首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Mosquitoes commute between blood-meal hosts and water. Thus, heterogeneity in human biting reflects underlying spatial heterogeneity in the distribution and suitability of larval habitat as well as inherent differences in the attractiveness, suitability and distribution of blood-meal hosts. One of the possible strategies of malaria control is to identify local vector species and then attack water bodies that contain their larvae.

Methods

Biting and host seeking, not oviposition, have been the focus of most previous studies of mosquitoes and malaria transmission. This study presents a mathematical model that incorporates mosquito oviposition behaviour.

Results

The model demonstrates that oviposition is one potential factor explaining heterogeneous biting and vector distribution in a landscape with a heterogeneous distribution of larval habitat. Adult female mosquitoes tend to aggregate around places where they oviposit, thereby increasing the risk of malaria, regardless of the suitability of the habitat for larval development. Thus, a water body may be unsuitable for adult mosquito emergence, but simultaneously, be a source for human malaria.

Conclusion

Larval density may be a misleading indicator of a habitat's importance for malaria control. Even if mosquitoes could be lured to oviposit in sprayed larval habitats, this would not necessarily mitigate – and might aggravate – the risk of malaria transmission. Forcing mosquitoes to fly away from humans in search of larval habitat may be a more efficient way to reduce the risk of malaria than killing larvae. Thus, draining, fouling, or filling standing water where mosquitoes oviposit can be more effective than applying larvicide.  相似文献   

2.

Background

Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya.

Methods and Findings

A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60%) and An.arabiensis (18.34%), the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024) and An. arabiensis (P = 0.002) larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001), grass cover (P≤0.001), while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001). The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001) when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002). When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines.

Conclusion

These findings suggest that implementation of effective larval control programme should be targeted with larval habitats succession information when larval habitats are fewer and manageable. Crop cycles and distance from habitats to household should be considered as effective information in planning larval control.  相似文献   

3.
4.
In developing strategies to control malaria vectors, there is increased interest in biological methods that do not cause instant vector mortality, but have sublethal and lethal effects at different ages and stages in the mosquito life cycle. These techniques, particularly if integrated with other vector control interventions, may produce substantial reductions in malaria transmission due to the total effect of alterations to multiple life history parameters at relevant points in the life-cycle and transmission-cycle of the vector. To quantify this effect, an analytically tractable gonotrophic cycle model of mosquito-malaria interactions is developed that unites existing continuous and discrete feeding cycle approaches. As a case study, the combined use of fungal biopesticides and insecticide treated bednets (ITNs) is considered. Low values of the equilibrium EIR and human prevalence were obtained when fungal biopesticides and ITNs were combined, even for scenarios where each intervention acting alone had relatively little impact. The effect of the combined interventions on the equilibrium EIR was at least as strong as the multiplicative effect of both interventions. For scenarios representing difficult conditions for malaria control, due to high transmission intensity and widespread insecticide resistance, the effect of the combined interventions on the equilibrium EIR was greater than the multiplicative effect, as a result of synergistic interactions between the interventions. Fungal biopesticide application was found to be most effective when ITN coverage was high, producing significant reductions in equilibrium prevalence for low levels of biopesticide coverage. By incorporating biological mechanisms relevant to vectorial capacity, continuous-time vector population models can increase their applicability to integrated vector management.  相似文献   

5.
Avian malaria is an important cause of the decline of endemic Hawaiian honeycreepers. Because of the complexity of this disease system we used a computer model of avian malaria in forest birds to evaluate how two proposed conservation strategies: 1) reduction of habitat for mosquito larvae and 2) establishment of a low-elevation, malaria-tolerant honeycreeper (Hawaii Amakihi) to mid-elevation forests would affect native Hawaiian honeycreeper populations. We evaluated these approaches in mid-elevation forests, where malaria transmission is seasonal and control strategies are more likely to work. Our model suggests the potential benefit of larval habitat reduction depends on the level of malaria transmission, abundance of larval cavities, and the ability to substantially reduce these cavities. Permanent reduction in larval habitat of >80% may be needed to control abundance of infectious mosquitoes and benefit bird populations. Establishment of malaria-tolerant Amakihi in mid-elevation forests increases Amakihi abundance, creates a larger disease reservoir, and increases the abundance of infectious mosquitoes which may negatively impact other honeycreepers. For mid-elevation sites where bird populations are severely affected by avian malaria, malaria-tolerant Amakihi had little impact on other honeycreepers. Both management strategies may benefit native Hawaiian honeycreepers, but benefits depend on specific forest characteristics, the amount of reduction in larval habitat that can be achieved, and how malaria transmission is affected by temperature.  相似文献   

