ相混合的算法对小波变换后的系数进行了编码。利用所提算法与已有具有代表性的基于小波变换的压缩算法和其他二维ECG信号的压缩算法,对MIT/BIH数据库中的心律不齐数据进行了对比压缩实验。结果表明:所提算法适用于各种波形特征的ECG信号,并且在保证压缩质量的前提下,可以获得较大的压缩比。  相似文献   

4.
The R-peak detection is crucial in all kinds of electrocardiogram (ECG) applications. However, almost all existing R-peak detectors suffer from the non-stationarity of both QRS morphology and noise. To combat this difficulty, we propose a new R-peak detector, which is based on the new preprocessing technique and an automated peak-finding logic. In this paper, we first demonstrate that the proposed preprocessor with a Shannon energy envelope (SEE) estimator is better able to detect R-peaks in case of wider and small QRS complexes, negative QRS polarities, and sudden changes in QRS amplitudes over that using the absolute value, energy value, and Shannon entropy features. Then we justify the simplicity and robustness of the proposed peak-finding logic using the Hilbert-transform (HT) and moving average (MA) filter. The proposed R-peak detector is validated using the first-channel of the 48 ECG records of the MIT-BITH arrhythmia database, and achieves average detection accuracy of 99.80%, sensitivity of 99.93% and positive predictivity of 99.86%. Various experimental results show that the proposed R-peak detection method significantly outperforms other well-known methods in case of noisy or pathological signals.  相似文献   

5.
This paper presents a new module for heart sounds segmentation based on S-transform. The heart sounds segmentation process segments the PhonoCardioGram (PCG) signal into four parts: S1 (first heart sound), systole, S2 (second heart sound) and diastole. It can be considered one of the most important phases in the auto-analysis of PCG signals. The proposed segmentation module can be divided into three main blocks: localization of heart sounds, boundaries detection of the localized heart sounds and classification block to distinguish between S1 and S2. An original localization method of heart sounds are proposed in this study. The method named SSE calculates the Shannon energy of the local spectrum calculated by the S-transform for each sample of the heart sound signal. The second block contains a novel approach for the boundaries detection of S1 and S2. The energy concentrations of the S-transform of localized sounds are optimized by using a window width optimization algorithm. Then the SSE envelope is recalculated and a local adaptive threshold is applied to refine the estimated boundaries. To distinguish between S1 and S2, a feature extraction method based on the singular value decomposition (SVD) of the S-matrix is applied in this study. The proposed segmentation module is evaluated at each block according to a database of 80 sounds, including 40 sounds with cardiac pathologies.  相似文献   

6.
基于替代数据(Surrogate)思想的复杂度归一化方法,克服了一般复杂度对信号采样长度与采样频率的敏感性。文章对在生物医学信号复杂度分析中最有潜在应用价值的近似熵和C0复杂度进行了归一化。应用该方法可以有效地反映人体心脏某些病理状态之间的差别。同时,通过比较各种复杂度指标发现,C0复杂度和近似熵对采样长度的敏感性最弱,适用于短数据量的信号分析。  相似文献   

7.
In this paper, two novel and simple, target distortion level (TDL) and target data rate (TDR), Wavelet threshold based ECG compression algorithms are proposed for real-time applications. The issues on the use of objective error measures, such as percentage root mean square difference (PRD) and root mean square error (RMSE) as a quality measures, in quality controlled/guranteed algorithm are investigated with different sets of experiments. For the proposed TDL and TDR algorithm, data rate variability and reconstructed signal quality is evaluated under different ECG signal test conditions. Experimental results show that the TDR algorithm achieves the required compression data rate to meet the demands of wire/wireless link while the TDL algorithm does not. The compression performance is assessed in terms of number of iterations required to achieve convergence and accuracy, reconstructed signal quality and coding delay. The reconstructed signal quality is evaluated by correct diagnosis (CD) test through visual inspection. Three sets of ECG data from three different databases, the MIT-BIH Arrhythmia (mita) (Fs=360 Hz, 11 b/sample), the Creighton University Ventricular Tachyarrhythmia (cuvt) (Fs=250 Hz, 12 b/sample) and the MIT-BIH Supraventricular Arrhythmia (mitsva) (Fs=128 Hz, 10 b/sample), are used for this work. For each set of ECG data, the compression ratio (CR) range is defined. The CD value of 100% is achieved for CR ≤12, CR ≤ 8 and CR ≤ 4 for data from mita, cuvt and mitsva databases, respectively. The experimental results demonstrate that the proposed TDR algorithm is suitable for real-time applications.  相似文献   

