首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Human immunodeficiency virus (HIV-1) entry into cells is mediated by a trimeric complex consisting of noncovalently associated gp120 (exterior) and gp41 (transmembrane) envelope glycoproteins. The binding of gp120 to receptors on the target cell alters the gp120-gp41 relationship and activates the membrane-fusing capacity of gp41. Interaction of gp120 with the primary receptor, CD4, results in the exposure of the gp120 third variable (V3) loop, which contributes to binding the CCR5 or CXCR4 chemokine receptors. We show here that insertions in the V3 stem or polar substitutions in a conserved hydrophobic patch near the V3 tip result in decreased gp120-gp41 association (in the unliganded state) and decreased chemokine receptor binding (in the CD4-bound state). Subunit association and syncytium-forming ability of the envelope glycoproteins from primary HIV-1 isolates were disrupted more by V3 changes than those of laboratory-adapted HIV-1 envelope glycoproteins. Changes in the gp120 β2, β19, β20, and β21 strands, which evidence suggests are proximal to the V3 loop in unliganded gp120, also resulted in decreased gp120-gp41 association. Thus, a gp120 element composed of the V3 loop and adjacent beta strands contributes to quaternary interactions that stabilize the unliganded trimer. CD4 binding dismantles this element, altering the gp120-gp41 relationship and rendering the hydrophobic patch in the V3 tip available for chemokine receptor binding.The entry of human immunodeficiency virus type 1 (HIV-1) is mediated by the viral envelope glycoproteins (9, 79). The HIV-1 envelope glycoproteins are synthesized as an ∼850-amino acid precursor, which trimerizes and is posttranslationally modified by carbohydrates to create a 160-kDa glycoprotein (gp160). The gp160 envelope glycoprotein precursor is proteolytically processed in the Golgi apparatus, resulting in a gp120 exterior envelope glycoprotein and a gp41 transmembrane envelope glycoprotein (16, 17, 66, 76). In the mature HIV-1 envelope glycoprotein trimer, the three gp120 subunits are noncovalently bound to three membrane-anchored gp41 subunits (32).HIV-1 entry involves the binding of gp120 in a sequential fashion to CD4 and one of the chemokine receptors, CCR5 or CXCR4 (1, 8, 15, 18, 25, 36). CD4 binding triggers the formation of an activated intermediate that is competent for binding to CCR5 or CXCR4 (29, 69, 73, 78). These chemokine receptors are G protein-coupled, 7-transmembrane segment receptors with relatively short N termini. The choice of chemokine receptors is dictated primarily by the sequence of a gp120 region, the third variable (V3) loop, that exhibits variability among HIV-1 strains and becomes exposed upon CD4 binding (4, 8, 10, 33, 37, 38, 49, 59, 75). X-ray crystal structures of CD4-bound HIV-1 gp120 have revealed that the gp120 “core” consists of a gp41-interactive inner domain, a surface-exposed and heavily glycosylated outer domain, and a conformationally flexible bridging sheet (38, 43, 79). In the CD4-bound state, the V3 loop projects 30 Å from the gp120 core, toward the chemokine receptor (38). The V3 loop in these structures consists of three elements: (i) conserved antiparallel β strands that contain a disulfide bond at the base of the loop; (ii) a conformationally flexible stem; and (iii) a conserved tip (37, 38). During the virus entry process, the base of the gp120 V3 loop and elements of the bridging sheet interact with the CCR5 N terminus, which is acidic and contains sulfotyrosine residues (12-14, 23, 24). Sulfotyrosine 14 of CCR5 is thought to insert into a highly conserved pocket near the V3 base, driving further conformational rearrangements that result in the rigidification of the V3 stem (37). The conserved β-turn at the tip of the V3 loop, along with some residues in the V3 stem, is believed to bind the “body” of CCR5, i.e., the extracellular loops and membrane-spanning helices. CCR5 binding is thought to induce further conformational changes in the HIV-1 envelope glycoproteins, leading to the fusion of the viral and target cell membranes by the gp41 transmembrane envelope glycoproteins.CCR5 binding involves two points of contact with the gp120 V3 loop: (i) the CCR5 N terminus with the V3 base and (ii) the CCR5 body with the V3 tip and distal stem (12-14, 23, 24, 37, 38). The intervening V3 stem can tolerate greater conformational and sequence variation, features that might decrease HIV-1 susceptibility to host antibodies (30). Despite amino acid variation, the length of the V3 loop is well conserved among naturally occurring group M (major group) HIV-1 strains (30, 42). This conserved length may be important for aligning the two CCR5-binding elements of the V3 loop. In addition to allowing optimal CCR5 binding, the conserved V3 length and orientation may be important for CCR5 binding to exert effects on the conformation of the HIV-1 envelope glycoproteins. We examine here the consequences of introducing extra amino acid residues into the V3 stem. The residues were introduced either into both strands of the V3 loop, attempting to preserve the symmetry of the structure, or into one of the strands, thereby kinking the loop. The effects of these changes on assembly, stability, receptor binding, and the membrane-fusing capacity of the HIV-1 envelope glycoproteins were assessed. In addition to effects on chemokine receptor binding, unexpected disruption of gp120-gp41 association was observed. Further investigation revealed a conserved patch in the tip of the V3 loop that is important for the association of gp120 with the trimeric envelope glycoprotein complex, as well as for chemokine receptor binding. Apparently, the V3 loop and adjacent gp120 structures contribute to the stability of the trimer in the unliganded HIV-1 envelope glycoproteins. These structures are known to undergo rearrangement upon CD4 binding, suggesting their involvement in receptor-induced changes in the virus entry process.  相似文献   

2.
Human immunodeficiency virus type 2 (HIV-2) infection affects about 1 to 2 million individuals, the majority living in West Africa, Europe, and India. As for HIV-1, new strategies for the prevention of HIV-2 infection are needed. Our aim was to produce new vaccine immunogens that elicit the production of broadly reactive HIV-2 neutralizing antibodies (NAbs). Native and truncated envelope proteins from the reference HIV-2ALI isolate were expressed in vaccinia virus or in bacteria. This source isolate was used due to its unique phenotype combining CD4 independence and CCR5 usage. NAbs were not elicited in BALB/c mice by single immunization with a truncated and fully glycosylated envelope gp125 (gp125t) or a recombinant polypeptide comprising the C2, V3, and C3 envelope regions (rpC2-C3). A strong and broad NAb response was, however, elicited in mice primed with gp125t expressed in vaccinia virus and boosted with rpC2-C3. Serum from these animals potently neutralized (median 50% neutralizing titer, 3,200) six of six highly divergent primary HIV-2 isolates. Coreceptor usage and the V3 sequence of NAb-sensitive isolates were similar to that of the vaccinating immunogen (HIV-2ALI). In contrast, NAbs were not reactive on three X4 isolates that displayed major changes in V3 loop sequence and structure. Collectively, our findings demonstrate that broadly reactive HIV-2 NAbs can be elicited by using a vaccinia virus vector-prime/rpC2-C3-boost immunization strategy and suggest a potential relationship between escape to neutralization and cell tropism.Human immunodeficiency virus type 2 (HIV-2) infection affects 1 to 2 million individuals, most of whom live in India, West Africa, and Europe (17). HIV-2 has diversified into eight genetic groups named A to H, of which group A is by far the most prevalent worldwide. Nucleotide sequences of Env can differ up to 21% within a particular group and by over 35% between groups.The mortality rate in HIV-2-infected patients is at least twice that of uninfected individuals (26). Nonetheless, the majority of HIV-2-infected individuals survive as elite controllers (17). In the absence of antiretroviral therapy, the numbers of infected cells (39) and viral loads (36) are much lower among HIV-2-infected individuals than among those who are HIV-1 infected. This may be related to a more effective immune response produced against HIV-2. In fact, most HIV-2-infected individuals have proliferative T-cell responses and strong cytotoxic responses to Env and Gag proteins (17, 31). Moreover, autologous and heterologous neutralizing antibodies (NAbs) are raised in most HIV-2-infected individuals (8, 32, 48, 52), and the virus seems unable to escape from these antibodies (52). As for HIV-1, the antibody specificities that mediate HIV-2 neutralization and control are still elusive. The V3 region in the envelope gp125 has been identified as a neutralizing target by some but not by all investigators (3, 6, 7, 11, 40, 47, 54). Other weakly neutralizing epitopes were identified in the V1, V2, V4, and C5 regions in gp125 and in the COOH-terminal region of the gp41 ectodomain (6, 7, 41). A better understanding of the neutralizing determinants in the HIV-2 Env will provide crucial information regarding the most relevant targets for vaccine design.The development of immunogens that elicit the production of broadly reactive NAbs is considered the number one priority for the HIV-1 vaccine field (4, 42). Most current HIV-1 vaccine candidates intended to elicit such broadly reactive NAbs are based on purified envelope constructs that mimic the structure of the most conserved neutralizing epitopes in the native trimeric Env complex and/or on the expression of wild-type or modified envelope glycoproteins by different types of expression vectors (4, 5, 29, 49, 58). With respect to HIV-2, purified gp125 glycoprotein or synthetic peptides representing selected V3 regions from HIV-2 strain SBL6669 induced autologous and heterologous NAbs in mice or guinea pigs (6, 7, 22). However, immunization of cynomolgus monkeys with a subunit vaccine consisting of gp130 (HIV-2BEN) micelles offered little protection against autologous or heterologous challenge (34). Immunization of rhesus (19, 44, 45) and cynomolgus (1) monkeys with canarypox or attenuated vaccinia virus expressing several HIV-2 SBL6669 proteins, including the envelope glycoproteins, in combination with booster immunizations with gp160, gp125, or V3 synthetic peptides, elicited a weak neutralizing response and partial protection against autologous HIV-2 challenge. Likewise, vaccination of rhesus monkeys with immunogens derived from the historic HIV-2ROD strain failed to generate neutralizing antibodies and to protect against heterologous challenge (55). Finally, baboons inoculated with a DNA vaccine expressing the tat, nef, gag, and env genes of the HIV-2UC2 group B isolate were partially protected against autologous challenge without the production of neutralizing antibodies (33). These studies illustrate the urgent need for new vaccine immunogens and/or vaccination strategies that elicit the production of broadly reactive NAbs against HIV-2. The present study was designed to investigate in the mouse model the immunogenicity and neutralizing response elicited by novel recombinant envelope proteins derived from the reference primary HIV-2ALI isolate, when administered alone or in different prime-boost combinations.  相似文献   