6.
We describe and analyze a periodically-forced difference equation model for malaria in mosquitoes that captures the effects of seasonality and allows the mosquitoes to feed on a heterogeneous population of hosts. We numerically show the existence of a unique globally asymptotically stable periodic orbit and calculate periodic orbits of field-measurable quantities that measure malaria transmission. We integrate this model with an individual-based stochastic simulation model for malaria in humans to compare the effects of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) in reducing malaria transmission, prevalence, and incidence. We show that ITNs are more effective than IRS in reducing transmission and prevalence though IRS would achieve its maximal effects within 2 years while ITNs would need two mass distribution campaigns over several years to do so. Furthermore, the combination of both interventions is more effective than either intervention alone. However, although these interventions reduce transmission and prevalence, they can lead to increased clinical malaria; and all three malaria indicators return to preintervention levels within 3 years after the interventions are withdrawn.  相似文献   

7.

Background

Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology.

Methods

We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania.

Results

Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin.

Conclusion

Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools.  相似文献   

8.
Malaria vector control targeting the larval stages of mosquitoes was applied successfully against many species of Anopheles (Diptera: Culicidae) in malarious countries until the mid-20th Century. Since the introduction of DDT in the 1940s and the associated development of indoor residual spraying (IRS), which usually has a more powerful impact than larval control on vectorial capacity, the focus of malaria prevention programmes has shifted to the control of adult vectors. In the Afrotropical Region, where malaria is transmitted mainly by Anopheles funestus Giles and members of the Anopheles gambiae Giles complex, gaps in information on larval ecology and the ability of An. gambiae sensu lato to exploit a wide variety of larval habitats have discouraged efforts to develop and implement larval control strategies. Opportunities to complement adulticiding with other components of integrated vector management, along with concerns about insecticide resistance, environmental impacts, rising costs of IRS and logistical constraints, have stimulated renewed interest in larval control of malaria vectors. Techniques include environmental management, involving the temporary or permanent removal of anopheline larval habitats, as well as larviciding with chemical or biological agents. This present review covers large-scale trials of anopheline larval control methods, focusing on field studies in Africa conducted within the past 15 years. Although such studies are limited in number and scope, their results suggest that targeting larvae, particularly in human-made habitats, can significantly reduce malaria transmission in appropriate settings. These approaches are especially suitable for urban areas, where larval habitats are limited, particularly when applied in conjunction with IRS and other adulticidal measures, such as the use of insecticide treated bednets.  相似文献   

9.
An important question for mosquito population dynamics, mosquito-borne pathogen transmission and vector control is how mosquito populations are regulated. Here we develop simple models with heterogeneity in egg laying patterns and in the responses of larval populations to crowding in aquatic habitats. We use the models to evaluate how such heterogeneity affects mosquito population regulation and the effects of larval source management (LSM). We revisit the notion of a carrying capacity and show how heterogeneity changes our understanding of density dependence and the outcome of LSM. Crowding in and productivity of aquatic habitats is highly uneven unless egg-laying distributions are fine-tuned to match the distribution of habitats’ carrying capacities. LSM reduces mosquito population density linearly with coverage if adult mosquitoes avoid laying eggs in treated habitats, but quadratically if eggs are laid in treated habitats and the effort is therefore wasted (i.e., treating 50% of habitat reduces mosquito density by approximately 75%). Unsurprisingly, targeting (i.e. treating a subset of the most productive pools) gives much larger reductions for similar coverage, but with poor targeting, increasing coverage could increase adult mosquito population densities if eggs are laid in higher capacity habitats. Our analysis suggests that, in some contexts, LSM models that accounts for heterogeneity in production of adult mosquitoes provide theoretical support for pursuing mosquito-borne disease prevention through strategic and repeated application of modern larvicides.  相似文献   

