共查询到20条相似文献,搜索用时 15 毫秒
1.
In animal models of infection, glycoprotein E (gE) is required for efficient herpes simplex virus type 1 (HSV-1) spread from the inoculation site to the cell bodies of innervating neurons (retrograde direction). Retrograde spread in vivo is a multistep process, in that HSV-1 first spreads between epithelial cells at the inoculation site, then infects neurites, and finally travels by retrograde axonal transport to the neuron cell body. To better understand the role of gE in retrograde spread, we used a compartmentalized neuron culture system, in which neurons were infected in the presence or absence of epithelial cells. We found that gE-deleted HSV-1 (NS-gEnull) retained retrograde axonal transport activity when added directly to neurites, in contrast to the retrograde spread defect of this virus in animals. To better mimic the in vivo milieu, we overlaid neurites with epithelial cells prior to infection. In this modified system, virus infects epithelial cells and then spreads to neurites, revealing a 100-fold retrograde spread defect for NS-gEnull. We measured the retrograde spread defect of NS-gEnull from a variety of epithelial cell lines and found that the magnitude of the spread defect from epithelial cells to neurons correlated with epithelial cell plaque size defect, indicating that gE plays a similar role in both types of spread. Therefore, gE-mediated spread between epithelial cells and neurites likely explains the retrograde spread defect of gE-deleted HSV-1 in vivo.Herpes simplex virus type 1 (HSV-1) is an alphaherpesvirus that characteristically infects skin and mucosal surfaces before spreading to sensory neurons, where it establishes a lifelong persistent infection. The virus periodically returns to the periphery via sensory axons and causes recurrent lesions as well as asymptomatic shedding. This life cycle requires viral transport along axons in two directions: toward the neuron cell body (retrograde direction) and away from the neuron cell body (anterograde direction).Many studies of alphaherpesvirus neuronal spread have focused on pseudorabies virus (PRV), a virus whose natural host is the pig. Three PRV proteins, glycoprotein E (gE), gI, and Us9, have been shown to mediate anterograde neuronal spread both in animal models of infection and in cultured neurons. However, these three proteins are dispensable for retrograde spread (3, 8, 11, 12, 31, 46). In contrast, numerous animal models of infection have shown that HSV-1 gE is required for retrograde spread from the inoculation site to the cell bodies of innervating neurons (4, 9, 44, 56). In the murine flank model, wild-type (WT) virus replicates in the skin and then infects sensory neurons and spreads in a retrograde direction to the dorsal root ganglia (DRG). In this model, gE-deleted HSV-1 replicates in the skin but is not detected in the DRG (9, 44). This phenotype differs from gE-deleted PRV, which is able to reach the DRG at WT levels (8). Thus, unlike PRV, gE-deleted HSV-1 viruses have a retrograde spread defect in vivo.HSV-1 gE is a 552-amino-acid type I membrane protein found in the virion membrane as well as in the trans-Golgi and plasma membranes of infected cells (1). gE forms a heterodimer with another viral glycoprotein, gI. The gE/gI complex is important for HSV-1 immune evasion through its Fc receptor activity. gE/gI binds to the Fc domain of antibodies directed against other viral proteins, sequestering these antibodies and blocking antibody effector functions (27, 32, 40). Additionally, gE/gI promotes spread between epithelial cells. Viruses lacking either gE or gI form characteristically small plaques in cell culture and small inoculation site lesions in mice (4, 9, 18, 40, 58). In animal models, gE and gI also mediate viral spread in both anterograde and retrograde directions (4, 19, 44, 56).In order to better understand the role of gE in HSV-1 retrograde neuronal spread, we employed a compartmentalized neuron culture system that has been used to study directional neuronal spread of PRV and West Nile virus (12, 14, 45). In the Campenot chamber system, neurites are contained in a compartment that is separate from their corresponding cell bodies. Therefore, spread in an exclusively retrograde direction can be measured by infecting neurites and detecting spread to neuron cell bodies.HSV-1 replication requires retrograde transport of incoming viral genomes to the nucleus. In neurites, fusion between viral and cellular membranes occurs at the plasma membrane (43, 48). Upon membrane fusion, the capsid and a subset of tegument proteins (the inner tegument) dissociate from glycoproteins and outer tegument proteins, which remain at the plasma membrane (28, 38). Unenveloped capsids and the associated inner tegument proteins are then transported in the retrograde direction to the nucleus (7, 48, 49).For both neurons and epithelial cells, retrograde transport is dependent upon microtubules, ATP, the retrograde microtubule motor dynein, and the dynein cofactor dynactin (22, 34, 49, 52). Several viral proteins interact with components of the dynein motor complex (23, 39, 60). However, none of these proteins suggest a completely satisfactory mechanism by which viral retrograde transport occurs, either because they are not components of the complex that is transported to the nucleus (UL34, UL9, VP11/12) or because capsids lacking that protein retain retrograde transport activity (VP26) (2, 17, 21, 28, 37). This implies that additional viral proteins are involved in retrograde trafficking.We sought to better characterize the role of gE in retrograde spread and found that gE is dispensable for retrograde axonal transport; however, it promotes HSV-1 spread from epithelial cells to neurites. This epithelial cell-to-neuron spread defect provides a plausible explanation for the retrograde spread defect of gE-deleted HSV-1 in animal models of infection. 相似文献
2.
Chun Kew Pak-Yin Lui Chi-Ping Chan Xiang Liu Shannon Wing Ngor Au Ian Mohr Dong-Yan Jin Kin-Hang Kok 《Journal of virology》2013,87(24):13141-13149
Herpes simplex virus 1 (HSV-1) Us11 protein is a double-stranded RNA-binding protein that suppresses type I interferon production through the inhibition of the cytoplasmic RNA sensor RIG-I. Whether additional cellular mediators are involved in this suppression remains to be determined. In this study, we report on the requirement of cellular double-stranded RNA-binding protein PACT for Us11-mediated perturbation of type I interferon production. Us11 associates with PACT tightly to prevent it from binding with and activating RIG-I. The Us11-deficient HSV-1 was indistinguishable from the Us11-proficient virus in the suppression of interferon production when PACT was compromised. More importantly, HSV-1-induced activation of interferon production was abrogated in PACT knockout murine embryonic fibroblasts. Our findings suggest a new mechanism for viral evasion of innate immunity through which a viral double-stranded RNA-binding protein interacts with PACT to circumvent type I interferon production. This mechanism might also be used by other PACT-binding viral interferon-antagonizing proteins such as Ebola virus VP35 and influenza A virus NS1. 相似文献
3.
Pseudotyping of Glycoprotein D-Deficient Herpes Simplex Virus Type 1 with Vesicular Stomatitis Virus Glycoprotein G Enables Mutant Virus Attachment and Entry
下载免费PDF全文

Dina B. Anderson Sylvie Laquerre Kakoli Ghosh Hara P. Ghosh William F. Goins Justus B. Cohen Joseph C. Glorioso 《Journal of virology》2000,74(16):7698
4.