3.
HIV-1 R5 envelopes vary considerably in their capacities to exploit low CD4 levels on macrophages for infection and in their sensitivities to the CD4 binding site (CD4bs) monoclonal antibody (MAb) b12 and the glycan-specific MAb 2G12. Here, we show that nonglycan determinants flanking the CD4 binding loop, which affect exposure of the CD4bs, also modulate 2G12 neutralization. Our data indicate that such residues act via a mechanism that involves shifts in the orientation of proximal glycans, thus modulating the sensitivity of 2G12 neutralization and affecting the overall presentation and structure of the glycan shield.The trimeric envelope (Env) spikes on HIV-1 virions are comprised of gp120 and gp41 heterodimers. gp120 is coated extensively with glycans (9, 11, 15) that are believed to protect the envelope from neutralizing antibodies. The extents and locations of glycosylation are variable and evolving (15). Thus, while some glycans are conserved, others appear or disappear in a host over the course of infection. Such changes may result in exposure or protection of functional envelope sites and can result from selection by different environmental pressures in vivo, including neutralizing antibodies.We previously reported that HIV-1 R5 envelopes varied considerably in tropism and neutralization sensitivity (3, 4, 12-14). We showed that highly macrophage-tropic R5 envelopes were more frequently detected in brain than in semen, blood, and lymph node (LN) samples (12, 14). The capacity of R5 envelopes to infect macrophages correlated with their ability to exploit low levels of cell surface CD4 for infection (12, 14). Determinants within and proximal to the CD4 binding site (CD4bs) were shown to modulate macrophage infectivity (3, 4, 5, 12, 13) and presumably acted by altering the avidity of the trimer for cell surface CD4. These determinants include residues proximal to the CD4 binding loop, which is likely the first part of the CD4bs contacted by CD4 (1). We also observed that macrophage-tropic R5 envelopes were frequently more resistant to the glycan-specific monoclonal antibody (MAb) 2G12 than were non-macrophage-tropic R5 Envs (13).Here, we investigated the envelope determinants of 2G12 sensitivity by using two HIV-1 envelopes that we used previously to map macrophage tropism determinants (4), B33 from brain and LN40 from lymph node tissue of an AIDS patient with neurological complications. While B33 imparts high levels of macrophage infectivity and is resistant to 2G12, LN40 Env confers very inefficient macrophage infection and is 2G12 sensitive (12-14).  相似文献   

4.
The evolution of envelope mutations by replicating primate immunodeficiency viruses allows these viruses to escape from the immune pressure mediated by neutralizing antibodies. Vaccine-induced anti-envelope antibody responses may accelerate and/or alter the specificity of the antibodies, thus shaping the evolution of envelope mutations in the replicating virus. To explore this possibility, we studied the neutralizing antibody response and the envelope sequences in rhesus monkeys vaccinated with either gag-pol-nef immunogens or gag-pol-nef immunogens in combination with env and then infected with simian immunodeficiency virus (SIV). Using a pseudovirion neutralization assay, we demonstrate that envelope vaccination primed for an accelerated neutralizing antibody response following virus challenge. To monitor viral envelope evolution in these two cohorts of monkeys, full-length envelopes from plasma virus isolated at weeks 37 and 62 postchallenge were sequenced by single genome amplification to identify sites of envelope mutations. We show that env vaccination was associated with a change in the pattern of envelope mutations. Prevalent mutations in sequences from gag-pol-nef vaccinees included deletions in both variable regions 1 and 4 (V1 and V4), whereas deletions in the env vaccinees occurred only in V1. These data show that env vaccination altered the focus of the antibody-mediated selection pressure on the evolution of envelope following SIV challenge.Immune containment of human immunodeficiency virus (HIV-1) is complicated by the continuous genetic evolution of the virus. The evolution of the HIV-1 envelope is shaped, in part, by selective pressure of neutralizing antibodies (6, 12, 27, 34-36, 40). Changes in envelope sequence and glycosylation patterns following infection can allow the virus to escape neutralization. If the rate and extent of envelope sequence evolution following infection can be decreased, immune containment of HIV-1 may be improved.One possible strategy for modifying envelope evolution is vaccination prior to infection. A vaccine-elicited memory immune response could focus and potentiate the humoral immune response that develops following infection. The possible consequence of vaccination has not been assessed, however, because of the limited number of human volunteers who have received highly immunogenic envelope immunogens and subsequently became infected with HIV-1.Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides a powerful model to study the effect of vaccination on envelope evolution. Like HIV-1, SIV employs both the CD4 molecule and the chemokine receptor CCR5 to enter a target cell and cause an AIDS-like disease in macaques (16, 22). Both SIV and HIV-1 envelopes are heavily glycosylated, with approximately 50% of their mass derived from carbohydrates (14, 21). SIV and HIV-1 envelopes share approximately 40% amino acid homology (10, 11) and have overlapping variable and constant regions, although the variable region 3 (V3) of HIV-1 envelope does not align with the homologous region of SIV envelope (7). Following SIV infection in rhesus monkeys, SIV envelope evolves most rapidly in variable regions 1 and 4 (V1 and V4, respectively), leading to nucleotide additions, deletions, and/or mutations that can potentially translate to changes in glycosylation (7, 9, 13, 15, 19, 29, 30).Studies done to characterize SIV neutralization suggest that it occurs through mechanisms similar to those seen in HIV-1 neutralization. Amino acid mutations in the envelope of both viruses contribute to the evasion of antibody binding directly by changing recognition sequences and/or envelope conformation. In addition, the glycosylation of envelope serves as a further obstacle to antibody recognition (20, 33, 40). Considerable effort has been devoted to defining neutralizing epitopes of the HIV and SIV envelopes. The known neutralizing human monoclonal antibodies elicited during natural infection are directed against HIV-1 envelope target sites on both gp120 and gp41, including the V3 region, the CD4 binding site, oligomannose residues of gp120, and gp41 (17, 31). The neutralizing epitope profile of SIV envelope includes the CD4 binding site and gp41 but not the V3 region. There is conflicting evidence as to whether V1, V2, and/or V4 of SIV are targets for antibody neutralization (15, 18, 19). The present study addresses whether vaccine-induced immune responses accelerate the generation of autologous neutralizing antibodies following SIV challenge in rhesus monkeys and how this humoral immune response can potentially shape viral sequence evolution.  相似文献   

5.
The quest to create a human immunodeficiency virus type 1 (HIV-1) vaccine capable of eliciting broadly neutralizing antibodies against Env has been challenging. Among other problems, one difficulty in creating a potent immunogen resides in the substantial overall sequence variability of the HIV envelope protein. The membrane-proximal region (MPER) of gp41 is a particularly conserved tryptophan-rich region spanning residues 659 to 683, which is recognized by three broadly neutralizing monoclonal antibodies (bnMAbs), 2F5, Z13, and 4E10. In this study, we first describe the variability of residues in the gp41 MPER and report on the invariant nature of 15 out of 25 amino acids comprising this region. Subsequently, we evaluate the ability of the bnMAb 2F5 to recognize 31 varying sequences of the gp41 MPER at a molecular level. In 19 cases, resulting crystal structures show the various MPER peptides bound to the 2F5 Fab′. A variety of amino acid substitutions outside the 664DKW666 core epitope are tolerated. However, changes at the 664DKW666 motif itself are restricted to those residues that preserve the aspartate''s negative charge, the hydrophobic alkyl-π stacking arrangement between the β-turn lysine and tryptophan, and the positive charge of the former. We also characterize a possible molecular mechanism of 2F5 escape by sequence variability at position 667, which is often observed in HIV-1 clade C isolates. Based on our results, we propose a somewhat more flexible molecular model of epitope recognition by bnMAb 2F5, which could guide future attempts at designing small-molecule MPER-like vaccines capable of eliciting 2F5-like antibodies.Eliciting broadly neutralizing antibodies (bnAbs) against primary isolates of human immunodeficiency virus type I (HIV-1) has been identified as a major milestone to attain in the quest for a vaccine in the fight against AIDS (12, 28). These antibodies would need to interact with HIV-1 envelope glycoproteins gp41 and/or gp120 (Env), target conserved regions and functional conformations of gp41/gp120 trimeric complexes, and prevent new HIV-1 fusion events with target cells (21, 57, 70, 71). Although a humoral response generating neutralizing antibodies against HIV-1 can be detected in HIV-1-positive individuals, the titers are often very low, and virus control is seldom achieved by these neutralizing antibodies (22, 51, 52, 66, 67). The difficulty in eliciting a broad and potent neutralizing antibody response against HIV-1 is thought to reside in the high degree of genetic diversity of the virus, in the heterogeneity of Env on the surface of HIV-1, and in the masking of functional regions by conformational covering, by an extensive glycan shield, or by the ability of some conserved domains to partition to the viral membrane (24, 25, 29, 30, 38, 39, 56, 68, 69). So far, vaccine trials using as immunogens mimics of Env in different conformations have primarily elicited antibodies with only limited neutralization potency across different HIV-1 clades although recent work has demonstrated more encouraging results (4, 12, 61).The use of conserved regions on gp41 and gp120 Env as targets for vaccine design has been mostly characterized by the very few anti-HIV-1 broadly neutralizing monoclonal antibodies (bnMAbs) that recognize them: the CD4 binding-site on gp120 (bnMAb b12), a CD4-induced gp120 coreceptor binding site (bnMAbs 17b and X5), a mannose cluster on the outer face of gp120 (bnMAb 2G12), and the membrane proximal external region (MPER) of gp41 (bnMAbs 2F5, Z13 and 4E10) (13, 29, 44, 58, 73). The gp41 MPER region is a particularly conserved part of Env that spans residues 659 to 683 (HXB2 numbering) (37, 75). Substitution and deletion studies have linked this unusually tryptophan-rich region to the fusion process of HIV-1, possibly involving a series of conformational changes (5, 37, 41, 49, 54, 74). Additionally, the gp41 MPER has been implicated in gp41 oligomerization, membrane leakage ability facilitating pore formation, and binding to the galactosyl ceramide receptor on epithelial cells for initial mucosal infection mediated by transcytosis (2, 3, 40, 53, 63, 64, 72). This wide array of roles for the gp41 MPER will put considerable pressure on sequence conservation, and any change will certainly lead to a high cost in viral fitness.Monoclonal antibody 2F5 is a broadly neutralizing monoclonal anti-HIV-1 antibody isolated from a panel of sera from naturally infected asymptomatic individuals. It reacts with a core gp41 MPER epitope spanning residues 662 to 668 with the linear sequence ELDKWAS (6, 11, 42, 62, 75). 2F5 immunoglobulin G binding studies and screening of phage display libraries demonstrated that the DKW core is essential for 2F5 recognition and binding (15, 36, 50). Crystal structures of 2F5 with peptides representing its core gp41 epitope reveal a β-turn conformation involving the central DKW residues, flanked by an extended conformation and a canonical α-helical turn for residues located at the N terminus and C terminus of the core, respectively (9, 27, 45, 47). In addition to binding to its primary epitope, evidence is accumulating that 2F5 also undergoes secondary interactions: multiple reports have demonstrated affinity of 2F5 for membrane components, possibly through its partly hydrophobic flexible elongated complementarity-determining region (CDR) H3 loop, and it has also been suggested that 2F5 might interact in a secondary manner with other regions of gp41 (1, 10, 23, 32, 33, 55). Altogether, even though the characteristics of 2F5 interaction with its linear MPER consensus epitope have been described extensively, a number of questions persist about the exact mechanism of 2F5 neutralization at a molecular level.One such ambiguous area of the neutralization mechanism of 2F5 is investigated in this study. Indeed, compared to bnMAb 4E10, 2F5 is the more potent neutralizing antibody although its breadth across different HIV-1 isolates is more limited (6, 35). In an attempt to shed light on the exact molecular requirements for 2F5 recognition of its primary gp41 MPER epitope, we performed structural studies of 2F5 Fab′ with a variety of peptides. The remarkable breadth of possible 2F5 interactions reveals a somewhat surprising promiscuity of the 2F5 binding site. Furthermore, we link our structural observations with the natural variation observed within the gp41 MPER and discuss possible routes of 2F5 escape from a molecular standpoint. Finally, our discovery of 2F5''s ability to tolerate a rather broad spectrum of amino acids in its binding, a spectrum that even includes nonnatural amino acids, opens the door to new ways to design small-molecule immunogens potentially capable of eliciting 2F5-like neutralizing antibodies.  相似文献   