10.
A model for a vector mosquito population with two bloodmeal hosts (man and a domestic animal) was developed to study the influences of domestic animals on the frequency of mosquito bites on man and the endemicity of human malaria. The vector population model, including blood-feeding success in the adult stage (depending on host density and biting efficiency) and density-dependent regulation in the larval stage, was combined with the Ross-Macdonald malaria transmission model. Model analyses suggested that introduction of domestic animals easily fed upon by mosquitoes increases mosquito density and, in some situations, frequency of mosquito bites on man and the infection rate of malaria through increased success of blood-feeding. Extinction of malaria was predicted only when an extremely large number of easily accessible (as compared to man) domestic animals are introduced. Limitations in the concept of zooprophylaxis and problems of livestock management in malaria control are discussed.  相似文献   

11.

Introduction

Insecticide-treated nets (ITNs) are one of the main interventions used for malaria control. However, these nets may also be effective against other vector borne diseases (VBDs). We conducted a systematic review and meta-analysis to estimate the efficacy of ITNs, insecticide-treated curtains (ITCs) and insecticide-treated house screening (ITS) against Chagas disease, cutaneous and visceral leishmaniasis, dengue, human African trypanosomiasis, Japanese encephalitis, lymphatic filariasis and onchocerciasis.

Methods

MEDLINE, EMBASE, LILACS and Tropical Disease Bulletin databases were searched using intervention, vector- and disease-specific search terms. Cluster or individually randomised controlled trials, non-randomised trials with pre- and post-intervention data and rotational design studies were included. Analysis assessed the efficacy of ITNs, ITCs or ITS versus no intervention. Meta-analysis of clinical data was performed and percentage reduction in vector density calculated.

Results

Twenty-one studies were identified which met the inclusion criteria. Meta-analysis of clinical data could only be performed for four cutaneous leishmaniasis studies which together showed a protective efficacy of ITNs of 77% (95%CI: 39%–91%). Studies of ITC and ITS against cutaneous leishmaniasis also reported significant reductions in disease incidence. Single studies reported a high protective efficacy of ITS against dengue and ITNs against Japanese encephalitis. No studies of Chagas disease, human African trypanosomiasis or onchocerciasis were identified.

Conclusion

There are likely to be considerable collateral benefits of ITN roll out on cutaneous leishmaniasis where this disease is co-endemic with malaria. Due to the low number of studies identified, issues with reporting of entomological outcomes, and few studies reporting clinical outcomes, it is difficult to make strong conclusions on the effect of ITNs, ITCs or ITS on other VBDs and therefore further studies be conducted. Nonetheless, it is clear that insecticide-treated materials such as ITNs have the potential to reduce pathogen transmission and morbidity from VBDs where vectors enter houses.  相似文献   

12.
Mosquitoes belonging to the Anopheles genus are of great relevance in the epidemiology and transmission of malaria, with their larval phase developing in clean waters in the presence of organic matter. However, the human presence in the Amazon has increasingly influenced the emergence of new breeding sites and larval habitats, such as clay pits, fish ponds and dams, among others. The objective of the study was to characterize mosquito larval habitats using the biotic and abiotic parameters in the metropolitan area of Manaus. We collected in 23 artificial larval habitats in Manaus, classified in dams, fish ponds and clay pits. Water samples, Anopheles larvae, aquatic macrophytes and limnological parameters were collected from each artificial larval habitat. The Larvae Index per Man/Hour and canonical correspondence analysis were used for data analysis. Results indicate that artificial larval habitats with characteristics similar to natural sites present higher larval density, displaying a high abundance of An. triannulatus and An. darlingi. More than 90% of the determined limnological parameters were in agreement with the environmental resolution stipulated by the Brazilian environmental resolution, while pH, dissolved oxygen and phosphorus levels were below the established limits at some of the larval habitats. Conductivity, total suspended solids and phosphorus were positively correlated to the presence of An. albitarsis, An. peryassui and An. nuneztovari in fish ponds, and An. trianulatus and An. braziliensis in dams. Thus, the evaluated limnological variables and habitat structure explain Anopheles species distribution in artificial larval habitats in the metropolitan Manaus region.  相似文献   

13.

