首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unique mitochondrial DNA of trypanosomes is a catenated network of minicircles and maxicircles called kinetoplast DNA (kDNA). The network is essential for survival, and requires an elaborate topoisomerase‐mediated release and reattachment mechanism for minicircle theta structure replication. At least seven DNA polymerases (pols) are involved in kDNA transactions, including three essential proteins related to bacterial DNA pol I (POLIB, POLIC and POLID). How Trypanosoma brucei utilizes multiple DNA pols to complete the topologically complex task of kDNA replication is unknown. To fill this gap in knowledge we investigated the cellular role of POLIB using RNA interference (RNAi). POLIB silencing resulted in growth inhibition and progressive loss of kDNA networks. Additionally, unreplicated covalently closed precursors become the most abundant minicircle replication intermediate as minicircle copy number declines. Leading and lagging strand minicircle progeny similarly declined during POLIB silencing, indicating POLIB had no apparent strand preference. Interestingly, POLIB RNAi led to the accumulation of a novel population of free minicircles that is composed mainly of covalently closed minicircle dimers. Based on these data, we propose that POLIB performs an essential role at the core of the minicircle replication machinery.  相似文献   

2.
Kinetoplast DNA, the trypanosome mitochondrial genome, is a network of interlocked DNA rings including several thousand minicircles and a few dozen maxicircles. Minicircles replicate after release from the network, and their progeny reattach. Remarkably, trypanosomes have six mitochondrial DNA helicases related to yeast PIF1 helicase. Here we report that one of the six, TbPIF1, functions in minicircle replication. RNA interference (RNAi) of TbPIF1 causes a growth defect and kinetoplast DNA loss. Minicircle replication intermediates decrease during RNAi, and there is an accumulation of multiply interlocked, covalently closed minicircle dimers (fraction U). In studying the significance of fraction U, we found that this species also accumulates during RNAi of mitochondrial topoisomerase II. These data indicate that one function of TbPIF1 is an involvement, together with topoisomerase II, in the segregation of minicircle progeny.  相似文献   

3.
Kinetoplast DNA (kDNA) is a novel form of mitochondrial DNA consisting of thousands of interlocked minicircles and 20–30 maxicircles. The minicircles replicate free of the kDNA network but nicks and gaps in the newly synthesized strands remain at the time of reattachment to the kDNA network. We show here that the steady-state population of replicated, network-associated minicircles only becomes repaired to the point of having nicks with a 3′OH and 5′deoxyribonucleoside monophosphate during S phase. These nicks represent the origin/terminus of the strand and occur within the replication origins (oriA and oriB) located 180° apart on the minicircle. Minicircles containing a new L strand have a single nick within either oriA or oriB but not in both origins in the same molecule. The discontinuously synthesized H strand contains single nicks within both oriA and oriB in the same molecule implying that discontinuities between the H-strand Okazaki fragments become repaired except for the fragments initiated within the two origins. Nicks in L and H strands at the origins persist throughout S phase and only become ligated as a prelude to network division. The failure to ligate these nicks until just prior to network division is not due to inappropriate termini for ligation.  相似文献   

4.
The trypanosome mitochondrial genome, kinetoplast DNA (kDNA), is a massive network of interlocked DNA rings, including several thousand minicircles and dozens of maxicircles. The unusual complexity of kDNA would indicate that numerous proteins must be involved in its condensation, replication, segregation and gene expression. During our investigation of trypanosome mitochondrial PIF1-like helicases, we found that TbPIF8 is the smallest and most divergent. It lacks some conserved helicase domains, thus implying that unlike other mitochondrial PIF1-like helicases, this protein may have no enzymatic activity. TbPIF8 is positioned on the distal face of kDNA disk and its localization patterns vary with different kDNA replication stages. Stem-loop RNAi of TbPIF8 arrests cell growth and causes defects in kDNA segregation. RNAi of TbPIF8 causes only limited kDNA shrinkage but the networks become disorganized. Electron microcopy of thin sections of TbPIF8-depleted cells shows heterogeneous electron densities in the kinetoplast disk. Although we do not yet know its exact function, we conclude that TbPIF8 is essential for cell viability and is important for maintenance of kDNA.  相似文献   