6.
Defining the specificities of the anti-human immunodeficiency virus type 1 (HIV-1) envelope antibodies able to mediate broad heterologous neutralization will assist in identifying targets for an HIV-1 vaccine. We screened 70 plasmas from chronically HIV-1-infected individuals for neutralization breadth. Of these, 16 (23%) were found to neutralize 80% or more of the viruses tested. Anti-CD4 binding site (CD4bs) antibodies were found in almost all plasmas independent of their neutralization breadth, but they mainly mediated neutralization of the laboratory strain HxB2 with little effect on the primary virus, Du151. Adsorption with Du151 monomeric gp120 reduced neutralizing activity to some extent in most plasma samples when tested against the matched virus, although these antibodies did not always confer cross-neutralization. For one plasma, this activity was mapped to a site overlapping the CD4-induced (CD4i) epitope and CD4bs. Anti-membrane-proximal external region (MPER) (r = 0.69; P < 0.001) and anti-CD4i (r = 0.49; P < 0.001) antibody titers were found to be correlated with the neutralization breadth. These anti-MPER antibodies were not 4E10- or 2F5-like but spanned the 4E10 epitope. Furthermore, we found that anti-cardiolipin antibodies were correlated with the neutralization breadth (r = 0.67; P < 0.001) and anti-MPER antibodies (r = 0.6; P < 0.001). Our study suggests that more than one epitope on the envelope glycoprotein is involved in the cross-reactive neutralization elicited during natural HIV-1 infection, many of which are yet to be determined, and that polyreactive antibodies are possibly involved in this phenomenon.The generation of an antibody response capable of neutralizing a broad range of viruses remains an important goal of human immunodeficiency virus type 1 (HIV-1) vaccine development. Despite multiple efforts in the design of immunogens capable of inducing such humoral responses, little progress has been made (18, 20, 39). The sequence variability of the virus, as well as masking mechanisms exhibited by the envelope glycoprotein, has further hindered this pursuit (6, 22). It is known that while the majority of HIV-infected individuals mount a strong neutralization response against their own virus within the first 6 to 12 months of infection, breadth is observed in only a few individuals years later (5, 10, 15, 26, 33, 40, 41). However, very little is known about the specificities of the antibodies that confer this broad cross-neutralization. It is plausible that broadly cross-neutralizing (BCN) plasmas contain antibodies that target conserved regions of the envelope glycoprotein, as exemplified by a number of well-characterized broadly neutralizing monoclonal antibodies (MAbs). The b12 MAb recognizes the CD4 binding site (CD4bs), and 2G12 binds to surface glycans (7, 42, 44, 56). The 447-52D MAb recognizes the V3 loop, and 17b, E51, and 412d bind to CD4-induced (CD4i) epitopes that form part of the coreceptor binding site (13, 21, 51, 54). Finally, the MAbs 2F5, 4E10, and Z13e1 recognize distinct linear sequences in the gp41 membrane-proximal external region (MPER) (36, 57). The targets of these neutralizing MAbs provide a rational starting point for examining the complex nature of polyclonal plasma samples.Several groups have addressed the need to develop methodologies to elucidate the presence of certain neutralizing-antibody specificities (1, 8, 9, 29, 30, 43, 55). A number of these studies reported that the BCN antibodies in plasma can in some cases be adsorbed using gp120 immobilized on beads (1, 9, 29, 30, 43). Furthermore, the activities of some of these anti-gp120 neutralizing antibodies could be mapped to the CD4bs, as the D368R mutant gp120 failed to adsorb them (1, 29, 30, 43).Antibodies to CD4i epitopes are frequently found in HIV-1-infected individuals and are thought to primarily target the coreceptor binding site, which includes the bridging sheet and possibly parts of the V3 region. Decker and colleagues (8) showed that MAbs to HIV-1 CD4i epitopes can neutralize HIV-2 when pretreated with soluble CD4 (sCD4), indicating that the CD4i epitope is highly conserved among different HIV lineages. The poor accessibility of CD4i epitopes, however, has precluded this site from being a major neutralizing-antibody target (24), although a recent study suggested that some of the cross-neutralizing activity in polyclonal sera mapped to a CD4i epitope (30).Another site that has attracted considerable attention as a target for cross-neutralizing antibodies is the MPER, a linear stretch of 34 amino acids in gp41. Anti-MPER antibodies have been detected in the plasma of HIV-infected individuals by using chimeric viruses with HIV-1 MPER grafted into a simian immunodeficiency virus or an HIV-2 envelope glycoprotein (15, 55). These studies concluded that 2F5- and 4E10-like antibodies were rarely found in HIV-1-infected plasmas; however, other specificities within the MPER were recognized by around one-third of HIV-1-infected individuals (15). More recently, 4E10-like and 2F5-like antibodies (30, 43), as well as antibodies to novel epitopes within the MPER (1), have been shown to be responsible for neutralization breadth in a small number of plasma samples. The anti-MPER MAb 4E10 has been shown to react to autoantigens, leading to the suggestion that their rarity in human infection is due to the selective deletion of B cells with these specificities (17, 35). Furthermore, a recent study found an association between anti-MPER and anti-cardiolipin (CL) antibodies, although an association with neutralization was not examined (31).A recent study by Binley and coworkers used an array of methodologies to determine the antibody specificities present in subtype B and subtype C plasma samples with neutralization breadth (1). While antibodies to gp120, some of which mapped to the CD4bs, and to MPER were identified, most of the neutralizing activity in the BCN plasma could not be attributed to any of the known conserved envelope epitopes. Furthermore, it is not clear how common these specificities are among HIV-1-positive plasmas and whether they are only associated with BCN activity.In this study, we investigated a large collection of HIV-1-infected plasmas obtained from the South African National Blood Services. We aimed to determine if there is a relationship between the presence of certain antibody specificities, such as those against CD4i epitopes, MPER, or the CD4bs, and the neutralizing activities present in these plasmas. Furthermore, we evaluated the presence of various autoreactive antibodies and analyzed whether they might be associated with neutralization breadth.  相似文献   

7.
We previously reported that human immunodeficiency virus type 1 (HIV-1) develops resistance to the cholesterol-binding compound amphotericin B methyl ester (AME) by acquiring mutations (P203L and S205L) in the cytoplasmic tail of the transmembrane envelope glycoprotein gp41 that create cleavage sites for the viral protease (PR). In the present study, we observed that a PR inhibitor-resistant (PIR) HIV-1 mutant is unable to efficiently cleave the gp41 cytoplasmic tail in P203L and S205L virions, resulting in loss of AME resistance. To define the pathway to AME resistance in the context of the PIR PR, we selected for resistance with an HIV-1 isolate expressing the mutant enzyme. We identified a new gp41 mutation, R236L, that results in cleavage of the gp41 tail by the PIR PR. These results highlight the central role of gp41 cleavage as the primary mechanism of AME resistance.Cholesterol-enriched membrane microdomains, often referred to as lipid rafts (4, 18, 24), play an important role in the replication of many enveloped viruses, including human immunodeficiency virus type 1 (HIV-1) (22, 30). Lipid rafts are involved in both HIV-1 entry and egress (reviewed in references 6, 22, and 30), and the lipid bilayer of HIV-1 virions is significantly enriched in cholesterol and highly saturated lipids characteristic of lipid rafts (3, 5, 8). We recently demonstrated that the cholesterol-binding polyene fungal antibiotic amphotericin B methyl ester (AME) potently inhibits HIV-1 replication. The antiviral activity of AME is due to a profound inhibition of viral entry (27, 28) and impairment of virus particle production (29).In our previous studies, we showed that the propagation of HIV-1 in the presence of AME leads to viral escape from this compound. The mutations that confer resistance map to the cytoplasmic tail (CT) of the gp41 transmembrane envelope (Env) glycoprotein (27, 28). AME-resistant mutants (P203L and S205L) overcome the defect in viral entry imposed by AME by a novel mechanism of resistance whereby the gp41 CT is cleaved by the viral protease (PR) after incorporation of Env into virions (28). The introduction of stop codons into the gp41-coding region that prematurely truncate the CT also renders virions AME resistant. In the present study, we evaluated the interplay between protease inhibitor resistance (PIR) mutations and AME resistance.  相似文献   