Background

The impact of insecticide treated nets (ITNs) on reducing malaria incidence is shown mainly through data collection from health facilities. Routine evaluation of long-term epidemiological and entomological dynamics is currently unavailable. In Kenya, new policies supporting the provision of free ITNs were implemented nationwide in June 2006. To evaluate the impacts of ITNs on malaria transmission, we conducted monthly surveys in three sentinel sites with different transmission intensities in western Kenya from 2002 to 2010.

Methods and Findings

Longitudinal samplings of malaria parasite prevalence in asymptomatic school children and vector abundance in randomly selected houses were undertaken monthly from February 2002. ITN ownership and usage surveys were conducted annually from 2004 to 2010. Asymptomatic malaria parasite prevalence and vector abundances gradually decreased in all three sites from 2002 to 2006, and parasite prevalence reached its lowest level from late 2006 to early 2007. The abundance of the major malaria vectors, Anopheles funestus and An. gambiae, increased about 5–10 folds in all study sites after 2007. However, the resurgence of vectors was highly variable between sites and species. By 2010, asymptomatic parasite prevalence in Kombewa had resurged to levels recorded in 2004/2005, but the resurgence was smaller in magnitude in the other sites. Household ITN ownership was at 50–70% in 2009, but the functional and effective bed net coverage in the population was estimated at 40.3%, 49.4% and 28.2% in 2010 in Iguhu, Kombewa, and Marani, respectively.

Conclusion

The resurgence in parasite prevalence and malaria vectors has been observed in two out of three sentinel sites in western Kenya despite a high ownership of ITNs. The likely factors contributing to malaria resurgence include reduced efficacy of ITNs, insecticide resistance in mosquitoes and lack of proper use of ITNs. These factors should be targeted to avoid further resurgence of malaria transmission.  相似文献   

14.

Background

Mosquito Larval Source Management (LSM) could be a valuable additional tool for integrated malaria vector control especially in areas with focal transmission like the highlands of western Kenya if it were not for the need to target all potential habitats at frequent intervals. The ability to determine the productivity of malaria vectors from identified habitats might be used to target LSM only at productive ones.

Methods

Each aquatic habitat within three highland sites in western Kenya was classified as natural swamp, cultivated swamp, river fringe, puddle, open drain or burrow pit. Three habitats of each type were selected in each site in order to study the weekly productivity of adult malaria vectors from February to May 2009 using a sweep-net and their habitat characteristics recorded.

Results

All surveyed habitat types produced adult malaria vectors. Mean adult productivity of Anopheles gambiae sensu lato in puddles (1.8/m2) was 11–900 times higher than in the other habitat types. However, puddles were the most unstable habitats having water at 43% of all sampling occasions and accounted for 5% of all habitats mapped in the study areas whereas open drains accounted for 72%. Densities of anopheline late instars larvae significantly increased with the presence of a biofilm but decreased with increasing surface area or when water was flowing. Taking stability and frequency of the habitat into account, puddles were still the most productive habitat types for malaria vectors but closely followed by open drains.