Roman Tomazin Nico E. G. van Schoot Kim Goldsmith Pieter Jugovic Pascal Sempé Klaus Früh David C. Johnson 《Journal of virology》1998,72(3):2560-2563
Herpes simplex virus serotype 1 (HSV-1) expresses an immediate-early protein, ICP47, that effectively blocks the major histocompatibility complex class I antigen presentation pathway. HSV-1 ICP47 (ICP47-1) binds with high affinity to the human transporter associated with antigen presentation (TAP) and blocks the binding of antigenic peptides. HSV type 2 (HSV-2) ICP47 (ICP47-2) has only 42% amino acid sequence identity with ICP47-1. Here, we compared the levels of inhibition of human and murine TAP, expressed in insect cell microsomes, by ICP47-1 and ICP47-2. Both proteins inhibited human TAP at similar concentrations, and the KD for ICP47-2 binding to human TAP was 4.8 × 10−8 M, virtually identical to that measured for ICP47-1 (5.2 × 10−8 M). There was some inhibition of murine TAP by both ICP47-2 and ICP47-1, but this inhibition was incomplete and only at ICP47 concentrations 50 to 100 times that required to inhibit human TAP. Lack of inhibition of murine TAP by ICP47-1 and ICP47-2 could be explained by an inability of both proteins to bind to murine TAP.Previously, we showed that herpes simplex virus serotype 1 (HSV-1) ICP47 (ICP47-1) caused major histocompatibility complex (MHC) class I proteins to be retained in the endoplasmic reticulum (ER) of cells and that antigen presentation to CD8+ T cells was inhibited after ICP47-1 was expressed in human fibroblasts (9). ICP47-1 blocked peptide transport across the ER membrane by TAP (2, 6), so that, without peptides, class I proteins were retained in the ER. By contrast, ICP47 did not detectably inhibit MHC class I antigen presentation in mouse cells (9) and inhibited murine TAP poorly (2, 6). ICP47-1 inhibited peptide binding to TAP without affecting the binding of ATP (1, 7) and bound with high affinity, and in a stable fashion, to human TAP (7). Peptides could competitively inhibit ICP47 binding to TAP, consistent with the hypothesis that ICP47-1 binds to a site which includes the peptide binding domain of TAP (7). Others have suggested that the present data do not exclude a distortion in TAP caused by the binding of ICP47 at a site distant from the peptide binding site (3). This seems improbable given our observations that ICP47 inhibits peptide binding and that peptides competitively inhibit ICP47 binding. In order for peptides to inhibit ICP47 binding and vice versa, one would have to invoke allosteric inhibition by both ICP47 and peptides, a highly unlikely prospect.The predicted amino acid sequence of HSV type 2 ICP47 (ICP47-2) was recently described (3), and it was of some interest that ICP47-1 and ICP47-2 share only 42% amino acid identity (see Fig. Fig.1A).1A). Most of the homology is near the N termini and in the central regions of the molecules. A peptide including residues 2 to 35 of ICP47-1 blocked human TAP in permeabilized cells (3). This observation was somewhat surprising given that this peptide did not include residues 33 to 51, a sequence that is most homologous between ICP47-1 and ICP47-2. Presumably, this conserved domain, and even the C-terminal third of the protein, is important in virus-infected cells for stability or for functions that are not apparent in this in vitro assay involving detergent-permeabilized cells.Open in a separate windowFIG. 1Comparison of ICP47-1 and ICP47-2 protein sequences and preparation of purified proteins. (A) The predicted amino acid sequences of ICP47-1 derived from HSV-1 strain 17 (6a) and of ICP47-2 derived from HSV-2 strain HG52 (3) are shown. The boldface, underlined letters denote identical amino acids, and the italicized letters denote conserved residues. (B) ICP47-1 and ICP47-2 were produced in Escherichia coli by expressing the proteins as GST fusion proteins by fusing the ICP47 coding sequences to GST sequences in plasmid pGEX-2T as described previously (7). Lysates from bacteria were incubated with glutathione-Sepharose and washed several times, and then ICP47-1 or ICP47-2 was eluted by incubation with thrombin, which cleaves between the GST and ICP47 sequences (7). The thrombin was inactivated with phenylmethylsulfonyl fluoride, and the ICP47 preparations were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by Bradford protein analysis. The positions of GST-ICP47, GST, and ICP47 protein, as well as those of molecular weight markers 104, 80, 48, 34, 24, and 18 KDa in size, are indicated.Given the differences between the primary structures of ICP47-1 and ICP47-2, we were interested in whether ICP47-2 might inhibit the murine TAP. If this were the case, it would make possible animal studies of the effects of ICP47. Here, we have produced a recombinant form of ICP47-2 and compared the effects of ICP47-2 and ICP47-1 on human and murine TAP proteins expressed in insect cell microsomes. Like ICP47-1, ICP47-2 efficiently blocked human TAP but even at high concentrations did not effectively block murine TAP. Moreover, there was little or no significant binding of either protein to insect microsomes containing mouse TAP.The HSV-2 ICP47 gene was subcloned from plasmid pBB17, which contains a KpnI-HindIII 8,477-bp fragment derived from the genome of HSV-2 strain HG52 inserted into pUC19, by using PCR to amplify ICP47-2 coding sequences. One PCR primer hybridized with the 5′ end of the ICP47-2 coding sequences and extended 5′ to generate a new BglII site just upstream of the initiation codon. The second PCR primer hybridized with 3′ sequences of the ICP47-2 gene, then diverged to produce an EcoRI site just downstream of the translation termination codon. After PCR, the DNA fragment was digested with EcoRI and inserted into the HincII (blunt) and EcoRI sites of pUC19, producing plasmid pUC47-2, which was subjected to DNA sequencing. The ICP47-2 coding sequences were excised from pUC47-2 with BglII and EcoRI and inserted into the BamHI and EcoRI sites of pGEX-2T to generate a fusion protein with glutathione S-transferase (GST). The ICP47-GST fusion protein was expressed in bacteria and purified by using glutathione-Sepharose, and then the GST sequences were removed with thrombin as described previously for ICP47-1 (7). A comparison between the predicted amino acid sequences of ICP47-2 and ICP47-1 is shown in Fig. Fig.1,1, with a comparative gel (Fig. (Fig.1B)1B) showing the purified preparations of ICP47-1 and ICP47-2 from bacteria. Microsomes purified from Sf9 insect cells infected with baculoviruses expressing human TAP1 and TAP2 have been described previously (7, 8), as were microsomes from Drosophila cells expressing murine TAP1 and TAP2 (1). We previously estimated that approximately 2% of the protein associated with the insect microsomes was human TAP (7), and the microsomes containing mouse TAP possessed similar TAP activity (see below). Peptide translocation by these microsomes was measured by using a library of 125I-labelled peptides (5) that are glycosylated after transport into the ER. Radioactive peptides able to bind to concanavalin A were quantified as an indirect measure of peptide transport (6). Over a range of membranes from 2.5 to 20 μl, with protein concentrations of 10 to 12 mg/ml for human TAP microsomes and 5.0 to 7.0 mg/ml for mouse TAP microsomes, there was a linear increase in peptide transport (Fig. (Fig.2).2). Thus, peptides and ATP were not limiting. Peptide transport was specific because the transport observed with control membranes not containing TAP amounted to less than 1% of that observed when microsomes contained TAP. The levels of peptide transport associated with microsomes containing human or mouse TAP were also compared and standardized. Thus, in subsequent assays, 7.5 to 10 μl of microsomes exhibiting similar amounts of TAP activity were used. Open in a separate windowFIG. 