8.
9.
Human immunodeficiency virus type 1 (HIV-1)-mediated depletion of CD4+ lymphocytes in an infected individual is the hallmark of progression to AIDS. However, the mechanism for this depletion remains unclear. To identify mechanisms of HIV-1-mediated CD4 T-cell death, two similar viral isolates obtained from a rapid progressor patient with significantly different pathogenic phenotypes were studied. One isolate (R3A) demonstrates enhanced pathogenesis in both in vivo models and relevant ex vivo lymphoid organ model systems compared to another isolate, R3B. The pathogenic determinants were previously mapped to the V5-gp41 envelope region, correlating functionally with enhanced fusion activity and elevated CXCR4 binding affinity. To further elucidate specific differences between R3A and R3B within the V5-gp41 domains that enhance CD4 depletion, R3A-R3B chimeras to study the V5-gp41 region were developed. Our data demonstrate that six residues in the ectodomain of R3A provide the major determinant for both enhanced Env-cell fusion and pathogenicity. Furthermore, three amino acid differences in the heptad repeat 2 (HR-2) domain of R3A determined its fusion activity and significantly elevated its pathogenic activity. The chimeric viruses with enhanced fusion activity, but not elevated CXCR4 affinity, correlated with high pathogenicity in the thymus organ. We conclude that the functional domain of a highly pathogenic HIV-1 Env is determined by mutations in the HR-2 region that contribute to enhanced fusion and CD4 T-cell depletion.Human immunodeficiency virus type 1 (HIV-1) is the causative agent for AIDS, which is characterized by a dramatic loss of CD4+ lymphocytes and impairment of the immune system against invading pathogens (13, 21, 22). Though much has been determined regarding interactions between HIV-1 virus and CD4+ target cells, the mechanisms by which the HIV-1 virus depletes CD4+ lymphocytes remain incompletely understood. Various studies have demonstrated that in an HIV-infected host, both infected and uninfected cells are prone to destruction, albeit by different pathways (15, 18, 29). Recently, our group and others have shown that while binding of CD4 and chemokine receptors contribute to syncytium formation in vitro, viral membrane fusion by the envelope glycoprotein plays an important role in depletion of both uninfected and infected cells by HIV-1 and simian-human immunodeficiency virus in vivo (1, 11, 12, 26, 29).HIV-1 entry into a cell is mediated by a multistep process that begins with high-affinity binding between viral envelope (gp120) and the cellular CD4 receptor (9, 14, 16). This binding causes a conformational change in the viral envelope, allowing for subsequent coreceptor binding (mainly CCR5 or CXCR4). Upon coreceptor binding, another conformational change is thought to take place that allows gp41 to engage the cell to form a fusion complex. Envelope proteins have been demonstrated to exist as a trimer, allowing for three gp41s to form a fusion assembly through noncovalent interactions. This fusion assembly is determined to exist in a six-helix bundle formation as the fusion event takes place, allowing for the virion to fuse to the host cell (5, 24).The envelope glycoprotein (Env) of HIV plays a significant role in viral pathogenesis, as seen in several in vitro and in vivo models of infection. The Env functions to mediate virus entry of cells and is also a major target for immune responses (31, 39). While the envelope initially forms as a precursor protein (gp160), subsequent cleavage by a cellular protease yields the surface subunit gp120 and the transmembrane gp41 although the gp120 and gp41 interact noncovalently (36). The gp120 protein is comprised of five variable (V1 to V5) and five conserved constant (C1 to C5) domains and binds CD4 and the coreceptors. The gp41 protein is comprised of an amino-terminal fusion domain and two heptad repeats (HR-1 and HR-2) in the ectodomain (extracellular domain), a single transmembrane domain, and a cytoplasmic tail (intracellular domain) (8, 10, 36, 37). Due to the discovery of fusion inhibitor peptides such as C34 (23, 24) and T20 (38), much is now known about the fusion complex formed by the HIV-1 fusion domain. Similar to other viral envelopes that carry a type 1 fusion complex (such as influenza and corona viruses), the ectodomain of HIV-1 Env carries two HRs that form a coiled-coiled structure. In order for HIV-cell fusion to occur, the HR-1 domains of the trimeric Env protein must interact with the cell surface. Following this initial interaction, HR-2 domains are thought to intertwine over the HR-1 coils to form a stable six-helix bundle, which represents the gp41 core structure. X-ray crystallographic studies show that the six-helix bundle core consists of the HR-1 and HR-2 peptides bound in an antiparallel manner. This structure brings the fusion peptide to the target cell membrane, allowing for the formation of a fusion pore and the entry of virions into the cell.HIV-1 Env expressed on the surface of infected cells can induce cell-cell fusion with adjacent uninfected cells to form multinucleated syncytia and single cell lysis in cell culture and apoptosis in primary cells. Various models (both ex vivo and in vivo) have been utilized to study HIV-1-induced depletion of CD4+ lymphocytes. Models such as SCID-human thymus-liver (SCID-hu thy/liv), tonsil histoculture, and human fetal thymus organ culture (HFTOC) have demonstrated significant use in the study of acute infection and pathogenesis in the appropriate lymphoid organ microenvironment as they retain the organ structure and do not require exogenous stimulation for productive viral infection to occur (2, 20, 28, 32). More importantly, tissue culture-adapted HIV-1 isolates such as HXB2 fail to replicate in the SCID-hu thy/liv or HFTOC models (30, 33). Organ models such as the SCID-hu thy/liv and HFTOC thus more accurately demonstrate infection, replication, and pathogenicity of primary HIV-1 strains.Here, HFTOC is used to investigate mechanisms by which an HIV-1 virus with a highly pathogenic viral Env is able to deplete CD4+ lymphocytes. Two viral isolates obtained from rapid progressor patient 3 of the ALIVE cohort (40) show significant sequence homology, particularly in the Env region, while they carry stark differences in pathogenic ability (26, 27). One isolate (denoted R3A) was found to demonstrate enhanced fusion in cell-cell fusion assays as well as enhanced pathogenesis in relevant ex-vivo/in vivo organ model systems compared to another isolate, R3B. To define the pathogenic determinants that differentiate R3A from R3B, this study demonstrates that the enhanced fusogenicity of R3A (governed by the ectodomain of the gp41), but not the elevated CXCR4 binding affinity, confers the pathogenic phenotype in HFTOC. We further demonstrate that three amino acid differences in the HR-2 domain allow for this enhanced fusion for R3A Env, defining a possible mechanism for a pathogenic HIV-1 envelope.  相似文献   

10.
The virus-encoded envelope proteins of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) typically contain 26 to 30 sites for N-linked carbohydrate attachment. N-linked carbohydrate can be of three major types: high mannose, complex, or hybrid. The lectin proteins from Galanthus nivalis (GNA) and Hippeastrum hybrid (HHA), which specifically bind high-mannose carbohydrate, were found to potently inhibit the replication of a pathogenic cloned SIV from rhesus macaques, SIVmac239. Passage of SIVmac239 in the presence of escalating concentrations of GNA and HHA yielded a lectin-resistant virus population that uniformly eliminated three sites (of 26 total) for N-linked carbohydrate attachment (Asn-X-Ser or Asn-X-Thr) in the envelope protein. Two of these sites were in the gp120 surface subunit of the envelope protein (Asn244 and Asn460), and one site was in the envelope gp41 transmembrane protein (Asn625). Maximal resistance to GNA and HHA in a spreading infection was conferred to cloned variants that lacked all three sites in combination. Variant SIV gp120s exhibited dramatically decreased capacity for binding GNA compared to SIVmac239 gp120 in an enzyme-linked immunosorbent assay (ELISA). Purified gp120s from six independent HIV type 1 (HIV-1) isolates and two SIV isolates from chimpanzees (SIVcpz) consistently bound GNA in ELISA at 3- to 10-fold-higher levels than gp120s from five SIV isolates from rhesus macaques or sooty mangabeys (SIVmac/sm) and four HIV-2 isolates. Thus, our data indicate that characteristic high-mannose carbohydrate contents have been retained in the cross-species transmission lineages for SIVcpz-HIV-1 (high), SIVsm-SIVmac (low), and SIVsm-HIV-2 (low).The envelope proteins of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) are heavily glycosylated. N-linked carbohydrate is attached to the nascent protein at the asparagine of the consensus sequence N-X-S or N-X-T, where X is any amino acid except a proline (31, 52, 53). The number of potential N-linked carbohydrate attachment sites in the surface subunit of Env (gp120) ranges from 18 to 33, with a median of 25 (34, 65). There are typically 3 or 4 potential N-linked sites in the ectodomain of the Env transmembrane protein (gp41) (34).N-linked glycosylation of a protein consists of the en bloc transfer of the carbohydrate core oligosaccharide (two N-acetylglucosamines, nine mannoses, and three glucoses) from dolichol to the asparagine of the N-linked attachment site (8, 60). Initially the attached carbohydrate is processed into the high-mannose type (8). In the Golgi complex, high-mannose carbohydrate may be further processed into complex or hybrid oligosaccharides (58). Incomplete processing of N-linked carbohydrate results in the production of high-mannose carbohydrate chains, which terminate in mannose (58). Fully processed complex carbohydrate chains terminate in galactose, N-acetylglucosamine, sialic acid, or glucose (33, 57). Hybrid carbohydrate chains have two branches from the core, one that terminates in mannose and one that terminates in a sugar of the complex type (63).Glycoproteins exist as a heterogeneous population, exhibiting heterogeneity with respect to the proportion of potential glycosylation sites that are occupied and to the oligosaccharide structure observed at each site. Factors that influence the type of carbohydrate chain that is attached at any one N-linked site are the accessibility of the carbohydrate chain to processing enzymes (49), protein sequences surrounding the site (5, 40), and the type of cell from which the protein is produced (19).The N-linked carbohydrate chains of HIV and SIV Env are critical for the proper folding and cleavage of the fusion-competent envelope spike (20, 59, 61). After Env is assembled, enzymatic removal of N-linked carbohydrate does not dramatically affect the functional conformation (2, 6, 7, 13, 24, 38). It is generally accepted that the carbohydrate attached to Env limits the ability of the underlying protein to be recognized by B cells (11, 48, 62). This carbohydrate also shields protein epitopes that would otherwise be the direct targets of antibodies that neutralize viral infection (41, 48, 62, 64). Furthermore, the high-mannose carbohydrates of HIV and SIV Env bind dynamically to an array of lectin proteins that are part of the host lymphoreticular system. The interaction of viral high-mannose carbohydrate with host lectin proteins has been associated with the enhancement (9, 16, 17, 43-45) or suppression (42, 56) of viral infection of CD4-positive T cells. The high-mannose carbohydrate of Env is also known to activate the release of immune-modulatory proteins from a subset of host antigen-presenting cells (12, 54).The plant lectin proteins from Galanthus nivalis (GNA) and Hippeastrum hybrid (HHA) specifically bind terminal α-1,3- and/or α-1,6-mannose of high-mannose oligosaccharides but not hybrid oligosaccharides (28, 55). GNA and HHA inhibit the replication of HIV-1 and SIVmac251, and uncloned, resistant populations of virus have been selected (3, 14). In this report, we define two N-linked sites in the external surface glycoprotein gp120 and one in the transmembrane glycoprotein gp41 whose mutation imparts high-level resistance to the inhibitory effects of GNA and HHA to cloned SIVmac239. Furthermore, using a GNA-binding enzyme-linked immunosorbent assay (ELISA), we show that assorted HIV-1 and SIVcpz gp120s consistently are considerably higher in mannose content than assorted gp120s from SIVmac, SIVsm, and HIV-2. These results shed new light on the impact of virus-host evolutionary dynamics on viral carbohydrate composition, and they may have important implications for the mechanisms by which long-standing natural hosts such as sooty mangabeys can resist generalized lymphoid activation and disease despite high levels of SIV replication.  相似文献   