5.
The mitochondrial DNA of trypanosomes, kinetoplast DNA, is a network containing thousands of topologically interlocked minicircles. Minicircles are replicated as free molecules after being detached from the network. The minicircle L strand appears to be synthesized continuously and the H strand discontinuously. This paper describes properties of Trypanosoma equiperdum minicircle H strand fragments which could be Okazaki fragments. These fragments constitute a family of molecules of discrete sizes (ranging from about 70 to 1000 nucleotides) which map to specific locations. Three of the most prominent fragments, a 73-mer, 83-mer, and 138-mer, map at contiguous or overlapping sites. Based on their position relative to the initiation site for L strand synthesis, the 73-mer may be the first Okazaki fragment to be synthesized and either the 83-mer or the 138-mer may be the second. The 5' end of the 73-mer lies within a sequence, GGGCGT, found at a similar location in minicircles of all trypanosomatid species. During the maturation of free minicircles and after their reattachment to the networks there appears to be continued extension and ligation of the H strand fragments. However, the ligation of the 73-mer, 83-mer, and 138-mer to the rest of the H strand is delayed; their eventual ligation results in covalent closure of the minicircles.  相似文献   

6.
The mitochondrial genome of Trypanosoma brucei, called kinetoplast DNA, is a network of topologically interlocked DNA rings including several thousand minicircles and a few dozen maxicircles. Kinetoplast DNA synthesis involves release of minicircles from the network, replication of the free minicircles and reattachment of the progeny. Here we report a new function of the mitochondrial topoisomerase II (TbTOP2mt). Although traditionally thought to reattach minicircle progeny to the network, here we show that it also mends holes in the network created by minicircle release. Network holes are not observed in wild‐type cells, implying that this mending reaction is normally efficient. However, RNAi of TbTOP2mt causes holes to persist and enlarge, leading to network fragmentation. Remarkably, these network fragments remain associated within the mitochondrion, and many appear to be appropriately packed at the local level, even as the overall kinetoplast organization is dramatically altered. The deficiency in mending holes is temporally the earliest observable defect in the complex TbTOP2mt RNAi phenotype.  相似文献   

7.
Kinetoplast DNA, the mitochondrial DNA of trypanosomatid protozoa, is a network containing several thousand topologically interlocked DNA minicircles. Kinetoplast DNA synthesis involves release of minicircles from the network, replication of the free minicircles, and reattachment of the progeny back onto the network. One enzyme involved in this process is structure-specific endonuclease-I. This enzyme, originally purified from Crithidia fasciculata, has been proposed to remove minicircle replication primers (Engel, M. L., and Ray, D. S. (1998) Nucleic Acids Res. 26, 4773-4778). We have studied the structure-specific endonuclease-I homolog from Trypanosoma brucei, showing it to be localized in the antipodal sites flanking the kinetoplast DNA disk, as previously shown in C. fasciculata. RNA interference of structure-specific endonuclease-I caused persistence of a single ribonucleotide at the 5' end of both the leading strand and at least the first Okazaki fragment in network minicircles, demonstrating that this enzyme in fact functions in primer removal. Probably because of the persistence of primers, RNA interference also impeded the reattachment of newly replicated free minicircles to the network and caused a delay in kinetoplast DNA segregation. These effects ultimately led to shrinkage and loss of the kinetoplast DNA network and cessation of growth of the cell.  相似文献   

8.
Melting and reannealing of purified kinetoplast DNA (kDNA) from Crithidia fasciculata, Trypanosoma mega, and T. brucei have been studied with an automated optical system. The slow reassociation rate of trypanosome kDNA is due neither to the formation of hyperpolymers nor to mispairing of bases and certainly reflects extensive sequence heterogeneity. Simulation of the reassociation kinetics indicates that the kDNA comprises essentially two kinetic components: a fast renaturing component which might be a common sequence present in all the minicircles and a slow renaturing component which is responsible for minicircle heterogeneity. The rapidly renaturing component is more abundant in Crithidia than in trypanosomes.  相似文献   

9.
Trypanosomes have an unusual mitochondrial genome, called kinetoplast DNA, that is a giant network containing thousands of interlocked minicircles. During kinetoplast DNA synthesis, minicircles are released from the network for replication as theta-structures, and then the free minicircle progeny reattach to the network. We report that a mitochondrial protein, which we term p38, functions in kinetoplast DNA replication. RNA interference (RNAi) of p38 resulted in loss of kinetoplast DNA and accumulation of a novel free minicircle species named fraction S. Fraction S minicircles are so underwound that on isolation they become highly negatively supertwisted and develop a region of Z-DNA. p38 binds to minicircle sequences within the replication origin. We conclude that cells with RNAi-induced loss of p38 cannot initiate minicircle replication, although they can extensively unwind free minicircles.  相似文献   