2Peptide transport by insect microsomes containing human or murine TAP. Microsomes were derived from insect Sf9 cells coinfected with BacTAP1 and BacTAP2 (Human TAP) (7) or from Sf9 cells infected with a control baculovirus, BacgH (Human control). Alternatively, microsomes were derived from Drosophila cells induced to express mouse TAP (Murine TAP) (1) or from Drosophila cells which were not induced to express mouse TAP (Murine control). Various concentrations of each microsome preparation were incubated with 125I-labelled peptides and 5 mM ATP in a volume of 150 μl for 10 min at 23°C. The microsomes were washed, pelleted, and disrupted in detergent as described previously (7). Peptides able to bind to concanavalin A-Sepharose were eluted with alpha-methylmannoside and quantified (7).ICP47-2 inhibited peptide transport by human TAP, and the inhibition was similar to that of ICP47-1; the 50% inhibitory concentration (IC50) for ICP47-2 was 0.24 μM and for ICP47-1 was 0.27 μM (Fig. (Fig.3A).3A). In other experiments the IC50 values for ICP47-1 and ICP47-2 varied from 0.15 to 0.35 μM, and there were no experiments in which there was a significant difference in the abilities of the two proteins to inhibit human TAP. Moreover, the binding properties of ICP47-2 to human TAP were similar to those of ICP47-1. Binding experiments were performed as described previously for ICP47-1 (7) by using membranes containing human TAP and 125I-labelled ICP47-2. Specific binding of ICP47-2 was calculated by subtracting the binding to control microsomes derived from insect cells infected with a baculovirus expressing HSV gH (7). The binding of ICP47-2 was saturable, so that at a protein concentration of 1 μM approximately 16 ng of protein bound to human TAP (Fig. (Fig.4A).4A). In previous experiments with a similar preparation of insect microsomes containing human TAP, the binding of ICP47-1 also saturated at 15 to 16 ng (7). The ICP47-2 binding data were analyzed in a standard Scatchard plot, and the KD was calculated to be 4.8 × 10−8 M (Fig. (Fig.4B),4B), compared with 5.2 × 10−8 M for ICP47-1 (7). These values are greater than those of high-affinity peptides that bind to human TAP with affinities reaching 4 × 10−7 M, though the vast majority of peptides bind to TAP with much lower affinities (8). Open in a separate windowFIG. 3Inhibition of human and murine TAP-mediated peptide transport by ICP47-1 and ICP47-2. TAP assays were performed as described in the legend for Fig. Fig.22 by using insect microsomes containing human TAP (10 μl of membranes containing 12 mg of membrane protein per ml) (A) or murine TAP (7.5 μl of membranes containing 4.8 mg of membrane protein per ml but with equivalent levels of TAP activity compared with microsomes containing human TAP) (B) and various concentrations of ICP47-1 and ICP47-2. The results shown are combined from two separate experiments, each involving human and murine TAP.Open in a separate windowFIG. 4Binding of ICP47-2 to human TAP. (A) Microsomes (15 μl of membranes with a 7.5-mg/ml concentration of membrane protein) derived from Sf9 cells expressing TAP1 and TAP2 or expressing HSV-1 gH (control membranes not containing TAP) were incubated with various amounts of 125I-labelled ICP47-2 for 60 min at 4°C as described previously (7). Binding to control membranes was subtracted from binding to microsomes containing TAP at each point. (B) Scatchard analysis of the data in panel A. The KD for ICP47-2 binding to TAP was calculated to be 4.8 × 10−8 M.To determine whether ICP47-2 could inhibit the murine TAP, microsomes from insect cells expressing mouse TAP were incubated with various concentrations of ICP47-1 and ICP47-2 and TAP assays were performed. Inhibition of the mouse TAP was observed with both ICP47-1 and ICP47-2, but relatively high concentrations of both proteins were required (Fig. (Fig.3B).3B). The IC50 values for ICP47-1 and ICP47-2 in this experiment were 10.8 and 16.2 μM, respectively. However, we were unable to reduce TAP activity beyond approximately 40% with ICP47-1 or ICP47-2 concentrations reaching 30 μM. This was 100 times the concentration required to inhibit human TAP by 50%. We attempted to measure the specific binding of radiolabelled ICP47-1 and ICP47-2 to microsomes containing mouse TAP in experiments similar to those shown in Fig. Fig.4.4. However, there was little specific binding of ICP47-1 and ICP47-2, and it was difficult to measure binding at lower protein concentrations. We therefore measured binding at a single, higher protein concentration (2.75 μM), one sufficient to inhibit 10 to 20% of the mouse TAP activity and all of the human TAP activity. In this experiment, specific binding to microsomes containing murine TAP was determined by subtracting the binding to microsomes from insect cells that were not induced to express murine TAP (1). The binding of ICP47-1 and ICP47-2 to human TAP was easily measured (Fig. (Fig.5),5), although under these conditions it is important to note that ICP47-1 and ICP47-2 were present at concentrations beyond those required to saturate the TAP (Fig. (Fig.4A).4A). By contrast, it was found that there was little or no significant binding of ICP47-1 or ICP47-2 to microsomes containing murine TAP when background binding to control membranes was subtracted. In the experiment shown, specific ICP47-2 binding was greater than zero, but in other experiments this binding was less than zero, and thus we concluded that there was no detectable binding overall. In every experiment, it was clear that the level of binding of ICP47-1 and ICP47-2 to murine TAP was at least 25-fold lower than to human TAP. However, the human TAP present in these microsomes was limiting in these experiments, and thus it is very likely that the 25-fold difference between the levels of binding to human and mouse TAP is an underestimate. More likely this difference is 50- to 100-fold. On the basis of the inhibitory concentrations required to block murine TAP and the binding studies described above, estimates of the binding affinities of ICP47-1 and ICP47-2 for murine TAP may fall in the range of 5 × 10−6 M. Therefore, ICP47-1 and ICP47-2 bind poorly to the murine TAP, and this largely accounts for their inability to block mouse TAP peptide transport. Open in a separate windowFIG. 5Binding of ICP47-1 and ICP47-2 to microsomes containing murine TAP. Microsomes containing human TAP or control membranes without human TAP (100 μg of membrane protein per 150-μl assay) or microsomes containing mouse TAP or control membranes without mouse TAP (50 μg of membrane protein with the same TAP activity as with the human microsomes) were incubated with 125I-labelled ICP47-1 or ICP47-2 at 2.75 μM for 60 min at 4°C. The microsomes were washed twice, pelleted, and disrupted with detergents as described previously (7). Radioactivity associated with the microsomes was quantified by gamma counting. “ICP47 bound” refers to specific binding, calculated by subtracting the binding to control membranes (without TAP) from that observed with microsomes containing human or murine TAP.In summary, ICP47-2 and ICP47-1 could block human TAP and bound to TAP with similar high affinities. It was interesting that these two proteins, whose primary structures are only about 40% identical, inhibit human TAP with indistinguishable profiles and bind to human TAP with virtually identical affinities. Moreover, both proteins blocked murine TAP poorly and only at high protein concentrations and could not bind to murine TAP. These results, at face value, would suggest that mice will not be an appropriate model in which to test the effects of ICP47 on HSV replication or as a selective inhibitor of CD8+ T-cell responses in other systems. However, we recently found that an HSV-1 ICP47 mutant showed dramatically reduced neurovirulence in mice, without altering the course of disease in the cornea (4). Therefore, ICP47 may attain sufficient concentrations in certain cells in the nervous systems of mice to inhibit TAP. This may be related to the fact that TAP and class I proteins are expressed at low levels in the nervous system. Alternatively, ICP47 may have other functions in the nervous system. 相似文献
5.
Three-Dimensional Structure of Herpes Simplex Virus Type 1 Glycoprotein D at 2.4-Nanometer Resolution
下载免费PDF全文

Andrew Pilling Mark F. Rosenberg Sharon H. Willis Joachim Jger Gary H. Cohen Roselyn J. Eisenberg David M. Meredith Andreas Holzenburg 《Journal of virology》1999,73(9):7830-7834
Herpes simplex virus type 1 glycoprotein D (gD) is essential for virus infectivity and is responsible for binding to cellular membrane proteins and subsequently promoting fusion between the virus envelope and the cell. No structural data are available for gD or for any other herpesvirus envelope protein. Here we present a three-dimensional model for the baculovirus-expressed truncated protein gD1(306t) based on electron microscopic data. We demonstrate that gD1(306t) appears as a homotetramer containing a pronounced pocket in the center of the molecule. Monoclonal antibody binding demonstrates that the molecule is oriented such that the pocket protrudes away from the virus envelope. 相似文献
6.