Conclusion

Even though productivity of An. gambiae s.l. was greatest in small and unstable habitats, estimation of their overall productivity in an area needs to consider the more stable habitats over time and their surface extension. Therefore, targeting only the highly productive habitats is unlikely to provide sufficient reduction in malaria vector densities.  相似文献   

15.
Anopheline larval habitats associated with a swamp, were examined in a highland area (1910 m elevation) of western Kenya. A significant association was found between occurrence of Anopheles gambiae Giles s.s. (Diptera: Culicidae) larvae and two factors, habitat size and vegetation type. Over 80% of An. gambiae s.s. larvae were found in small isolated pools, characterized by short plants, occurring in both swamp margins and roadside ditches. However, Anopheles gambiae s.s. was not found in habitats marked by papyrus and floating plants. The larval habitat of An. gambiae s.s. was characterized by warmer daytime temperatures of water, which were significantly affected by habitat size and plant size. The density of indoor resting An. gambiae s.s. was 0.22 per house and negatively associated with distance from the swamp. These results indicate that the practice of swamp cultivation, in populated areas of the African highlands, increases availability and enhances habitat conditions for the malaria vector.  相似文献   

16.
Dengue is the most important arboviral disease worldwide and the principal vector-borne disease in Costa Rica. Control of Aedes aegypti populations through source reduction is still considered the most effective way of prevention and control, although it has proven ineffective or unsustainable in many areas with a history of mosquito control. In this study, seasonal profiles and productivity of Aedes aegypti were analyzed in the city of Puntarenas, Costa Rica, where vector control has been practiced for more than ten years. Households contained more than 80% of larval habitats identified, although presence of habitats was more likely in other locations like lots and streets. In the wet season, habitats in the "other" category, like appliances, small manholes, and miscellaneous containers, were the most frequent habitats observed as well as the most common and productive habitats for Ae. aegypti. In the dry season, domestic animal drinking containers were very common, although concrete washtubs contained 79% of Ae. aegypti pupae collected. Individually, non-disposable habitats were as likely or more likely to contain mosquito larvae, and large containers were more likely to harbor mosquito larvae than the small ones only in the dry season. Considering various variables in the logistic regressions, predictors for Ae. aegypti in a habitat were habitat type (p < 0.001), setting (p = 0.043), and disposability (p = 0.022) in the wet season and habitat capacity in the dry season (p = 0.025). Overall, traditional Ae. aegypti larval indices and pupal indices in Puntarenas were high enough to allow viral transmission during the wet season. In spite of continued vector control, it has not been possible to reduce vector densities below threshold levels in Puntarenas, and the habitat profiles show that non-household locations, as well as non-disposable containers, should be targeted in addition to the standard control activities.  相似文献   

17.
Knowledge of factors that influence oviposition behavior of malaria mosquitoes is critical to vector control measures aimed at larval habitat modifications and source reduction. Anopheles minimus s.l., an important malaria vector in Southeast Asia, generally breeds in clear, unpolluted water along shaded grassy edges of slow-moving streams. The objective of this study was to determine the influence of vegetation and plant structure on An. minimus s.l. ovipositing females. Twenty gravid female mosquitoes per replication were given a choice to lay eggs in bowls surrounded by different combinations of bare soil, grasses, small-leaved plants, and large-leaved plants. An. minimus s.l. females generally preferred to lay eggs in bowls with vegetation. A significantly higher number of eggs were found in bowls with small-leaved plants compared to bowls with grasses (P<0.05). The results suggest that gravid females preferred oviposition habitats in the following order: small-leaved plants > large-leaved plants > grasses > soil. Further studies are needed to determine the possible roles of plant structure and factors such as semiochemicals in the different species of the An. minimus species complex. Knowledge of female oviposition behavior is essential for the development of locally adapted vector control approaches.  相似文献   

18.

Background

In the past two decades the east African highlands have experienced several major malaria epidemics. Currently there is a renewed interest in exploring the possibility of anopheline larval control through environmental management or larvicide as an additional means of reducing malaria transmission in Africa. This study examined the landscape determinants of anopheline mosquito larval habitats and usefulness of remote sensing in identifying these habitats in western Kenya highlands.

Methods

Panchromatic aerial photos, Ikonos and Landsat Thematic Mapper 7 satellite images were acquired for a study area in Kakamega, western Kenya. Supervised classification of land-use and land-cover and visual identification of aquatic habitats were conducted. Ground survey of all aquatic habitats was conducted in the dry and rainy seasons in 2003. All habitats positive for anopheline larvae were identified. The retrieved data from the remote sensors were compared to the ground results on aquatic habitats and land-use. The probability of finding aquatic habitats and habitats with Anopheles larvae were modelled based on the digital elevation model and land-use types.