10.
11.
Genetic exchange among disease-causing micro-organisms can generate progeny that combine different pathogenic traits. Though sexual reproduction has been described in trypanosomes, its impact on the epidemiology of Human African Trypanosomiasis (HAT) remains controversial. However, human infective and non-human infective strains of Trypanosoma brucei circulate in the same transmission cycles in HAT endemic areas in subsaharan Africa, providing the opportunity for mating during the developmental cycle in the tsetse fly vector. Here we investigated inheritance among progeny from a laboratory cross of T. brucei and then applied these insights to genomic analysis of field-collected isolates to identify signatures of past genetic exchange. Genomes of two parental and four hybrid progeny clones with a range of DNA contents were assembled and analysed by k-mer and single nucleotide polymorphism (SNP) frequencies to determine heterozygosity and chromosomal inheritance. Variant surface glycoprotein (VSG) genes and kinetoplast (mitochondrial) DNA maxi- and minicircles were extracted from each genome to examine how each of these components was inherited in the hybrid progeny. The same bioinformatic approaches were applied to an additional 37 genomes representing the diversity of T. brucei in subsaharan Africa and T. evansi. SNP analysis provided evidence of crossover events affecting all 11 pairs of megabase chromosomes and demonstrated that polyploid hybrids were formed post-meiotically and not by fusion of the parental diploid cells. VSGs and kinetoplast DNA minicircles were inherited biparentally, with approximately equal numbers from each parent, whereas maxicircles were inherited uniparentally. Extrapolation of these findings to field isolates allowed us to distinguish clonal descent from hybridization by comparing maxicircle genotype to VSG and minicircle repertoires. Discordance between maxicircle genotype and VSG and minicircle repertoires indicated inter-lineage hybridization. Significantly, some of the hybridization events we identified involved human infective and non-human infective trypanosomes circulating in the same geographic areas.  相似文献   

12.
The kinetoplast DNA (kDNA) of trypanosomes is comprised of thousands of DNA minicircles and 20-50 maxicircles catenated into a single network. We show that kinetoplasts isolated from the trypanosomatid species Crithidia fasciculata incorporate labeled nucleotides and support minicircle DNA replication in a manner which mimics two characteristics of minicircle replication in vivo: 1) the minicircles are replicated as free molecules and subsequently reattached to the kDNA network, and 2) a replication intermediate having a structure consistent with a highly gapped minicircle species is generated. In addition, a class of minicircle DNA replication intermediates is observed containing discontinuities at specific sites within each of the newly synthesized DNA strands. By using a strain of C. fasciculata possessing nearly homogenous minicircles, we were able to map the discontinuities to two small regions situated 180 degrees apart on the minicircle. Each region has two sites at which a discontinuity can occur, one on each strand and separated by approximately 100 base pairs. These sites may represent origins of minicircle DNA replication.  相似文献   

13.
A 1.3 kb cDNA (cDNA52) was derived from Trypanosoma cruzi trypomastigote mRNA. Using single stranded probes in Northern blots, we identified the putative coding strand of cDNA52. In addition, a minor band was detected in RNA from epimastigotes that was absent in RNA from trypomastigotes. Nucleotide sequence analysis revealed that cDNA52 was highly homologous to T. cruzi kinetoplast DNA minicircle sequences. All four conserved regions of T. cruzi minicircles were identified in cDNA52. Using several criteria, we demonstrated that the hybridization signals were not caused by contaminating minicircle DNA in the RNA preparations. The data provide direct evidence for the unprecedented finding that the entire length of a kDNA minicircle is transcribed in T. cruzi.  相似文献   

14.
Transcription of kinetoplast DNA minicircles   总被引:11,自引:0,他引:11  
  相似文献   

15.
Two models have been proposed for triggering release of the lagging strand polymerase at the replication fork, enabling cycling to the primer for the next Okazaki fragment—either collision with the 5′-end of the preceding fragment (collision model) or synthesis of a new primer by primase (signaling model). Specific perturbation of lagging strand elongation on minicircles with a highly asymmetric G:C distribution with ddGTP or dGDPNP yielded results that confirmed the signaling model and ruled out the collision model. We demonstrated that the presence of a primer, not primase per se, provides the signal that triggers cycling. Lagging strand synthesis proceeds much faster than leading strand synthesis, explaining why gaps between Okazaki fragments are not found under physiological conditions.  相似文献   

16.
A reconstituted in vitro bacteriophage T4 DNA replication system was studied on a synthetic 70-mer minicircle substrate. This substrate was designed so that dGMP and dCMP were exclusively incorporated into the leading and the lagging strand, respectively. This design allows the simultaneous and independent measurement of the leading and lagging strand synthesis. In this paper, we report our results on the characterization of the 70-mer minicircle substrate. We show here that the minicircle substrate supports coordinated leading and lagging strand synthesis under the experimental conditions employed. The rate of the leading strand fork movement was at an average of approximately 150 nucleotides/s. This rate decreased to less than 30 nucleotides/s when the helicase was omitted from the reaction. These results suggest that both the holoenzyme and the primosome can be simultaneously assembled onto the minicircle substrate. The lagging strand synthesized on this substrate is of an average of 1.5 kb, and the length of the Okazaki fragments increased with decreasing [rNTPs]. The proper response of the Okazaki fragment size toward the change of the priming signal further indicates a functional replisome assembled on the minicircle template. The effects of various protein components on the leading and lagging strand synthesis were also studied. The collective results indicate that coordinated strand synthesis only takes place within certain protein concentration ranges. The optimal protein levels of the proteins that constitute the T4 replisome generally bracket the concentrations of the same proteins in vivo. Omission of the primase has little effect on the rate of dNMP incorporation or the rate of the fork movement on the leading strand within the first 30 s of the reaction. This inhibition only becomes significant at later times of the reaction and may be associated with the accumulation of single-stranded DNA leading to the collapse of active replisomes.  相似文献   