8.
Nonlinear wavelet and wavelet packet denoising of electrocardiogram signal   总被引:16,自引:0,他引:16  
The performance of different wavelet- and wavelet packet-based methods for removing simulated noise was studied using an electrocardiogram (ECG) signal. A non-linear denoising approach was investigated by applying soft and hard thresholding methods, in which thresholds were chosen using four different methods. Coiflet wavelet and wavelet packet functions were used to build up the dyadic wavelet and optimized wavelet packet decompositions. This study involves the quantitative comparison of different denoising approaches by means of optimized error measures and visual inspection of the denoised ECG and the error signal. The localization of the denoising error within the cardiac cycle was studied by visual inspection of the denoised signal and extracting the error measures during the QRS-complex. The results showed that wavelet denoising approaches were generally more efficient than wavelet packet approaches in all cases, but with heuristic sure threshold selection rule as hard thresholding for white noises was used. Denoising errors tend to concentrate within the QRS-area when the wavelet approach was employed. Moreover, soft and hard non-linearities showed different balances in denoising the high-frequency parts of an ECG. Received: 27 April 1998 / Accepted in revised form: 24 November 1998  相似文献   

9.
Denoising of electrocardiogram (ECG) is the fundamental technique for manual or automatic ECG diagnosis. Model-based denoising has attracted initial studies since the ECG dynamical model was established in 2003 and been demonstrated to outperform most model-less denoising methods. The focus of this paper is robust denoising of abnormal ECG signals, which do not satisfy the assumption in previous model-based studies that morphological or physiological variations are small from one beat to another. A mean shift based initializer is proposed to provide a much more robust estimation of initial model parameters for each heart beat. Together with physiological knowledge based wave sub-segmentation and enhanced strategies, the novel initializer has been demonstrated to achieve satisfactory performance for both normal and abnormal heart beats under both white and pink noises. Utilizing records from Massachusetts Institute of Technology (MIT)-Beth Israel Hospital (BIH) database, this paper also applies various filters to denoise noisy signals and the denoising performances verify the availability and efficacy of the proposed denoising method.  相似文献   

10.
Wavelets have proved particularly effective for extracting discriminative features in ECG signal classification. In this paper, we show that wavelet performances in terms of classification accuracy can be pushed further by customizing them for the considered classification task. A novel approach for generating the wavelet that best represents the ECG beats in terms of discrimination capability is proposed. It makes use of the polyphase representation of the wavelet filter bank and formulates the design problem within a particle swarm optimization (PSO) framework. Experimental results conducted on the benchmark MIT/BIH arrhythmia database with the state-of-the-art support vector machine (SVM) classifier confirm the superiority in terms of classification accuracy and stability of the proposed method over standard wavelets (i.e., Daubechies and Symlet wavelets).  相似文献   

11.
The aim of this paper is to describe the analysis of a high resolution ECG recorded from the body surface. Standard signal averaging techniques are improved by using a new time delay estimation method which leads to a better alignment accuracy of P and T waves. A second method uses adaptive identification to achieve a beat by beat fine ECG estimation. Information provided by the two methods allows a better interpretation of low and very low level signals.  相似文献   

12.
The methods of the chaos theory were used to estimate the degree of irregularity of ventricular fibrillation in human and experimental animals. To verify the hypothesis that the degree of chaos depends on the species of the living organisms, the parameters characterizing the degrees of irregularity of ventricular fibrillation were estimated and compared. The comparative analysis was performed using 32 fragments of electrocardiographic records from five patients with sudden ventricular fibrillation bouts and 215 episodes of induced fibrillation in 17 animals. It was shown that fibrillation in human and animals has a different degree of regularity and different values of the chaotic component. The highest values of chaos were recorded in dogs, the lowest degree of chaos was observed in human. Rabbits and rats are intermediate, between dogs and humans. The fractuality of the structure-function organization of myocardium is discussed.  相似文献   

13.

Background

To perform a three-dimensional (3-D) reconstruction of electron cryomicroscopy (cryo-EM) images of viruses, it is necessary to determine the similarity of image blocks of the two-dimensional (2-D) projections of the virus. The projections containing high resolution information are typically very noisy. Instead of the traditional Euler metric, this paper proposes a new method, based on the geodesic metric, to measure the similarity of blocks.

Results

Our method is a 2-D image denoising approach. A data set of 2243 cytoplasmic polyhedrosis virus (CPV) capsid particle images in different orientations was used to test the proposed method. Relative to Block-matching and three-dimensional filtering (BM3D), Stein’s unbiased risk estimator (SURE), Bayes shrink and K-means singular value decomposition (K-SVD), the experimental results show that the proposed method can achieve a peak signal-to-noise ratio (PSNR) of 45.65. The method can remove the noise from the cryo-EM image and improve the accuracy of particle picking.