11.
12.
Understanding the determinants of neutralization sensitivity and resistance is important for the development of an effective human immunodeficiency virus type 1 (HIV-1) vaccine. In these studies, we have made use of the swarm of closely related envelope protein variants (quasispecies) from an extremely neutralization-resistant clinical isolate in order to identify mutations that conferred neutralization sensitivity to antibodies in sera from HIV-1-infected individuals. Here, we describe a virus with a rare mutation at position 179 in the V2 domain of gp120, where replacement of aspartic acid (D) by asparagine (N) converts a virus that is highly resistant to neutralization by multiple polyclonal and monoclonal antibodies, as well as antiviral entry inhibitors, to one that is sensitive to neutralization. Although the V2 domain sequence is highly variable, D at position 179 is highly conserved in HIV-1 and simian immunodeficiency virus (SIV) and is located within the LDI/V recognition motif of the recently described α4β7 receptor binding site. Our results suggest that the D179N mutation induces a conformational change that exposes epitopes in both the gp120 and the gp41 portions of the envelope protein, such as the CD4 binding site and the MPER, that are normally concealed by conformational masking. Our results suggest that D179 plays a central role in maintaining the conformation and infectivity of HIV-1 as well as mediating binding to α4β7.A major goal in human immunodeficiency virus type 1 (HIV-1) vaccine research is the identification of immunogens able to elicit protective immunity from HIV-1 infection. Results from the recent RV144 clinical trial in Thailand (53) have provided evidence that immunization with vaccines containing the recombinant HIV-1 envelope glycoprotein gp120 (6, 7) can protect humans from HIV infection when incorporated in a prime/boost immunization regimen. Although the level of protection observed in the RV144 trial (31%) was modest, it represents a significant advance in HIV-1 vaccine research and has rekindled the efforts to identify improved subunit vaccine antigens that might achieve even higher levels of protection. In these studies, we have sought to understand the molecular determinants of neutralization sensitivity and resistance in HIV-1 envelope proteins for the purpose of developing improved vaccine antigens.In previous studies (47), we have described a novel method of mutational analysis of the HIV-1 envelope protein, termed swarm analysis, for identification of mutations that confer sensitivity and/or resistance to broadly neutralizing antibodies (bNAbs). This method makes use of the natural amino acid sequence virus variation that occurs in each HIV-infected individual to establish panels of closely related envelope proteins that differ from each other by a limited number of amino acid substitutions. We have previously used this method to identify a novel amino acid substitution in gp41 that conferred sensitivity to neutralization by monoclonal and polyclonal antibodies as well as virus entry inhibitors. In this paper, we describe a mutation in the V2 domain of gp120 that similarly induces a neutralization-sensitive phenotype in an otherwise neutralization-resistant envelope sequence.Previous studies (10, 14, 33, 40, 43, 52, 72, 74) have suggested that sequences in the V2 domain act as the “global regulator of neutralization sensitivity” and confer neutralization resistance by restricting access to epitopes located in the V3 domain, the CD4 binding site, and chemokine receptor binding sites through “conformational masking” of neutralizing epitopes. Deletion of the V2 domain markedly increases neutralization sensitivity (10, 57, 62, 74), and several envelope proteins with V2 domain deletions have been developed as candidate HIV-1 vaccines (5, 42, 61). In this paper, we show that a single substitution of asparagine (N) for aspartic acid (D) at position 179 in the C-terminal portion of the V2 domain (corresponding to position 180 in HXB2 numbering) converts a highly neutralization-resistant virus to a neutralization-sensitive virus with a phenotype similar to that described for V2 domain deletion mutants. Position 179 has recently attracted attention as a critical element of the α4β7 integrin binding site that affects virus tropism to the gut (2). Our results suggest that mutation at position 179 results in a conformational change that increases neutralization sensitivity by exposure of epitopes in both gp120 and gp41 that are normally masked in the trimeric structure of gp160 and thus are unavailable for antibody binding.  相似文献   

13.
Tetherin (CD317/BST-2), an interferon-induced membrane protein, restricts the release of nascent retroviral particles from infected cell surfaces. While human immunodeficiency virus type 1 (HIV-1) encodes the accessory gene vpu to overcome the action of tetherin, the lineage of primate lentiviruses that gave rise to HIV-2 does not. It has been previously reported that the HIV-2 envelope glycoprotein has a Vpu-like function in promoting virus release. Here we demonstrate that the HIV-2 Rod envelope glycoprotein (HIV-2 Rod Env) is a tetherin antagonist. Expression of HIV-2 Rod Env, but not that of HIV-1 or the closely related simian immunodeficiency virus (SIV) SIVmac1A11, counteracts tetherin-mediated restriction of Vpu-defective HIV-1 in a cell-type-specific manner. This correlates with the ability of the HIV-2 Rod Env to mediate cell surface downregulation of tetherin. Antagonism requires an endocytic motif conserved across HIV/SIV lineages in the gp41 cytoplasmic tail, but specificity for tetherin is governed by extracellular determinants in the mature Env protein. Coimmunoprecipitation studies suggest an interaction between HIV-2 Rod Env and tetherin, but unlike studies with Vpu, we found no evidence of tetherin degradation. In the presence of HIV-2 Rod Env, tetherin localization is restricted to the trans-Golgi network, suggesting Env-mediated effects on tetherin trafficking sequester it from virus assembly sites on the plasma membrane. Finally, we recapitulated these observations in HIV-2-infected CD4+ T-cell lines, demonstrating that tetherin antagonism and sequestration occur at physiological levels of Env expression during virus replication.Various stages of the replication cycle of primate lentiviruses can be targeted by host antiviral restriction factors (reviewed in reference 49). In addition to the well-characterized antiviral effects of members of the APOBEC3 family of cytidine deaminases, particularly APOBEC3G and -3F, and species-specific variants of tripartite motif family 5α, the release of nascent retroviral particles has recently been shown to be a target for a novel restriction factor, tetherin (CD317/bone marrow stromal cell antigen 2 [BST-2]) (31, 46). Tetherin is an interferon-inducible gene that was originally shown to impart a restriction on the release of mutants of human immunodeficiency virus type 1 (HIV-1) that lack a vpu gene (31, 46). In tetherin-positive cells, mature Vpu-defective HIV-1 particles are retained on the cell surface, linked to the plasma membrane (PM) and each other via protease-sensitive tethers, and can be subsequently endocytosed and accumulate in late endosomes (30, 31). Tetherin is not HIV specific and restricts the release of virus-like particles derived from all retroviruses tested (18), as well as those of filoviruses and arenaviruses (18, 19, 39).Tetherin is a small (181-amino-acid) type II membrane protein with an unusual topology that exists mainly as a disulfide-linked dimer (34). It consists of an N-terminal cytoplasmic tail, a transmembrane anchor, an extracellular domain that includes three cysteine residues important for dimerization, a putative coiled-coil, and finally a glycophosphatidyinosityl-linked lipid anchor (22) that is essential for restriction (31). Tetherin localizes to retroviral assembly sites on the PM (18, 31), and this unusual structure is highly suggestive that tetherin restricts virion release by incorporation into the viral membrane and cross-linking virions to cells. Such a mechanism would make tetherin a powerful antiviral effector that can target an obligate part of most, if not all, enveloped virus assembly strategies. Moreover, since tetherin restriction has no specific requirement for virus protein sequences, to avoid its action, mammalian viruses have evolved to encode several distinct countermeasures that specifically inhibit tetherin''s antiviral function.The Vpu accessory protein antagonizes tetherin-mediated restriction of HIV-1 (31, 46). In the presence of Vpu, tetherin is downregulated from the cell surface (2, 46) and is targeted for degradation (10, 13, 14), although whether these processes are required for antagonism of tetherin function is unclear (27). HIV-1 Vpu displays a distinct species specificity in that it is unable to target tetherin orthologues from rhesus macaques or African green monkeys (14, 25). This differential sensitivity maps to the tetherin transmembrane domain, particularly residues that are predicted to have been under high positive selection pressure during primate evolution (14, 16, 25). This suggests that tetherin evolution may have been driven in part by viral countermeasures like Vpu. Vpu, however, is only encoded by HIV-1 and its direct simian immunodeficiency virus (SIV) lineage precursors. The majority of SIVs, including the SIVsm, the progenitor of both HIV-2 and SIVmac, do not encode a Vpu protein (21). In some of these SIVs, tetherin antagonism was recently shown to map to the nef gene (16, 51). SIV Nef proteins, however, are generally ineffective against human tetherin because they target a (G/D)DIWK motif that was deleted from the human tetherin cytoplasmic tail sometime after the divergence of humans and chimpanzees (51). This raises the question of how HIV-2 is able to overcome human tetherin, as recent data show chronically HIV-2-infected CEM T cells have reduced tetherin levels on their surface (10).Interestingly, it has long been known that the envelope glycoprotein of certain HIV-2 isolates can stimulate the release of Vpu-defective HIV-1 virions from cells we now know to be tetherin positive (5, 6, 43). HIV and SIV Envs form trimeric spikes of dimers of the surface subunit (SU-gp105 in HIV-2/SIVmac and gp120 in HIV-1) that bind CD4 and the chemokine coreceptor and gp41 (the transmembrane [TM] subunit that facilitates fusion with and entry into the target cell). Envelope precursors (gp140 or gp160) are synthesized in the endoplasmic reticulum, where they become glycosylated and are exported to the surface via the secretory pathway (8). During transit through the Golgi apparatus and possibly in endosomal compartments, the immature precursors are cleaved by furin-like proteases to form mature spikes (15, 29). Multiple endocytosis motifs in the gp41 cytoplasmic tail lead to only minor quantities of Env being exposed at the cell surface at any given time (7, 40). Recent data demonstrated that the conserved GYxxθ motif, a binding site for the clathrin adaptor protein AP-2 (3), in the membrane-proximal region of HIV-2 gp41 is required to promote Vpu-defective HIV-1 release from HeLa cells (1, 32). Based on experiments with HIV-1/HIV-2 chimeric envelopes, an additional requirement in the extracellular component was suggested (1). In this study we set out to examine the Vpu-like activity of HIV-2 envelope in light of the discovery of tetherin. We demonstrate that the HIV-2 Env is a tetherin antagonist, and we provide mechanistic insight into the basis of this antagonism.  相似文献   

14.
The human scavenger receptor gp340 has been identified as a binding protein for the human immunodeficiency virus type 1 (HIV-1) envelope that is expressed on the cell surface of female genital tract epithelial cells. This interaction allows such epithelial cells to efficiently transmit infective virus to susceptible targets and maintain viral infectivity for several days. Within the context of vaginal transmission, HIV must first traverse a normally protective mucosa containing a cell barrier to reach the underlying T cells and dendritic cells, which propagate and spread the infection. The mechanism by which HIV-1 can bypass an otherwise healthy cellular barrier remains an important area of study. Here, we demonstrate that genital tract-derived cell lines and primary human endocervical tissue can support direct transcytosis of cell-free virus from the apical to basolateral surfaces. Further, this transport of virus can be blocked through the addition of antibodies or peptides that directly block the interaction of gp340 with the HIV-1 envelope, if added prior to viral pulsing on the apical side of the cell or tissue barrier. Our data support a role for the previously described heparan sulfate moieties in mediating this transcytosis but add gp340 as an important facilitator of HIV-1 transcytosis across genital tract tissue. This study demonstrates that HIV-1 actively traverses the protective barriers of the human genital tract and presents a second mechanism whereby gp340 can promote heterosexual transmission.Through correlative studies with macaques challenged with simian immunodeficiency virus (SIV), the initial targets of infection in nontraumatic vaginal exposure to human immunodeficiency virus type 1 (HIV-1) have been identified as subepithelial T cells and dendritic cells (DCs) (18, 23, 31, 36-38). While human transmission may differ from macaque transmission, the existing models of human transmission remain controversial. For the virus to successfully reach its CD4+ targets, HIV must first traverse the columnar mucosal epithelial cell barrier of the endocervix or uterus or the stratified squamous barrier of the vagina or ectocervix, whose normal functions include protection of underlying tissue from pathogens. This portion of the human innate immune defense system represents a significant impediment to transmission. Studies have placed the natural transmission rate of HIV per sexual act between 0.005 and 0.3% (17, 45). Breaks in the epithelial barrier caused by secondary infection with other sexual transmitted diseases or the normal physical trauma often associated with vaginal intercourse represent one potential means for viral exposure to submucosal cells and have been shown to significantly increase transmission (reviewed in reference 11). However, studies of nontraumatic exposure to SIV in macaques demonstrate that these disruptions are not necessary for successful transmission to healthy females. This disparity indicates that multiple mechanisms by which HIV-1 can pass through mucosal epithelium might exist in vivo. Identifying these mechanisms represents an important obstacle to understanding and ultimately preventing HIV transmission.Several host cellular receptors, including DC-specific intercellular adhesion molecule-grabbing integrin, galactosyl ceramide, mannose receptor, langerin, heparan sulfate proteoglycans (HSPGs), and chondroitin sulfate proteoglycans, have been identified that facilitate disease progression through binding of HIV virions without being required for fusion and infection (2, 3, 12, 14, 16, 25, 29, 30, 43, 46, 50). These host accessory proteins act predominately through glycosylation-based interactions between HIV envelope (Env) and the host cellular receptors. These different host accessory factors can lead to increased infectivity in cis and trans or can serve to concentrate and expose virus at sites relevant to furthering its spread within the body. The direct transcytosis of cell-free virus through primary genital epithelial cells and the human endometrial carcinoma cell line HEC1A has been described (7, 9); this is, in part, mediated by HSPGs (7). Within the HSPG family, the syndecans have been previously shown to facilitate trans infection of HIV in vitro through binding of a specific region of Env that is moderately conserved (7, 8). This report also demonstrates that while HSPGs mediate a portion of the viral transcytosis that occurs in these two cell types, a significant portion of the observed transport occurs through an HSPG-independent mechanism. Other host cell factors likely provide alternatives to HSPGs for HIV-1 to use in subverting the mucosal epithelial barrier.gp340 is a member of the scavenger receptor cysteine-rich (SRCR) family of innate immune receptors. Its numerous splice variants can be found as a secreted component of human saliva (34, 41, 42) and as a membrane-associated receptor in a large number of epithelial cell lineages (22, 32, 40). Its normal cellular function includes immune surveillance of bacteria (4-6, 44), interaction with influenza A virus (19, 20, 32, 51) and surfactant proteins in the lung (20, 22, 33), and facilitating epithelial cell regeneration at sites of cellular inflammation and damage (27, 32). The secreted form of gp340, salivary agglutinin (SAG), was identified as a component of saliva that inhibits HIV-1 transmission in the oral pharynx through a specific interaction with the viral envelope protein that serves to agglutinate the virus and target it for degradation (34, 35, 41). Interestingly, SAG was demonstrated to form a direct protein-protein interaction with HIV Env (53, 54). Later, a cell surface-associated variant of SAG called gp340 was characterized as a binding partner for HIV-1 in the female genital tract that could facilitate virus transmission to susceptible targets of infection (47) and as a macrophage-expressed enhancer of infection (10).  相似文献   