Results

The misclassification rate of land-cover types was 10.8% based on Ikonos imagery, 22.6% for panchromatic aerial photos and 39.2% for Landsat TM 7 imagery. The Ikonos image identified 40.6% of aquatic habitats, aerial photos identified 10.6%, and Landsate TM 7 image identified 0%. Computer models based on topographic features and land-cover information obtained from the Ikonos image yielded a misclassification rate of 20.3–22.7% for aquatic habitats, and 18.1–25.1% for anopheline-positive larval habitats.

Conclusion

One-metre spatial resolution Ikonos images combined with computer modelling based on topographic land-cover features are useful tools for identification of anopheline larval habitats, and they can be used to assist to malaria vector control in western Kenya highlands.  相似文献   

19.
To optimize malaria control, WHO has prioritised the need for new indicators to evaluate the efficacy of malaria vector control strategies. The gSG6-P1 peptide from gSG6 protein of Anopheles gambiae salivary glands was previously designed as a specific salivary sequence of malaria vector species. It was shown that the quantification of human antibody (Ab) responses to Anopheles salivary proteins in general and especially to the gSG6-P1 peptide was a pertinent biomarker of human exposure to Anopheles. The present objective was to validate this indicator in the evaluation of the efficacy of Insecticide Treated Nets (ITNs). A longitudinal evaluation, including parasitological, entomological and immunological assessments, was conducted on children and adults from a malaria-endemic area before and after the introduction of ITNs. Significant decrease of anti-gSG6-P1 IgG response was observed just after the efficient ITNs use. Interestingly, specific IgG Ab level was especially pertinent to evaluate a short-time period of ITNs efficacy and at individual level. However, specific IgG rose back up within four months as correct ITN use waned. IgG responses to one salivary peptide could constitute a reliable biomarker for the evaluation of ITN efficacy, at short- and long-term use, and provide a valuable tool in malaria vector control based on a real measurement of human-vector contact.  相似文献   

20.

Background

At present, large-scale use of two malaria vector control methods, long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) is being scaled up in Africa with substantial funding from donors. A third vector control method, larval source management (LSM), has been historically very successful and is today widely used for mosquito control globally, except in Africa. With increasing risk of insecticide resistance and a shift to more exophilic vectors, LSM is now under re-evaluation for use against afro-tropical vector species. Here the costs of this intervention were evaluated.

Methods

The 'ingredients approach' was used to estimate the economic and financial costs per person protected per year (pppy) for large-scale LSM using microbial larvicides in three ecologically diverse settings: (1) the coastal metropolitan area of Dar es Salaam in Tanzania, (2) a highly populated Kenyan highland area (Vihiga District), and (3) a lakeside setting in rural western Kenya (Mbita Division). Two scenarios were examined to investigate the cost implications of using alternative product formulations. Sensitivity analyses on product prices were carried out.

Results

The results show that for programmes using the same granular formulation larviciding costs the least pppy in Dar es Salaam (US$0.94), approximately 60% more in Vihiga District (US$1.50) and the most in Mbita Division (US$2.50). However, these costs are reduced substantially if an alternative water-dispensable formulation is used; in Vihiga, this would reduce costs to US$0.79 and, in Mbita Division, to US$1.94. Larvicide and staff salary costs each accounted for approximately a third of the total economic costs per year. The cost pppy depends mainly on: (1) the type of formulation required for treating different aquatic habitats, (2) the human population density relative to the density of aquatic habitats and (3) the potential to target the intervention in space and/or time.

Conclusion

Costs for LSM compare favourably with costs for IRS and LLINs, especially in areas with moderate and focal malaria transmission where mosquito larval habitats are accessible and well defined. LSM presents an attractive tool to be integrated in ongoing malaria control effort in such settings. Further data on the epidemiological health impact of larviciding is required to establish cost effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号