Conclusions

The main contribution of the proposed model is to apply the geodesic distance to measure the similarity of image blocks. We conclude that manifold learning methods can effectively eliminate the noise of the cryo-EM image and improve the accuracy of particle picking.
  相似文献   

14.
用于识别心电图的BP网络系统   总被引:3,自引:0,他引:3  
基于BP神经网络算法和心电图(ECG)识别的原理,作者系统地探讨了BP网络用于心电图识别的方法并设计了一个用BP网络识别三种类型(ECG)一正常、下壁心肌心梗塞和前间壁心肌梗搴系统。实验结果较好。  相似文献   

15.
In this paper, we introduce a model-based Bayesian denoising framework for phonocardiogram (PCG) signals. The denoising framework is founded on a new dynamical model for PCG, which is capable of generating realistic synthetic PCG signals. The introduced dynamical model is based on PCG morphology and is inspired by electrocardiogram (ECG) dynamical model proposed by McSharry et al. and can represent various morphologies of normal PCG signals. The extended Kalman smoother (EKS) is the Bayesian filter that is used in this study. In order to facilitate the adaptation of the denoising framework to each input PCG signal, the parameters are selected automatically from the input signal itself. This approach is evaluated on several PCGs recorded on healthy subjects, while artificial white Gaussian noise is added to each signal, and the SNR and morphology of the outputs of the proposed denoising approach are compared with the outputs of the wavelet denoising (WD) method. The results of the EKS demonstrate better performance than WD over a wide range of PCG SNRs. The new PCG dynamical model can also be employed to develop other model-based processing frameworks such as heart sound segmentation and compression.  相似文献   

16.
《IRBM》2020,41(5):252-260
ObjectiveMonitoring the heartbeat of the fetus during pregnancy is a vital part in determining their health. Current fetal heart monitoring techniques lack the accuracy in fetal heart rate monitoring and features acquisition, resulting in diagnostic medical issues. The demand for a reliable method of non-invasive fetal heart monitoring is of high importance.MethodElectrocardiogram (ECG) is a method of monitoring the electrical activity produced by the heart. The extraction of the fetal ECG (FECG) from the abdominal ECG (AECG) is challenging since both ECGs of the mother and the baby share similar frequency components, adding to the fact that the signals are corrupted by white noise. This paper presents a method of FECG extraction by eliminating all other signals using AECG. The algorithm is based on attenuating the maternal ECG (MECG) by filtering and wavelet analysis to find the locations of the FECG, and thus isolating them based on their locations. Two signals of AECG collected at different locations on the abdomens are used. The ECG data used contains MECG of a power of five to ten times that of the FECG.ResultsThe FECG signals were successfully isolated from the AECG using the proposed method through which the QRS complex of the heartbeat was conserved, and heart rate was calculated. The fetal heart rate was 135 bpm and the instantaneous heart rate was 131.58 bpm. The heart rate of the mother was at 90 bpm with an instantaneous heart rate of 81.9 bpm.ConclusionThe proposed method is promising for FECG extraction since it relies on filtering and wavelet analysis of two abdominal signals for the algorithm. The method implemented is easily adjusted based on the power levels of signals, giving it great ease of adaptation to changing signals in different biosignals applications.  相似文献   

17.
Software based efficient and reliable ECG data compression and transmission scheme is proposed here. The algorithm has been applied to various ECG data of all the 12 leads taken from PTB diagnostic ECG database (PTB-DB). First of all, R-peaks are detected by differentiation and squaring technique and QRS regions are located. To achieve a strict lossless compression in the QRS regions and a tolerable lossy compression in rest of the signal, two different compression algorithms have used. The whole compression scheme is such that the compressed file contains only ASCII characters. These characters are transmitted using internet based Short Message Service (SMS) and at the receiving end, original ECG signal is brought back using just the reverse logic of compression. It is observed that the proposed algorithm can reduce the file size significantly (compression ratio: 22.47) preserving ECG signal morphology.  相似文献   

18.
Protein-protein interactions govern almost all biological processes and the underlying functions of proteins. The interaction sites of protein depend on the 3D structure which in turn depends on the amino acid sequence. Hence, prediction of protein function from its primary sequence is an important and challenging task in bioinformatics. Identification of the amino acids (hot spots) that leads to the characteristic frequency signifying a particular biological function is really a tedious job in proteomic signal processing. In this paper, we have proposed a new promising technique for identification of hot spots in proteins using an efficient time-frequency filtering approach known as the S-transform filtering. The S-transform is a powerful linear time-frequency representation and is especially useful for the filtering in the time-frequency domain. The potential of the new technique is analyzed in identifying hot spots in proteins and the result obtained is compared with the existing methods. The results demonstrate that the proposed method is superior to its counterparts and is consistent with results based on biological methods for identification of the hot spots. The proposed method also reveals some new hot spots which need further investigation and validation by the biological community.  相似文献   

19.
《Journal of Physiology》2009,103(6):315-323
The EEG is one of the most commonly used tools in brain research. Though of high relevance in research, the data obtained is very noisy and nonstationary. In the present article we investigate the applicability of a nonlinear data analysis method, the recurrence quantification analysis (RQA), to such data. The method solely rests on the natural property of recurrence which is a phenomenon inherent to complex systems, such as the brain. We show that this method is indeed suitable for the analysis of EEG data and that it might improve contemporary EEG analysis.  相似文献   

20.
Doppler ultrasound is an established method for the study of haemodynamics. Considerable improvement in accuracy and resolution can be achieved by utilizing advanced data processing techniques. Such a system has been developed and used to assess the cardiac component of the Baroreceptor Reflex in adults and to examine cerebral blood flow in neonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号