15.
Human immunodeficiency virus (HIV) envelope (Env)-mediated bystander apoptosis is known to cause the progressive, severe, and irreversible loss of CD4+ T cells in HIV-1-infected patients. Env-induced bystander apoptosis has been shown to be gp41 dependent and related to the membrane hemifusion between envelope-expressing cells and target cells. Caveolin-1 (Cav-1), the scaffold protein of specific membrane lipid rafts called caveolae, has been reported to interact with gp41. However, the underlying pathological or physiological meaning of this robust interaction remains unclear. In this report, we examine the interaction of cellular Cav-1 and HIV gp41 within the lipid rafts and show that Cav-1 modulates Env-induced bystander apoptosis through interactions with gp41 in SupT1 cells and CD4+ T lymphocytes isolated from human peripheral blood. Cav-1 significantly suppressed Env-induced membrane hemifusion and caspase-3 activation and augmented Hsp70 upregulation. Moreover, a peptide containing the Cav-1 scaffold domain sequence markedly inhibited bystander apoptosis and apoptotic signal pathways. Our studies shed new light on the potential role of Cav-1 in limiting HIV pathogenesis and the development of a novel therapeutic strategy in treating HIV-1-infected patients.HIV infection causes a progressive, severe, and irreversible depletion of CD4+ T cells, which is responsible for the development of AIDS (9). The mechanism through which HIV infection induces cell death involves a variety of processes (58). Among these processes, apoptosis is most likely responsible for T-cell destruction in HIV-infected patients (33), because active antiretroviral therapy has been associated with low levels of CD4+ T-cell apoptosis (7), and AIDS progression was shown previously to correlate with the extent of immune cell apoptosis (34). Importantly, bystander apoptosis of uninfected cells was demonstrated to be one of the major processes involved in the destruction of immune cells (58), with the majority of apoptotic CD4+ T cells in the peripheral blood and lymph nodes being uninfected in HIV patients (22).Binding to uninfected cells or the entry of viral proteins released by infected cells is responsible for the virus-mediated killing of innocent-bystander CD4+ T cells (2-4, 9, 65). The HIV envelope glycoprotein complex, consisting of gp120 and gp41 subunits expressed on an HIV-infected cell membrane (73), is believed to induce bystander CD4+ T-cell apoptosis (58). Although there is a soluble form of gp120 in the blood, there is no conclusive agreement as to whether the concentration is sufficient to trigger apoptosis (57, 58). The initial step in HIV infection is mediated by the Env glycoprotein gp120 binding with high affinity to CD4, the primary receptor on the target cell surface, which is followed by interactions with the chemokine receptor CCR5 or CXCR4 (61). This interaction triggers a conformational change in gp41 and the insertion of its N-terminal fusion peptide into the target membrane (30). Next, a prehairpin structure containing leucine zipper-like motifs is formed by the two conserved coiled-coil domains, called the N-terminal and C-terminal heptad repeats (28, 66, 70). This structure quickly collapses into a highly stable six-helix bundle structure with an N-terminal heptad repeat inside and a hydrophobic C-terminal heptad repeat outside (28, 66, 70). The formation of the six-helix bundle leads to a juxtaposition and fusion with the target cell membrane (28, 66, 70). The fusogenic potential of HIV Env is proven to correlate with the pathogenesis of both CXCR4- and CCR5-tropic viruses by not only delivering the viral genome to uninfected cells but also mediating Env-induced bystander apoptosis (71). Initial infection is dominated by the CCR5-tropic strains, with the CXCR4-tropic viruses emerging in the later stages of disease (20). Studies have shown that CXCR4-tropic HIV-1 triggers more depletion of CD4+ T cells than CCR5-tropic strains (36).Glycolipid- and cholesterol-enriched membrane microdomains, termed lipid rafts, are spatially organized plasma membranes and are known to have many diverse functions (26, 53). These functions include membrane trafficking, endocytosis, the regulation of cholesterol and calcium homeostasis, and signal transduction in cellular growth and apoptosis. Lipid rafts have also been implicated in HIV cell entry and budding processes (19, 46, 48, 51). One such organelle is the caveola, which is a small, flask-shaped (50 to 100 nm in diameter) invagination in the plasma membrane (5, 62). The caveola structure, which is composed of proteins known as caveolins, plays a role in various functions by serving as a mobile platform for many receptors and signal proteins (5, 62). Caveolin-1 (Cav-1) is a 22- to 24-kDa major coat protein responsible for caveola assembly (25, 47). This scaffolding protein forms a hairpin-like structure and exists as an oligomeric complex of 14 to 16 monomers (21). Cav-1 has been shown to be expressed by a variety of cell types, mostly endothelial cells, type I pneumocytes, fibroblasts, and adipocytes (5, 62). In addition, Cav-1 expression is evident in immune cells such as macrophages and dendritic cells (38, 39). However, Cav-1 is not expressed in isolated thymocytes (49). Furthermore, Cav-1 and caveolar structures are absent in human or murine T-cell lines (27, 41, 68). Contrary to this, there has been one report showing evidence of Cav-1 expression in bovine primary cell subpopulations of CD4+, CD8+, CD21+, and IgM+ cells with Cav-1 localized predominantly in the perinuclear region (38). That report also demonstrated a membrane region staining with Cav-1-specific antibody of human CD21+ and CD26+ peripheral blood lymphocytes (PBLs). Recently, the expression of Cav-1 in activated murine B cells, with a potential role in the development of a thymus-independent immune response, was also reported (56). It remains to be determined whether Cav-1 expression is dependent on the activation state of lymphocytes. For macrophages, however, which are one of the main cell targets for HIV infection, Cav-1 expression has been clearly documented (38).The scaffolding domain of Cav-1, located in the juxtamembranous region of the N terminus, is responsible for its oligomerization and binding to various proteins (5, 62, 64). It recognizes a consensus binding motif, ΦXΦXXXXΦ, ΦXXXXΦXXΦ, or ΦXΦXXXXΦXXΦ, where Φ indicates an aromatic residue (F, W, or Y) and X indicates any residue (5, 62, 64). A Cav-1 binding motif (WNNMTWMQW) has been identified in the HIV-1 envelope protein gp41 (42, 43). Cav-1 has been shown to associate with gp41 by many different groups under various circumstances, including the immunoprecipitation of gp41 and Cav-1 in HIV-infected cells (42, 43, 52). However, the underlying pathological or physiological functions of this robust interaction between Cav-1 and gp41 remain unclear.Here, we report that the interaction between Cav-1 and gp41 leads to a modification of gp41 function, which subsequently regulates Env-induced T-cell bystander apoptosis. Moreover, we show that a peptide containing the Cav-1 scaffold domain sequence is capable of modulating Env-induced bystander apoptosis, which suggests a novel therapeutic application for HIV-1-infected patients.  相似文献   