Herpes Simplex Virus Glycoproteins: Participation of Individual Herpes Simplex Virus Type 1 Glycoprotein Antigens in Immunocytolysis and Their Correlation with Previously Identified Glycopolypeptides 总被引:17,自引:14,他引:17
下载免费PDF全文

Tissue culture cells infected with herpes simplex type 1 virus express virus-specified glycoprotein antigens on the plasma membrane. Three of these have been previously identified and have been designated as Ag-11, Ag-8, and Ag-6. In the present study, immunoglobulins to each of the antigens were shown to be capable of mediating immunocytolysis in the presence of either complement (antibody-dependent complement-mediated cytotoxicity) or peripheral blood mononuclear cells (antibody-dependent cell-mediated cytotoxicity [ADCC]). Two herpes simplex virus type 1 strains, VR-3 and F, reacted similarly in the ADCC test in the presence of immunoglobulins to Ag-11, Ag-8, and Ag-6 in both infected Chang liver cells and HEp-2 cells. Anti-Ag-6, however, produced a lower ADCC reaction in HEp-2 cells than in Chang liver cells, suggesting differences in the Ag-6 surface expression in, or release from, these cells. Chang liver and HEp-2 cells infected with the MP mutant strain of herpes simplex virus type 1 showed reduced ADCC in the presence of anti-Ag-11 and anti-Ag-8, but no reactivity at all with anti-Ag-6. Crossed immunoelectrophoretic analysis showed that MP-infected cell extracts contain Ag-11 and Ag-8, but lack Ag-6. Polypeptide analysis of herpes simplex virus type 1 strains F, VR-3, and MP showed that Ag-11 consists of the glycoproteins gA and gB, that Ag-8 consists of gD, and that Ag-6 consists of gC. In conclusion, the present study demonstrates that either one of the glycoproteins (gC, gD, and a mixture of gA and gB) can function as a target for immunocytolysis and that the antibody preparation to gC (Ag-6) does not cross-react with any of the other glycoproteins. 相似文献
7.
从提取的HSV-1基因组中扩增得到编码gD蛋白胞外区1~314aa的基因gDt,将其插入毕赤酵母表达质粒pPIC9K的醇氧化酶(AOX1)启动子下游,构建携带gDt的重组载体,经电转化GS115菌株和G418筛选,得到了高效分泌表达gD蛋白的毕赤酵母菌株,表达量达到250mg/L,该目的蛋白可被gD单抗(1-I-9)特异性识别。表达产物经离子交换、金属螯合、分子筛柱层析纯化后得到纯度较高的重组蛋白。重组gD蛋白免疫BALB/c小鼠可诱生一定水平的特异性抗体,表明该蛋白具有较好的免疫原性,能够诱导小鼠产生体液免疫应答。 相似文献
8.
单纯疱疹病毒Ⅰ型糖蛋白D在酵母中的表达 总被引:1,自引:0,他引:1
从提取的HSV-1基因组中扩增得到编码gD蛋白胞外区1~314aa的基因gDt,将其插入毕赤酵母表达质粒pPIC9K的醇氧化酶(AOX1)启动子下游,构建携带gDt的重组载体,经电转化GS115菌株和G418筛选,得到了高效分泌表达gD蛋白的毕赤酵母菌株,表达量达到250mg/L,该目的蛋白可被gD单抗(1-I-9)特异性识别.表达产物经离子交换、金属螯合、分子筛柱层析纯化后得到纯度较高的重组蛋白.重组gD蛋白免疫BALB/c小鼠可诱生一定水平的特异性抗体,表明该蛋白具有较好的免疫原性,能够诱导小鼠产生体液免疫应答. 相似文献
9.
Kareem N. Mohni Alexander R. Dee Samantha Smith April J. Schumacher Sandra K. Weller 《Journal of virology》2013,87(1):531-542
Herpes simplex virus 1 (HSV-1) is a double-stranded DNA virus that replicates in the nucleus of the host cell and is known to interact with several components of the cellular DNA-damage-signaling machinery. We have previously reported that the DNA damage response kinase, ATR, is specifically inactivated in HSV-1-infected cells. On the other hand, we have also shown that ATR and its scaffolding protein, ATRIP, are recruited to viral replication compartments, where they play beneficial roles during HSV-1 replication. In order to better understand this apparent discrepancy, we tested the hypothesis that some of the components of the ATR pathway may exert an antiviral effect on infection. In fact, we learned that all 10 of the canonical ATR pathway proteins are stable in HSV-infected cells and are recruited to viral replication compartments; furthermore, short hairpin RNA (shRNA) knockdown shows that several, including ATRIP, RPA70, TopBP1, Claspin, and CINP, are required for efficient HSV-1 replication. We also determined that activation of the ATR kinase prior to infection did not affect virus yield but did result in reduced levels of recombination between coinfecting viruses. Together, these data suggest that ATR pathway proteins are not antiviral per se but that activation of ATR signaling may have negative consequences during viral replication, such as inhibiting recombination. 相似文献
10.
Herpes Simplex Virus Type 1 Glycoprotein B Requires a Cysteine Residue at Position 633 for Folding, Processing, and Incorporation into Mature Infectious Virus Particles 总被引:1,自引:0,他引:1
下载免费PDF全文

Sylvie Laquerre Dina B. Anderson Rafaela Argnani Joseph C. Glorioso 《Journal of virology》1998,72(6):4940-4949
Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) resides in the virus envelope in an oligomeric form and plays an essential role in virus entry into susceptible host cells. The oligomerizing domain is a movable element consisting of amino acids 626 to 653 in the gB external domain. This domain contains a single cysteine residue at position 633 (Cys-633) that is predicted to form an intramolecular disulfide bridge with Cys-596. In this study, we examined gB oligomerization, processing, and incorporation into mature virus during infection by two mutant viruses in which either the gB Cys-633 [KgB(C633S)] or both Cys-633 and Cys-596 [KgB(C596S/C633S)] residues were mutated to serine. The result of immunofluorescence studies and analyses of released virus particles showed that the mutant gB molecules were not transported to the cell surface or incorporated into mature virus envelopes and thus infectious virus was not produced. Immunoprecipitation studies revealed that the mutant gB molecules were in an oligomeric configuration and that these mutants produced hetero-oligomers with a truncated form of gB consisting of residues 1 to 43 and 595 to 904, the latter containing the oligomerization domain. Pulse-chase experiments in combination with endoglycosidase H treatment determined that the mutant molecules were improperly processed, having been retained in the endoplasmic reticulum (ER). Coimmunoprecipitation experiments revealed that the cysteine mutations resulted in gB misfolding and retention by the molecular chaperones calnexin, calreticulin, and Grp78 in the ER. The altered conformation of the gB mutant glycoproteins was directly detected by a reduction in monoclonal antibody recognition of two previously defined distinct antigenic sites located within residues 381 to 441 and 595 to 737. The misfolded molecules were not transported to the cell surface as hetero-oligomers with wild-type gB, suggesting that the conformational change could not be corrected by intermolecular interactions with the wild-type molecule. Together, these experiments confirmed that a disulfide bridge involving Cys-633 and Cys-596 is not essential for oligomerization but rather is required for proper folding and maintenance of a gB domain essential to complete posttranslational modification, transport, and incorporation into mature virus particles. 相似文献
11.