17.
The mitochondrial genome of trypanosomes, termed kinetoplast DNA (kDNA), contains thousands of minicircles and dozens of maxicircles topologically interlocked in a network. To identify proteins involved in network replication, we screened an inducible RNA interference-based genomic library for cells that lose kinetoplast DNA. In one cloned cell line with inducible kinetoplast DNA loss, we found that the RNA interference vector had aberrantly integrated into the genome resulting in overexpression of genes down-stream of the integration site (Motyka, S. A., Zhao, Z., Gull, K., and Englund, P. T. (2004) Mol. Biochem. Parasitol. 134, 163-167). We now report that the relevant overexpressed gene encodes a mitochondrial cytochrome b(5) reductase-like protein. This overexpression caused kDNA loss by oxidation/inactivation of the universal minicircle sequence-binding protein, which normally binds the minicircle replication origin and triggers replication. The rapid loss of maxicircles suggests that the universal minicircle sequence-binding protein might also control maxicircle replication. Several lines of evidence indicate that the cytochrome b(5) reductase-like protein controls the oxidization status of the universal minicircle sequence-binding protein via tryparedoxin, a mitochondrial redox protein. For example, overexpression of mitochondrial tryparedoxin peroxidase, which utilizes tryparedoxin, also caused oxidation of the universal minicircle sequence-binding protein and kDNA loss. Furthermore, the growth defect caused by overexpression of cytochrome b(5) reductase-like protein could be partially rescued by simultaneously overexpressing tryparedoxin.  相似文献   

18.
Hines JC  Ray DS 《Eukaryotic cell》2011,10(3):445-454
The mitochondrial DNA of trypanosomes contains two types of circular DNAs, minicircles and maxicircles. Both minicircles and maxicircles replicate from specific replication origins by unidirectional theta-type intermediates. Initiation of the minicircle leading strand and also that of at least the first Okazaki fragment involve RNA priming. The Trypanosoma brucei genome encodes two mitochondrial DNA primases, PRI1 and PRI2, related to the primases of eukaryotic nucleocytoplasmic large DNA viruses. These primases are members of the archeoeukaryotic primase superfamily, and each of them contain an RNA recognition motif and a PriCT-2 motif. In Leishmania species, PRI2 proteins are approximately 61 to 66 kDa in size, whereas in Trypanosoma species, PRI2 proteins have additional long amino-terminal extensions. RNA interference (RNAi) of T. brucei PRI2 resulted in the loss of kinetoplast DNA and accumulation of covalently closed free minicircles. Recombinant PRI2 lacking this extension (PRI2ΔNT) primes poly(dA) synthesis on a poly(dT) template in an ATP-dependent manner. Mutation of two conserved aspartate residues (PRI2ΔNTCS) resulted in loss of enzymatic activity but not loss of DNA binding. We propose that PRI2 is directly involved in initiating kinetoplast minicircle replication.  相似文献   

19.
20.
The proteins of bacteriophage T7 DNA replication mediate coordinated leading and lagging strand synthesis on a minicircle template. A distinguishing feature of the coordinated synthesis is the presence of a replication loop containing double and single-stranded DNA with a combined average length of 2600 nucleotides. Lagging strands consist of multiple Okazaki fragments, with an average length of 3000 nucleotides, suggesting that the replication loop dictates the frequency of initiation of Okazaki fragments. The size of Okazaki fragments is not affected by varying the components (T7 DNA polymerase, gene 4 helicase-primase, gene 2.5 single-stranded DNA binding protein, and rNTPs) of the reaction over a relatively wide range. Changes in the size of Okazaki fragments occurs only when leading and lagging strand synthesis is no longer coordinated. The synthesis of each Okazaki fragment is initiated by the synthesis of an RNA primer by the gene 4 primase at specific recognition sites. In the absence of a primase recognition site on the minicircle template no lagging strand synthesis occurs. The size of the Okazaki fragments is not affected by the number of recognition sites on the template.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号