16.
The high-affinity in vivo interaction between soluble HIV-1 envelope glycoprotein (Env) immunogens and primate CD4 results in conformational changes that alter the immunogenicity of the gp120 subunit. Because the conserved binding site on gp120 that directly interacts with CD4 is a major vaccine target, we sought to better understand the impact of in vivo Env-CD4 interactions during vaccination. Rhesus macaques were immunized with soluble wild-type (WT) Env trimers, and two trimer immunogens rendered CD4 binding defective through distinct mechanisms. In one variant, we introduced a mutation that directly disrupts CD4 binding (368D/R). In the second variant, we introduced three mutations (423I/M, 425N/K, and 431G/E) that disrupt CD4 binding indirectly by altering a gp120 subdomain known as the bridging sheet, which is required for locking Env into a stable interaction with CD4. Following immunization, Env-specific binding antibody titers and frequencies of Env-specific memory B cells were comparable between the groups. However, the quality of neutralizing antibody responses induced by the variants was distinctly different. Antibodies against the coreceptor binding site were elicited by WT trimers but not the CD4 binding-defective trimers, while antibodies against the CD4 binding site were elicited by the WT and the 423I/M, 425N/K, and 431G/E trimers but not the 368D/R trimers. Furthermore, the CD4 binding-defective trimer variants stimulated less potent neutralizing antibody activity against neutralization-sensitive viruses than WT trimers. Overall, our studies do not reveal any potential negative effects imparted by the in vivo interaction between WT Env and primate CD4 on the generation of functional T cells and antibodies in response to soluble Env vaccination.The HIV-1 Envs mediate the entry of the virus into target cells and are the only virally encoded proteins exposed on the surface of the virus. HIV-1 Env is the sole target for neutralizing antibodies (Abs) and therefore is an important component of a vaccine designed to elicit protective antibody responses (4, 20). The viral spike is a trimer comprised of three heterodimers of the exterior envelope glycoprotein, gp120, noncovalently attached to the transmembrane protein, gp41. The gp120 subunit binds the primary receptor, CD4 (7), to form or to expose the gp120 coreceptor binding elements, which interact with the viral coreceptor, primarily CCR5 (1, 9, 12, 45). The highly conserved coreceptor binding site (CoRbs) overlaps the gp120 bridging sheet and also contains both proximal and distal elements of V3 (18, 32, 43, 45).In attempts to mimic the native trimeric structure of Env present on the virus, various forms of soluble Env trimers were designed (reviewed in reference 14). One design consists of cleavage-defective trimers derived from the primary R5 isolate YU2 that possess a heterologous trimerization motif derived from T4 bacteriophage fibritin (F; YU2 gp140-F) (3, 21, 34, 40, 50, 51). We recently demonstrated that the immunization of monkeys, but not rabbits, with gp140-F trimers resulted in the generation of Abs directed against the CoRbs of gp120 capable of cross-neutralizing HIV-2 (15). CoRbs-directed Abs (also referred to as CD4-induced, or CD4i, Abs) also were elicited in rabbits transgenic for human CD4 (15). Taken together, these data strongly suggest that Env interacts with high-affinity primate CD4 in vivo, resulting in the formation, or exposure, of a highly immunogenic gp120 determinant that overlaps the CoRbs. Early in infection, the frequency of HIV-1-infected individuals with significant antibody responses against the CoRbs is high (8, 33), and CoRbs-directed antibody responses are elicited abundantly in humans inoculated with Env-based immunogens (15). Collectively, these data suggest that the recognition of the HIV-1 CoRbs by naïve B cells is greatly increased when Env is presented in complex with high-affinity primate CD4, leading to a productive Ab response against this epitope (41). With rare exceptions, the majority of CoRbs-directed monoclonal antibodies (MAbs) do not neutralize HIV-1 primary viruses in vitro, bringing into question the utility of this region as a relevant neutralization target (23, 31, 47, 49). Strategies aimed to diminish vaccine-elicited B-cell responses to the CoRbs, and shift responses toward more accessible neutralization targets, represent one approach to improve the design of Env-based vaccine candidates. The selective manipulation of Env immunogens to decrease their CD4 binding capacity may reduce the elicitation of CoRbs-directed Abs and circumvent potential occlusion effects of the conserved CD4 binding site caused by CD4 itself.In addition to the potential effects of in vivo Env-CD4 interactions on the Ab repertoire elicited by Env-based immunogens, interactions between Env and CD4 also may have consequences on CD4+ T-cell responses. CD4 is an important costimulatory molecule expressed on several subsets of T cells and antigen-presenting cells, and interactions with Env were shown to alter the function of CD4-expressing T cells in a number of in vitro systems (13, 37, 44). The elimination of the Env-CD4 interaction in the context of vaccination may be beneficial to improve the elicitation of helper T-cell responses and effective neutralizing Ab responses. In vivo evaluation in subjects possessing high-affinity CD4 (i.e., rhesus macaques or humans) of CD4 binding-competent and CD4 binding-deficient Env immunogens so far have not been described.To address these questions, we designed Env trimer variants rendered CD4 binding defective through two distinct mechanisms. In the first variant, the interaction between CD4 and HIV-1 Env was directly disrupted by the introduction of a mutation (368D/R) in the CD4 binding loop of the gp120 outer domain (29). This alteration abolishes the initial binding of CD4 and most CD4 binding site (CD4bs)-directed MAbs (42) to variant forms of gp120 and would be expected to do the same in the soluble stable timer context. The aim of the second variant was to decrease the CD4 binding affinity while preserving the antigenicity of the CD4bs (48). This variant was generated in the soluble gp140-F trimers by the introduction of three point mutations, 423I/M, 425N/K, and 431G/E, in the β20 strand region of gp120. These mutations were suggested to favor a helix rather than the β20/21 antiparallel strands visible in the gp120 structure (23, 31, 47, 49). In the monomeric context, mutations in the β20 strand region of gp120 abolish binding by CoRbs-directed Abs, presumably because the bridging sheet cannot form (48). The introduction of the 423I/M, 425N/K, and 431G/E mutations in the trimer context therefore should disrupt the normally high-affinity gp120-CD4 interaction, while recognition by CD4bs Abs would not be affected. Indeed, a recent study provides a mechanistic basis for the impact of these mutations on CD4 binding (52). This study revealed that CD4 interacts with gp120 by a two-step binding mechanism in which the first step involves a direct, but low-affinity, CD4 interaction with the gp120 outer domain, while the second step requires a conformational change in gp120 to fully stabilize the high-affinity gp120-CD4 interaction.Here, we exploit this two-step model to generate novel CD4 binding-defective soluble trimers that, unlike the 368D/R trimers, possess a CD4bs surface that retains recognition by well-described CD4bs Abs. By immunizing rhesus macaques with the wild-type (WT) and CD4 binding-defective trimer variants, we demonstrate that similar levels of Env-specific Ab and T-cell responses were elicited in the three groups, suggesting that in vivo interactions between CD4 binding-competent (WT) Env and CD4 do not measurably affect T-cell responses against Env in this immunization regimen. However, the quality of the Ab response was markedly different between the groups. As hypothesized, CoRbs-directed Abs were elicited only in animals inoculated with WT trimers and not in those inoculated with 368D/R or 423I/M, 425N/K, and 431G/E trimers (hereafter referred to as 368 and 423/425/431 trimers, respectively). Importantly, we show that the 423/425/431 trimers retain the capacity to elicit binding and neutralizing CD4bs-directed Abs. In conclusion, the results generated in this study suggest that CD4 engagement by the WT soluble Env trimers did not impair the overall magnitude of the elicited Env-specific antibody or T-cell responses. Furthermore, our data provide new insights into the characteristics of Env that impact immunogenicity. The data also provide a potential path forward for the design of Env immunogens that have the capacity to elicit neutralizing Abs against the conserved gp120 CD4 binding surface while eliminating both the elicitation of nonneutralizing CoRbs-directed Abs and the potential occlusion of the CD4 binding surface of gp120 by the engagement of the primary virus receptor, CD4.  相似文献   

17.
Lentiviruses, including human immunodeficiency virus type 1 (HIV-1), typically encode envelope glycoproteins (Env) with long cytoplasmic tails (CTs). The strong conservation of CT length in primary isolates of HIV-1 suggests that this factor plays a key role in viral replication and persistence in infected patients. However, we report here the emergence and dominance of a primary HIV-1 variant carrying a natural 20-amino-acid truncation of the CT in vivo. We demonstrated that this truncation was deleterious for viral replication in cell culture. We then identified a compensatory amino acid substitution in the matrix protein that reversed the negative effects of CT truncation. The loss or rescue of infectivity depended on the level of Env incorporation into virus particles. Interestingly, we found that a virus mutant with defective Env incorporation was able to spread by cell-to-cell transfer. The effects on viral infectivity of compensation between the CT and the matrix protein have been suggested by in vitro studies based on T-cell laboratory-adapted virus mutants, but we provide here the first demonstration of the natural occurrence of similar mechanisms in an infected patient. Our findings provide insight into the potential of HIV-1 to evolve in vivo and its ability to overcome major structural alterations.The envelope glycoprotein complex of the human immunodeficiency virus type 1 (HIV-1) is involved principally in virion attachment to target cell surfaces and in the entry process (15, 18, 27, 29, 52). Envelope glycoproteins (Env) are initially translated as a gp160 precursor glycoprotein, which is then processed during its trafficking through the secretory pathway, to yield a surface subunit gp120 noncovalently attached to a transmembrane subunit gp41. During HIV-1 assembly, Env proteins are incorporated at the surface of the viral particle as a trimeric structure consisting of three gp120/gp41 dimers (59, 62).The gp41 consists of an ectodomain, a hydrophobic transmembrane anchor, and a cytoplasmic tail (CT). Lentiviruses, including HIV-1 and simian immunodeficiency virus (SIV), are unusual in having a transmembrane subunit with much longer CTs (∼150 amino acids) than most other retroviruses (20 to 50 amino acids) (27). Early studies with T-cell laboratory-adapted HIV-1 mutants showed that the gp41 CT region played an important role in regulating Env functions, the incorporation of Env into virus particles and, consequently, viral replication (16, 21, 35, 63). The integrity of the gp41 CT thus appears to be crucial for replication in primary T cells, macrophages, and in many transformed T-cell lines (1, 44). Viral variants with truncated gp41 are rarely isolated from infected patients. One study reported the isolation of a CD4-independent variant harboring a sharply truncated CT (64). However, this atypical isolate existed as a minority variant in the original quasispecies of the patient (54). SIV variants with truncated CTs obtained in cell culture in vitro have also been shown to revert rapidly (to full-length CT) when introduced into macaques (39). These observations indicate that the long CTs of lentiviruses, such as HIV-1 and SIV, have functions specific to viral replication and persistence in vivo.Two groups of conserved sequence motifs have been identified in the gp41 CT that are likely to be involved in its functions. The first group, involved in regulating the intracellular trafficking of Env, includes a membrane-proximal tyrosine-based endocytic motif, Y712SPL, (9, 47); a diaromatic motif, Y802W803, implicated in the retrograde transport of Env to the trans-Golgi network (8), and a C-terminal dileucine motif recently identified as a second endocytic motif (7, 10, 60). We have also provided evidence for the existence of additional as-yet-unidentified signals in studies of primary HIV-1 (34). The second group of motifs consists of three structurally conserved amphipathic α-helical domains: lentivirus lytic peptides 1, 2, and 3 (LLP-1, LLP-2, and LLP-3) (11, 17, 33). LLP domains have been implicated in various functions, including Env fusogenicity and the incorporation of Env into HIV-1 particles (28, 32, 43, 45, 50, 61).Several lines of evidence suggest that Env incorporation requires direct or indirect interactions between the matrix domain of the structural protein precursor Pr55Gag (matrix) and the gp41 CT during HIV-1 assembly. This possibility was first suggested by the observation that HIV-1 Env drives the basolateral budding of Gag in polarized cells (37, 48). A direct interaction between the matrix and a glutathione S-transferase fusion protein containing Env CT was subsequently observed in vitro (13). Synthetic peptides corresponding to various domains of the gp41 CT have also been shown to interact directly with Pr55Gag molecules (26). Furthermore, effects on viral infectivity of compensation between the CT and the matrix protein have been suggested by studies based on T-cell laboratory-adapted virus mutants (19, 40, 43). Finally, the cellular protein TIP47 was recently implicated in Env incorporation, based on its ability to bind both the matrix protein and the gp41 CT (38).In a previous study describing the evolutionary dynamics of the glycan shield of HIV-1 Env, we identified a patient (patient 153) for whom the 15 env clones obtained during primary infection (early stage) encoded full-length Env, whereas the 15 env sequences from the HIV-1 present 6 years later (late stage) encoded truncated gp41 CTs (14). These late-stage sequences contained a deletion introducing an in-frame stop codon, resulting in a 20-amino-acid truncation of the Env. Note that, unlike a point mutation, this deletion cannot easily revert to the full-length form. Such a deletion affecting various known motifs of the gp41 CT would be expected to impair viral replication. However, the plasma viral load measured in patient 153 demonstrated that the virus had retained its ability to replicate.In the present study, we explored the molecular mechanisms by which a primary HIV-1 maintained its capacity to replicate efficiently in this patient and demonstrated for the first time the occurrence of matrix and Env coevolution in vivo, providing insight into the ability of HIV-1 to overcome major structural alterations.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) can disseminate between CD4+ T cells via diffusion-limited cell-free viral spread or by directed cell-cell transfer using virally induced structures termed virological synapses. Although T-cell virological synapses have been well characterized, it is unclear whether this mode of viral spread is susceptible to inhibition by neutralizing antibodies and entry inhibitors. We show here that both cell-cell and cell-free viral spread are equivalently sensitive to entry inhibition. Fluorescence imaging analysis measuring virological synapse lifetimes and inhibitor time-of-addition studies implied that inhibitors can access preformed virological synapses and interfere with HIV-1 cell-cell infection. This concept was supported by electron tomography that revealed the T-cell virological synapse to be a relatively permeable structure. Virological synapse-mediated HIV-1 spread is thus efficient but is not an immune or entry inhibitor evasion mechanism, a result that is encouraging for vaccine and drug design.As with enveloped viruses from several viral families, the human immunodeficiency virus type 1 (HIV-1) can disseminate both by fluid-phase diffusion of viral particles and by directed cell-cell transfer (39). The primary target cell for HIV-1 replication in vivo is the CD4+ T-cell (13), which is infectible by CCR5-tropic (R5) and CXCR4-tropic (X4) viral variants (29). R5 HIV-1 is the major transmitted viral phenotype and dominates the global pandemic, whereas X4 virus is found later in infection in ca. 50% of infected individuals, and its presence indicates a poor disease progression prognosis (23). Cell-cell HIV-1 transfer between T cells is more efficient than diffusion-limited spread (8, 16, 32, 38), although recent estimates for the differential range from approximately 1 (42) to 4 (6) orders of magnitude. Two structures have been proposed to support contact-mediated intercellular movement of HIV-1 between T cells: membrane nanotubes (33, 43) and macromolecular adhesive contacts termed virological synapses (VS) (15, 17, 33). VS appear to be the dominant structure involved in T-cell-T-cell spread (33), and both X4 (17) and R5 HIV-1 (6, 15, 42) can spread between T cells via this mechanism.VS assembly and function are dependent on HIV-1 envelope glycoprotein (Env) engaging its primary cellular receptor CD4 (2, 6, 17). This interaction recruits more CD4 and coreceptor to the site of cell-cell contact in an actin-dependent manner (17). Adhesion molecules cluster at the intercellular junction and are thought to stabilize the VS (18). In parallel, viral Env and Gag are recruited to the interface by a microtubule-dependent mechanism (19), where polarized viral budding may release virions into the synaptic space across which the target cell is infected (17). The precise mechanism by which HIV-1 subsequently enters the target T-cell cytoplasm remains unclear: by fusion directly at the plasma membrane, fusion from within an endosomal compartment, or both (4, 6, 15, 25, 34).Viruses from diverse families including herpesviruses (9), poxviruses (22) and hepatitis C virus (44) evade neutralizing antibody attack by direct cell-cell spread, since the tight junctions across which the these viruses move are antibody impermeable. It has been speculated that transfer of HIV-1 across VS may promote evasion from immune or therapeutic intervention with the inference that the junctions formed in retroviral VS may be nonpermissive to antibody entry (39). However, available evidence regarding whether neutralizing antibodies (NAb) and other entry inhibitors can inhibit HIV-1 cell-cell spread is inconsistent (25). An early analysis suggested that HIV-1 T-cell-T-cell spread is relatively resistant to neutralizing monoclonal antibodies (NMAb) (12). A later study agreed with this conclusion by demonstrating a lack of permissivity of HIV-1 T-cell-T-cell spread, measured by transfer of viral Gag, to interference with viral fusion using a gp41-specific NMAb and a peptidic fusion inhibitor (6). In contrast, another analysis reported that anti-gp41-specific NMAb interfered effectively with HIV-1 spread between T cells (26). Inhibitors of the HIV-1 surface glycoprotein (gp120)-CD4 or gp120-CXCR4 interaction reduced X4 HIV-1 VS assembly and viral transfer if applied prior to mixing of infected and receptor-expressing target cells (17, 19), but the effect of these inhibitors has not been tested on preformed VS. Thus, the field is currently unclear on whether direct T-cell-T-cell infectious HIV-1 spread is susceptible or not to antibody and entry inhibitor-mediated disruption of VS assembly, and the related question, whether the VS is permeable to viral entry inhibitors, including NAb. Addressing these questions is of central importance to understanding HIV-1 pathogenesis and informing future drug and vaccine design.Since estimates reported in the literature of the relative efficiency of direct HIV-1 T-cell-T-cell spread compared to cell-free spread vary by approximately 3 orders of magnitude (6, 38, 42), and the evidence for the activity of viral entry inhibitors on cell-cell spread is conflicting, we set out to quantify the efficiency of infection across the T-cell VS and analyze the susceptibility of this structure to NAb and viral entry inhibitors. Assays reporting on events proximal to productive infection show that the R5 HIV-1 T-cell VS is approximately 1 order of magnitude more efficient than cell-free virus infection, and imaging analyses reveal that the VS assembled by HIV-1 is most likely permeable to inhibitors both during, and subsequent to, VS assembly. Thus, we conclude that the T-cell VS does not provide a privileged environment allowing HIV-1 escape from entry inhibition.  相似文献   