Caroline Blondeau Annegret Pelchen-Matthews Petra Mlcochova Mark Marsh Richard S. B. Milne Greg J. Towers 《Journal of virology》2013,87(24):13124-13133
Tetherin is a broadly active antiviral effector that works by tethering nascent enveloped virions to a host cell membrane, thus preventing their release. In this study, we demonstrate that herpes simplex virus 1 (HSV-1) is targeted by tetherin. We identify the viral envelope glycoprotein M (gM) as having moderate anti-tetherin activity. We show that gM but not gB or gD efficiently removes tetherin from the plasma membrane and can functionally substitute for the human immunodeficiency virus type 1 (HIV-1) Vpu protein, the prototypic viral tetherin antagonist, in rescuing HIV-1 release from tetherin-expressing cells. Our data emphasize that tetherin is a broadly active antiviral effector and contribute to the emerging hypothesis that viruses must suppress or evade an array of host cell countermeasures in order to establish a productive infection. 相似文献
12.
We recently reported that the herpes simplex virus 1 (HSV-1) Us3 protein kinase phosphorylates threonine at position 887 (Thr-887) in the cytoplasmic tail of envelope glycoprotein B (gB) (A. Kato, J. Arii, I. Shiratori, H. Akashi, H. Arase, and Y. Kawaguchi, J. Virol. 83:250-261, 2009; T. Wisner, C. C. Wright, A. Kato, Y. Kawaguchi, F. Mou, J. D. Baines, R. J. Roller and D. C. Johnson, J. Virol. 83:3115-3126, 2009). In the studies reported here, we examined the effect(s) of this phosphorylation on viral replication and pathogenesis in vivo and present data showing that replacement of gB Thr-887 by alanine significantly reduced viral replication in the mouse cornea and development of herpes stroma keratitis and periocular skin disease in mice. The same effects have been reported for mice infected with a recombinant HSV-1 carrying a kinase-inactive mutant of Us3. These observations suggested that Us3 phosphorylation of gB Thr-887 played a critical role in viral replication in vivo and in HSV-1 pathogenesis. In addition, we generated a monoclonal antibody that specifically reacted with phosphorylated gB Thr-887 and used this antibody to show that Us3 phosphorylation of gB Thr-887 regulated subcellular localization of gB, particularly on the cell surface of infected cells.The herpes simplex virus 1 (HSV-1) Us3 gene encodes a serine/threonine protein kinase with an amino acid sequence that is conserved in the subfamily Alphaherpesvirinae (9, 20, 29). The Us3 kinase phosphorylation target site has been reported to be similar to that of protein kinase A (PKA), a cellular cyclic AMP-dependent protein kinase (3, 12). Us3 catalytic activity plays important roles in viral replication and pathogenesis in vivo, based on studies showing that recombinant Us3 null mutant viruses and recombinant viruses encoding catalytically inactive Us3 have significantly reduced virulence, pathogenicity, and replication in mouse models (21, 34). In contrast, Us3 is not essential for growth in tissue culture cells (29). Thus, recombinant Us3 mutants grow as well as wild-type virus in Vero cells and have modestly impaired growth in a specific cell line such as HEp-2 cells (32, 33). The catalytic activity of Us3 is, in part, regulated by autophosphorylation of its serine at position 147 (Ser-147), and regulation of Us3 activity by autophosphorylation of Ser-147 appears to play a critical role in HSV-1 replication in vivo and in HSV-1 pathogenesis (34). Numerous studies have elucidated the potential downstream effects of Us3, including blocking apoptosis (18, 26-28), promoting nuclear egress of progeny nucleocapsids through the nuclear membrane (24, 32, 33), redistributing and phosphorylating nuclear membrane-associated viral nuclear egress factors UL31 and UL34 (13, 24, 30, 31) and cellular proteins including lamin A/C and emerin (16, 22, 23), controlling infected cell morphology (12, 27), and downregulating cell surface expression of viral envelope glycoprotein B (gB) (11).Two substrates that mediate some of the Us3 functions described above have been identified. First, it has been shown that Us3 phosphorylates Thr-887 in the cytoplasmic tail of gB, which appears to downregulate cell surface expression of gB (11). This conclusion is based on the observation that a T887A mutation in gB (gB-T887A) markedly upregulated cell surface expression of gB in infected cells: this upregulation was also observed with a recombinant virus encoding a Us3 kinase-inactive mutant, whereas a phosphomimetic substitution for gB Thr-887 restored wild-type cell surface expression of gB (11). Us3 phosphorylation of gB Thr-887 has also been proposed to be involved in regulation of fusion of the nascent progeny virion envelope with the cell''s outer nuclear membrane, based on the observation that virions accumulated aberrantly in the perinuclear space in cells infected with a mutant virus carrying the gB-T887A substitution mutation and lacking the capacity to produce gH (42). Second, it has been shown that Us3 may phosphorylate some or all of the six serines in the UL31 N-terminal region (24). Such phosphorylation might regulate proper localization of UL31 and UL34 at the nuclear membrane, nuclear egress of nucleocapsids, and viral growth in cell cultures since the Us3 kinase-inactive mutant phenotype for nuclear egress (i.e., mislocalization of UL31 and UL34 at the nuclear membrane, aberrant accumulation of virions within herniations of the nuclear membrane, and decreased viral growth in cell cultures) is also produced by replacement of the six serines in the UL31 N-terminal region with alanines while phosphomimetic substitutions of the six serines restored the wild-type phenotype (24).Thus, the molecular mechanisms for some of the downstream effects of Us3 phosphorylation have been gradually elucidated. However, it remains to be shown whether the Us3 functions reported to date are in fact involved in viral replication and pathogenicity in vivo. In the present study, we focused on Us3 phosphorylation of gB Thr-887 and examined the effect(s) of this phosphorylation on viral replication and pathogenesis in vivo. These studies have shown that replacement of gB Thr-887 by alanine significantly reduced viral replication in the mouse cornea and development of herpes stroma keratitis (HSK) and periocular skin disease in mice, as reported for infection of mice with a recombinant virus carrying a Us3 kinase-inactive mutant (34). These observations suggested that Us3 phosphorylation of gB Thr-887 played a critical role in viral replication in vivo and in HSV-1 pathogenesis. In addition, we generated a monoclonal antibody that specifically recognized phosphorylated gB Thr-887 and used this antibody to directly study the functional consequences of Us3 phosphorylation of gB Thr-887 in infected cells. We also present data showing that Us3 phosphorylation of gB Thr-887 regulated subcellular localization of gB, particularly gB localization on the cell surface of infected cells. 相似文献
13.