19.
Receptors (FcγRs) for the constant region of immunoglobulin G (IgG) are an important link between humoral immunity and cellular immunity. To help define the role of FcγRs in determining the fate of human immunodeficiency virus type 1 (HIV-1) immune complexes, cDNAs for the four major human Fcγ receptors (FcγRI, FcγRIIa, FcγRIIb, and FcγRIIIa) were stably expressed by lentiviral transduction in a cell line (TZM-bl) commonly used for standardized assessments of HIV-1 neutralization. Individual cell lines, each expressing a different FcγR, bound human IgG, as evidence that the physical properties of the receptors were preserved. In assays with a HIV-1 multisubtype panel, the neutralizing activities of two monoclonal antibodies (2F5 and 4E10) that target the membrane-proximal external region (MPER) of gp41 were potentiated by FcγRI and, to a lesser extent, by FcγRIIb. Moreover, the neutralizing activity of an HIV-1-positive plasma sample known to contain gp41 MPER-specific antibodies was potentiated by FcγRI. The neutralizing activities of monoclonal antibodies b12 and 2G12 and other HIV-1-positive plasma samples were rarely affected by any of the four FcγRs. Effects with gp41 MPER-specific antibodies were moderately stronger for IgG1 than for IgG3 and were ineffective for Fab. We conclude that FcγRI and FcγRIIb facilitate antibody-mediated neutralization of HIV-1 by a mechanism that is dependent on the Fc region, IgG subclass, and epitope specificity of antibody. The FcγR effects seen here suggests that the MPER of gp41 could have greater value for vaccines than previously recognized.Fc receptors (FcRs) are differentially expressed on a variety of cells of hematopoietic lineage, where they bind the constant region of antibody (Ab) and provide a link between humoral and cellular immunity. Humans possess two classes of FcRs for the constant region of IgG (FcγRs) that, when cross-linked, are distinguished by their ability to either activate or inhibit cell signaling (69, 77, 79). The activating receptors FcγRI (CD64), FcγRIIa (CD32), and FcγRIII (CD16) signal through an immunoreceptor tyrosine-based activation motif (ITAM), whereas FcγRIIb (CD32) contains an inhibitory motif (ITIM) that counters ITAM signals and B-cell receptor signals. It has been suggested that a balance between activating and inhibitory FcγRs coexpressed on the same cells plays an important role in regulating adaptive immunity (23, 68). Moreover, the inhibitory FcγRIIb, being the sole FcγR on B cells, appears to play an important role in regulating self-tolerance (23, 68). The biologic role of FcγRs may be further influenced by differences in their affinity for immunoglobulin G (IgG); thus, FcγRI is a high-affinity receptor that binds monomeric IgG (mIgG) and IgG immune complexes (IC), whereas FcγRIIa, FcγRIIb, and FcγRIIIa are medium- to low-affinity receptors that preferentially bind IgG IC (10, 49, 78). FcγRs also exhibit differences in their relative affinity for the four IgG subclasses (10), which has been suggested to influence the balance between activating and inhibitory FcγRs (67).In addition to their participation in acquired immunity, FcγRs can mediate several innate immune functions, including phagocytosis of opsonized pathogens, Ab-dependent cell cytotoxicity (ADCC), antigen uptake by professional antigen-presenting cells, and the production of inflammatory cytokines and chemokines (26, 35, 41, 48, 69). In some cases, interaction of Ab-coated viruses with FcγRs may be exploited by viruses as a means to facilitate entry into FcγR-expressing cells (2, 33, 47, 84). Several groups have reported FcγR-mediated Ab-dependent enhancement (ADE) of HIV-1 infection in vitro (47, 51, 58, 63, 94, 96), whereas other reports have implicated FcγRs in efficient inhibition of the virus in vitro (19, 21, 29, 44-46, 62, 98) and possibly as having beneficial effects against HIV-1 in vivo (5, 27, 28, 42). These conflicting results are further complicated by the fact that HIV-1-susceptible cells, such as monocytes and macrophages, can coexpress more than one FcγR (66, 77, 79).HIV-1 entry requires sequential interactions between the viral surface glycoprotein, gp120, and its cellular receptor (CD4) and coreceptor (usually CCR5 or CXCR4), followed by membrane fusion that is mediated by the viral transmembrane glycoprotein gp41 (17, 106). Abs neutralize the virus by binding either gp120 or gp41 and blocking entry into cells. Several human monoclonal Abs that neutralize a broad spectrum of HIV-1 variants have attracted considerable interest for vaccine design. Epitopes for these monoclonal Abs include the receptor binding domain of gp120 in the case of b12 (71, 86), a glycan-specific epitope on gp120 in the case of 2G12 (13, 85, 86), and two adjacent epitopes in the membrane-proximal external region (MPER) of g41 in the cases of 2F5 and 4E10 (3, 11, 38, 93). At least three of these monoclonal Abs have been shown to interact with FcRs and to mediate ADCC (42, 43).A highly standardized and validated assay for neutralizing Abs against HIV-1 that quantifies reductions in luciferase (Luc) reporter gene expression after a single round of virus infection in TZM-bl cells has been developed (60, 104). TZM-bl (also called JC53BL-13) is a CXCR4-positive HeLa cell line that was engineered to express CD4 and CCR5 and to contain integrated reporter genes for firefly Luc and Escherichia coli β-galactosidase under the control of the HIV-1 Tat-regulated promoter in the long terminal repeat terminal repeat sequence (74, 103). TZM-bl cells are permissive to infection by a wide variety of HIV-1, simian immunodeficiency virus, and human-simian immunodeficiency virus strains, including molecularly cloned Env-pseudotyped viruses. Here we report the creation and characterization of four new TZM-bl cell lines, each expressing one of the major human FcγRs. These new cell lines were used to gain a better understanding of the individual roles that FcγRs play in determining the fate of HIV-1 IC. Two FcγRs that potentiated the neutralizing activity of gp41 MPER-specific Abs were identified.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号