Genetic Analysis of the Role of Herpes Simplex Virus Type 1 Glycoprotein K in Infectious Virus Production and Egress
下载免费PDF全文

Herpes simplex virus type 1 (KOS)DeltagK is a mutant virus which lacks glycoprotein K (gK) and exhibits defects in virion egress (S. Jayachandra, A. Baghian, and K. G. Kousoulas, J. Virol. 69:5401-5413, 1997). To further understand the role of gK in virus egress, we constructed recombinant viruses, DeltagKhpd-1, -2, -3, and -4, that specified gK amino-terminal portions of 139, 239, 268, and 326 amino acids, respectively, corresponding to truncations immediately after each of the four putative membrane-spanning domains of gK. DeltagKhpd-1 and DeltagKhpd-2 viruses produced lower yields and smaller plaques than DeltagK. Numerous DeltagKhpd-1 capsids accumulated predominately within large double-membrane vesicles of which the inner membrane appeared to be derived from viral envelopes while the outer membrane appeared to originate from the outer nuclear membrane. The mutant virus DeltagKhpd-3 produced higher yields and larger plaques than the DeltagK virus. The mutant virus DeltagKhpd-4 produced yields and plaques similar to those of the wild-type virus strain KOS, indicating that deletion of the carboxy-terminal 12 amino acids did not adversely affect virus replication and egress. Comparisons of the gK primary sequences specified by alphaherpesviruses revealed the presence of a cysteine-rich motif (CXXCC), located within domain III in the lumen side of gK, and a tyrosine-based motif, YTKPhi (where Phi is any bulky hydrophobic amino acid), located between the second and third hydrophobic domains (domain II) in the cytoplasmic side of gK. The mutant virus gK/Y183S, which was constructed to specify gK with a single-amino-acid change (Y to S) within the YTKPhi motif, replicated less efficiently than the DeltagK virus. The mutant virus gK/C304S-C307S, which was constructed to specify two serine instead of cysteine residues within the cysteine-rich motif (CXXCC changed to SXXSC) of gK domain III, replicated more efficiently than the DeltagK virus. Our data suggests that gK contains domains in its amino-terminal portion that promote aberrant nucleocapsid envelopment and/or membrane fusion between different virion envelopes and contains domains within its domains II and III that function in virus replication and egress. 相似文献
14.
Jessica L. Silverman Sapna Sharma Tina M. Cairns Ekaterina E. Heldwein 《Journal of virology》2010,84(4):2001-2012
Glycoprotein B (gB) enables the fusion of viral and cell membranes during entry of herpesviruses. However, gB alone is insufficient for membrane fusion; the gH/gL heterodimer is also required. The crystal structure of the herpes simplex virus type 1 (HSV-1) gB ectodomain, gB730, has demonstrated similarities between gB and other viral fusion proteins, leading to the hypothesis that gB is a fusogen, presumably directly involved in bringing the membranes together by refolding from its initial or prefusion form to its final or postfusion form. The only available crystal structure likely represents the postfusion form of gB; the prefusion form has not yet been determined. Previously, a panel of HSV-1 gB mutants was generated by using random 5-amino-acid-linker insertion mutagenesis. Several mutants were unable to mediate cell-cell fusion despite being expressed on the cell surface. Mapping of the insertion sites onto the crystal structure of gB730 suggested that several insertions might not be accommodated in the postfusion form. Thus, we hypothesized that some insertion mutants were nonfunctional due to being “trapped” in a prefusion form. Here, we generated five insertion mutants as soluble ectodomains and characterized them biochemically. We show that the ectodomains of all five mutants assume conformations similar to that of the wild-type gB730. Four mutants have biochemical properties and overall structures that are indistinguishable from those of the wild-type gB730. We conclude that these mutants undergo only minor local conformational changes to relieve the steric strain resulting from the presence of 5 extra amino acids. Interestingly, one mutant, while able to adopt the overall postfusion structure, displays significant conformational differences in the vicinity of fusion loops, relative to wild-type gB730. Moreover, this mutant has a diminished ability to associate with liposomes, suggesting that the fusion loops in this mutant have decreased functional activity. We propose that these insertions cause a fusion-deficient phenotype not by preventing conversion of gB to a postfusion-like conformation but rather by interfering with other gB functions.Herpes simplex virus type 1 (HSV-1) is the prototype of the diverse herpesvirus family that includes many notable human pathogens (26). In addition to the icosahedral capsid and the tegument that surround its double-stranded DNA genome, herpesviruses have an envelope—an outer lipid bilayer—bearing a number of surface glycoproteins. During infection, HSV-1 must fuse its envelope with a cellular membrane in order to deliver the capsid into a target host cell. Among its viral glycoproteins, only glycoprotein C (gC), gB, gD, gH, and gL participate in this entry process, and only the last four are required for fusion (28). Although gD is found only in alphaherpesviruses, all herpesviruses encode gB, gH, and gL, which constitute their core fusion machinery. Of these three proteins, gB is the most highly conserved.We recently determined the crystal structure of a nearly full-length ectodomain of HSV-1 gB, gB730 (18). The crystal structure of the ectodomain of gB from Epstein-Barr virus, another herpesvirus, has also been subsequently determined (4). The two structures showed similarities between gB and other viral fusion proteins, in particular, G from an unrelated vesicular stomatitis virus (VSV) (25), leading to the hypothesis that gB is a fusogen, presumably directly involved in bringing the viral and host cell membranes together to enable their fusion. However, gB alone is known to be insufficient for membrane fusion; the gH/gL heterodimer is also required. This insufficiency raises the question of exactly how gB functions during viral entry. Answering this question is critical for understanding the complex mechanism that herpesviruses use to enter their host cells.In acting as a viral fusogen, gB must undergo dramatic conformational changes, refolding through a series of conformational intermediates from its initial, or prefusion form, to its final, or postfusion form (15). These conformational changes are not only necessary to bring the two membranes into proximity; they are also thought to provide the energy for the fusion process. The prefusion form corresponds to the protein present on the viral surface prior to initiation of fusion. The postfusion form represents the protein after fusion of the viral and host cell membranes. The available gB structure likely represents its postfusion form, since it shares more in common with the postfusion rather than the prefusion structure of vesicular stomatitis virus (VSV) G (3, 17). However, the prefusion form has not yet been characterized.Recently, a panel of gB mutants was generated by using random linker-insertion mutagenesis (21). Of these mutants, 16 were particularly interesting because they were nonfunctional in cell-cell fusion assays despite being expressed on the cell surface at levels that indicate proper folding for transport. These observations suggested that each insertion somehow interfered with gB function. Insertions in 12 of these mutants are located within the available structure of the gB ectodomain, which allowed Lin and Spear to analyze their locations (21).The most prominent examples of such nonfunctional mutants are two mutants with insertions after residues I185 or E187, henceforth referred to as “cavity mutants” because both I185 and E187 point into a cavity inside the gB trimer (Fig. 1B and D). Although this cavity might accommodate a single 5-amino-acid insertion, it “is not large enough to accommodate three 5-amino-acid insertions” (21) that would be present in the trimer (one insertion per protomer).Open in a separate windowFIG. 1.Location of the insertion sites in the sequence of gB and the structure of the postfusion form of its ectodomain. (A) Linear diagram of the full-length gB with functional domains highlighted (as in reference 18). Domain I is shown in cyan, domain II in green, domain III in yellow, domain IV in orange, domain V in red, and the disordered region between domains II and III in purple. Regions absent from the crystal structure of gB730 are shown in gray. Sequences in the region of 5-amino-acid insertions (residues 181 to 190 and residues 661 to 680) are shown in black. Arrows mark the locations of 5-amino-acid insertions, shown as red text. (B) Crystal structure of gB730 (18). Residues preceding the 5-amino-acid insertions in mutants studied here are shown as spheres colored by domain, consistent with panel A. Boxes delineate the hinge region, enlarged in panel C, and the cavity region, enlarged in panel D. (C) Close-up view of the hinge region shown in molecular surface representation, with residues 663 to 675 displayed as sticks. Hydrophobic residues are colored orange. Residues preceding the 5-amino-acid insertions in mutants studied here are labeled with asterisks; remaining labels correspond to additional hydrophobic residues in the 663-675 region. (D) Enlarged view of the cavity region. Residues that line the cavity and are not solvent exposed are colored magenta. Residue E187 of each protomer is colored teal and shown as spheres. Fusion loops for two protomers are marked with asterisks; the third pair of fusion loops lies behind the crystal structure and is not visible. Panels B, C, and D were made by using Pymol (http://www.pymol.org/).Five other nonfunctional mutants have insertions after residues D663, T665, V667, I671, or L673, respectively. We refer to them as “hinge mutants.” These residues lie in the region located between domains IV and V, which has been termed the hinge region because it may play an important role during the conformational transition from the prefusion to the postfusion form (17). Lin and Spear proposed that insertions following these residues “would likely affect hinge regions” (21), with the implication that they may prevent gB from refolding into the postfusion conformation. Our analysis suggested that insertions after these residues could, perhaps, be sterically accommodated in the structure but would probably be energetically unfavorable by causing several buried hydrophobic side chains in the 665-673 region, such as F670, I671, and L673, to become exposed (Fig. 1B and C).In light of these observations, we hypothesized that the insertion mutants are “trapped” in a prefusion form. We decided to test this hypothesis by determining whether the ectodomain of gB containing one of these insertion mutations is able to assume the conformation seen in the crystal structure of the wild-type gB ectodomain, which we are referring to as the likely postfusion conformation. For this purpose, we chose one cavity mutant, containing an insertion after E187, and four hinge mutants, containing insertions after T665, V667, I671, or L673, respectively. We chose to test four hinge mutants because structure analysis suggested to us that insertions following the respective residues might not affect the structure in precisely the same way. We expressed the soluble ectodomain of each mutant by using a baculovirus expression system and characterized the purified proteins by using biochemical and biophysical methods. Surprisingly, we found that the ectodomains of all five mutants assume a conformation similar to that of the wild-type gB ectodomain. The four hinge mutants had biochemical properties and overall three-dimensional structures that were indistinguishable from those of the wild-type gB ectodomain. We conclude that these mutants undergo only minor local conformational changes to relieve the steric strain resulting from the presence of 5 extra amino acids. Interestingly, the cavity mutant, while able to adopt the overall postfusion structure, still displayed significant conformational differences relative to wild-type gB. Because these conformational differences are in the vicinity of fusion loops, we conclude that the fusion loops in this mutant have decreased functional activity. 相似文献
15.
《Autophagy》2013,9(1):24-29
The lysosomal pathway of autophagy is the major catabolic mechanism for degrading long-lived cellular proteins and cytoplasmic organelles. Recent studies have also shown that autophagy (xenophagy) may be used to degrade bacterial pathogens that invade intracellularly. However, it is not yet known whether xenophagy is a mechanism for degrading viruses. Previously, we showed that autophagy induction requires the antiviral eIF2alpha kinase signaling pathway (including PKR and eIF2alpha) and that this function ofeIF2alpha kinase signaling is antagonized by the herpes simplex virus (HSV-1) neurovirulence gene product, ICP34.5. Here, we show quantitative morphologic evidence of PKR-dependent xenophagic degradation of herpes simplex virions and biochemical evidence of PKR and eIF2alpha-dependent degradation of HSV-1 proteins, both of which are blocked by ICP34.5. Together, these findings indicate that xenophagy degrades HSV-1 and that this cellular function is antagonized by the HSV-1 neurovirulence gene product, ICP34.5. Thus, autophagy-related pathways are involved in degrading not only cellular constituents and intracellular bacteria, but also viruses. 相似文献
16.
Neutralizing Antibodies Inhibit Axonal Spread of Herpes Simplex Virus Type 1 to Epidermal Cells In Vitro
下载免费PDF全文

The ability of antibodies to interfere with anterograde transmission of herpes simplex virus (HSV) from neuronal axons to the epidermis was investigated in an in vitro model consisting of human fetal dorsal root ganglia innervating autologous skin explants in a dual-chamber tissue culture system. The number and size of viral cytopathic plaques in epidermal cells after axonal transmission from HSV type 1 (HSV-1)-infected dorsal root ganglionic neurons were significantly reduced by addition to the outer chamber of neutralizing polyclonal human sera to HSV-1, of a human recombinant monoclonal group Ib antibody to glycoprotein D (gD), and of rabbit sera to HSV-1 gB and gD but not by rabbit anti-gE or anti-gG. A similar pattern of inhibition of direct infection of epidermal cells by these antibodies was observed. High concentrations of the monoclonal anti-gD reduced transmission by 90%. Rabbit anti-gB was not taken up into neurons, and human anti-gD did not influence spread of HSV in the dorsal root ganglia or axonal transport of HSV antigens when applied to individual dissociated neurons. These results suggest that anti-gD and -gB antibodies interfere with axonal spread of HSV-1, possibly by neutralizing HSV during transmission across an intercellular gap between axonal termini and epidermal cells, and thus contribute to control of HSV spread and shedding. Therefore, selected human monoclonal antibodies to protective epitopes might even be effective in preventing epidermis-to-neuron transmission during primary HSV infection, especially neonatal infection. 相似文献
17.
Glycopeptides of the Type-Common Glycoprotein gD of Herpes Simplex Virus Types 1 and 2 总被引:1,自引:20,他引:1
下载免费PDF全文

Gary H. Cohen Deborah Long James T. Matthews Mary May Roselyn Eisenberg 《Journal of virology》1983,46(3):679-689
We have carried out detailed structural studies of the glycopeptides of glycoprotein gD of herpes simplex virus types 1 and 2. We first examined and compared the number of N-asparagine-linked oligosaccharides present in each glycoprotein. We found that treatment of either pgD-1 or pgD-2 with endo-β-N-acetylglucosaminidase H (Endo H) generated three polypeptides which migrated more rapidly than pgD on gradient sodium dodecyl sulfate-polyacrylamide gels. Two of the faster-migrating polypeptides were labeled with [3H]mannose, suggesting that both pgD-1 and pgD-2 contained three N-asparagine-linked oligosaccharides. Second, we characterized the [3H]mannose-labeled tryptic peptides of pgD-1 and pgD-2. We found that both glycoproteins contained three tryptic glycopeptides, termed glycopeptides 1, 2, and 3. Gel filtration studies indicated that the molecular weights of these three peptides were approximately 10,000, 3,900, and 1,800, respectively, for both pgD-1 and pgD-2. Three methods were employed to determine the size of the attached oligosaccharides. First, the [3H]mannose-labeled glycopeptides were treated with Endo H, and the released oligosaccharide was chromatographed on Bio-Gel P6. The size of this molecule was estimated to be approximately 1,200 daltons. Second, Endo H treatment of [35S]methionine-labeled glycopeptide 2 reduced the molecular size of this peptide from approximately 3,900 to approximately 2,400 daltons. Third, glycopeptide 2 isolated from the gD-like molecule formed in the presence of tunicamycin was approximately 2,200 daltons. From these experiments, the size of each N-asparagine-linked oligosaccharide was estimated to be approximately 1,400 to 1,600 daltons. Our experiments indicated that glycopeptides 2 and 3 each contained one N-asparagine-linked oligosaccharide chain. Although glycopeptide 1 was large enough to accommodate more than one oligosaccharide chain, the experiments with Endo H treatment of the glycoprotein indicated that there were only three N-asparagine-linked oligosaccharides present in pgD-1 and pgD-2. Further studies of the tryptic glycopeptides by reverse-phase high-performance liquid chromatography indicated that all of the glycopeptides were hydrophobic in nature. In the case of glycopeptide 2, we observed that when the carbohydrate was not present, the hydrophobicity of the peptide increased. The properties of the tryptic glycopeptides of pgD-1 were compared with the properties predicted from the deduced amino acid sequence of gD-1. The size and amino acid composition compared favorably for glycopeptides 1 and 2. Glycopeptide 3 appeared to be somewhat smaller than would be predicted from the deduced sequence of gD-1. It appears that all three potential glycosylation sites predicted by the amino acid sequence are utilized in gD-1 and that a similar number of glycosylation sites are present in gD-2. 相似文献
18.
19.
Effects of Simultaneous Deletion of pUL11 and Glycoprotein M on Virion Maturation of Herpes Simplex Virus Type 1
下载免费PDF全文

Tobias Leege Walter Fuchs Harald Granzow Martina Kopp Barbara G. Klupp Thomas C. Mettenleiter 《Journal of virology》2009,83(2):896-907
The conserved membrane-associated tegument protein pUL11 and envelope glycoprotein M (gM) are involved in secondary envelopment of herpesvirus nucleocapsids in the cytoplasm. Although deletion of either gene had only moderate effects on replication of the related alphaherpesviruses herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PrV) in cell culture, simultaneous deletion of both genes resulted in a severe impairment in virion morphogenesis of PrV coinciding with the formation of huge inclusions in the cytoplasm containing nucleocapsids embedded in tegument (M. Kopp, H. Granzow, W. Fuchs, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 78:3024-3034, 2004). To test whether a similar phenotype occurs in HSV-1, a gM and pUL11 double deletion mutant was generated based on a newly established bacterial artificial chromosome clone of HSV-1 strain KOS. Since gM-negative HSV-1 has not been thoroughly investigated ultrastructurally and different phenotypes have been ascribed to pUL11-negative HSV-1, single gene deletion mutants were also constructed and analyzed. On monkey kidney (Vero) cells, deletion of either pUL11 or gM resulted in ca.-fivefold-reduced titers and 40- to 50%-reduced plaque diameters compared to those of wild-type HSV-1 KOS, while on rabbit kidney (RK13) cells the defects were more pronounced, resulting in ca.-50-fold titer and 70% plaque size reduction for either mutant. Electron microscopy revealed that in the absence of either pUL11 or gM virion formation in the cytoplasm was inhibited, whereas nuclear stages were not visibly affected, which is in line with the phenotypes of corresponding PrV mutants. Simultaneous deletion of pUL11 and gM led to additive growth defects and, in RK13 cells, to the formation of large intracytoplasmic inclusions of capsids and tegument material, comparable to those in PrV-ΔUL11/gM-infected RK13 cells. The defects of HSV-1ΔUL11 and HSV-1ΔUL11/gM could be partially corrected in trans by pUL11 of PrV. Thus, our data indicate that PrV and HSV-1 pUL11 and gM exhibit similar functions in cytoplasmic steps of virion assembly. 相似文献
20.
Hiroaki Uchida Janet Chan William F. Goins Paola Grandi Izumi Kumagai Justus B. Cohen Joseph C. Glorioso 《Journal of virology》2010,84(23):12200-12209
Herpes simplex virus (HSV) entry into cells is triggered by the binding of envelope glycoprotein D (gD) to a specific receptor, such as nectin-1 or herpesvirus entry mediator (HVEM), resulting in activation of the fusion effectors gB and gH and virus penetration. Here we report the identification of a hyperactive gB allele, D285N/A549T, selected by repeat passage of a gD mutant virus defective for nectin-1 binding through cells that express a gD-binding-impaired mutant nectin-1. The gB allele in a wild-type virus background enabled the use of other nectins as virus entry receptors. In addition, combination of the mutant allele with an epidermal growth factor receptor (EGFR)-retargeted gD gene yielded dramatically increased EGFR-specific virus entry compared to retargeted virus carrying wild-type gB. Entry of the gB mutant virus into nectin-1-bearing cells was markedly accelerated compared to that of wild-type virus, suggesting that the gB mutations affect a rate-limiting step in entry. Our observations indicate that ineffective gD activation can be complemented by hypersensitization of a downstream component of the entry cascade to gD signaling.Entry of herpes simplex virus type 1 (HSV-1) into susceptible cells involves the coordinated activities of at least five viral envelope glycoproteins (9, 18, 33, 40). Virions initially bind to glycosaminoglycan (GAG) moieties of cell surface proteoglycans through glycoproteins B and C (gB and gC, respectively) (32, 51), facilitating the interaction of gD with one of its specific receptors, herpesvirus entry mediator (HVEM, or HveA), nectin-1 (HveC), or 3-O-sulfated heparan sulfate (24, 45, 50). Receptor binding is believed to result in a conformational change in gD, which in turn activates the fusion mechanism mediated by gB and the gH/gL heterodimer; fusion merges the virus envelope with the cell surface or endosomal membrane, resulting in capsid release into the cytoplasm (11, 23, 30, 37, 44, 47, 48). Prior to receptor binding, the N-terminal region of the gD ectodomain is folded back over the immunoglobulin (Ig)-like core domain in a position to engage the C-terminal effector region (pro-fusion domain), thereby keeping the effector domain in an inactive state (23, 37). Receptor binding disrupts this engagement and liberates the effector domain to activate gB and/or gH/gL. The crystal structure of the gB ectodomain shows unexpected homology to the postfusion form of glycoprotein G from vesicular stomatitis virus (VSV G), a well-characterized fusion protein (30), providing strong evidence that gB plays a major role in membrane fusion. In addition, gH displays structural hallmarks of fusion proteins (26, 27), and gB and gH each have fusogenic activity, as indicated by the finding that either alone is sufficient for membrane fusion during nuclear egress (20). However, gB and gH/gL are both required for complete fusion during virus entry, although gB is dispensable for hemifusion, an intermediate state (53).Results from biochemical and bimolecular-complementation assays have shown that gD binds individually to both gB and gH/gL, regardless of the presence of gD receptors (4, 5, 25), while complexes of gB and gH/gL assemble only in the presence of receptor-bound gD (4, 5). These observations suggested that receptor-dependent gD activation brings gB and gH/gL together for execution of the fusion event. However, based on new evidence that gB and gH/gL can also interact in the absence of gD, an alternative model has been proposed in which activated gD signals to preformed gB-gH/gL complexes (6). While these models are not mutually exclusive, the functional significance of the detected complexes remains to be firmly established (15). However, there is broad consensus that the gD-receptor interaction triggers the initiation of fusion by direct interaction with either or both gB and gH/gL, indicating that the quality of the gD-receptor interaction is key to the efficiency of HSV infection.Viruses have an intrinsic ability to evolve and adapt to changes in the environment, including the acquisition of an extended host range which can lead to epidemic infections (56). We previously described gain-of-function derivatives of a gD mutant virus, K26-gD:R222N/F223I, that was impaired in its ability to use nectin-1 as an entry receptor (54). Repeated passage of this virus through cells that express nectin-1 as the sole gD receptor yielded phenotypic revertants that had regained the ability to use nectin-1 for infection. This phenotype resulted from reversion or forward mutations at the parental mutant positions or from substitutions elsewhere in gD that likely affect the integrity of the discontinuous interface with nectin-1. Since these types of experiments can reveal novel factors or interactions that are important for virus entry, we performed a similar study at higher stringency in an attempt to avoid simple reversion mutations. The strategy was to use our previous gD:R222N/F223I mutant virus that is defective for entry via nectin-1 and ask if this virus could adapt to host cells expressing a mutant form of nectin-1 whose binding to wild-type gD is severely impaired. A specific goal of this effort was to find mutations in gD or other envelope glycoproteins that could enhance infection through atypical receptors, including cell-type-specific receptors that can be engaged by retargeted HSV vectors.Here we report the identification of a hyperactive gB double mutation, gB:D285N/A549T, referred to herein as gB:N/T, that allows virus entry in the absence of authentic gD receptors, enhances virus entry through unconventional receptors, including a targeted receptor, and appears to act by sensitizing gB to activation by gD, directly or indirectly via gH/gL, and increasing the rate of virus entry into different host cells. Our observations demonstrate that hyperactive gB can compensate for ineffective gD-receptor interactions in the process of HSV entry into cells. 相似文献