首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
2.

Background

Systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) are systemic autoimmune connective tissue diseases that share overlapping clinico-pathological features. It is highly probable that there is an overlap in epigenetic landscapes of both diseases. This study aimed to identify similarities in DNA methylation changes in genes involved in SLE and SSc. Global DNA methylation and twelve genes selected on the basis of their involvement in inflammation, autoimmunity and/or fibrosis were analyzed using PCR arrays in three groups, each of 30 Black South Africans with SLE and SSc, plus 40 healthy control subjects.

Results

Global methylation in both diseases was significantly lower (<25 %) than in healthy subjects (>30 %, p = 0.0000001). In comparison to healthy controls, a similar gene-specific methylation pattern was observed in both SLE and SSc. Three genes, namely; PRF1, ITGAL and FOXP3 were consistently hypermethylated while CDKN2A and CD70 were hypomethylated in both diseases. The other genes (SOCS1, CTGF, THY1, CXCR4, MT1-G, FLI1, and DNMT1) were generally hypomethylated in SLE whereas they were neither hyper- nor hypo-methylated in SSc.

Conclusions

SSc and SLE patients have a higher global hypomethylation than healthy subjects with specific genes being hypomethylated and others hypermethylated. The majority of genes studied were hypomethylated in SLE compared to SSc. In addition to the commonly known hypomethylated genes in SLE and SSc, there are other hypomethylated genes (such as MT-1G and THY-1) that have not previously been investigated in SLE and SSc though are known to be hypermethylated in cancer.  相似文献   

3.
4.
5.
6.
7.
8.

Aims

To determine the spectrum of renal lesions in patients with kidney involvement in non-Hodgkin''s lymphoma (NHL) by renal biopsy.

Methods

The clinical features and histological findings at the time of the renal biopsy were assessed for each patient.

Results

We identified 20 patients with NHL and renal involvement, and the diagnosis of NHL was established following the kidney biopsy in 18 (90%) patients. The types of NHL include the following: chronic lymphocytic leukemia/small lymphocytic lymphoma (n = 8), diffuse large B-cell lymphoma (n = 4), T/NK cell lymphoma (n = 3), lymphoplasmacytic lymphoma (n = 2), cutaneous T-cell lymphoma (n = 1), mucosa-associated lymphoid tissue lymphoma (n = 1) and mantle cell lymphoma (n = 1). All presented with proteinuria, and 15 patients had impaired renal function. The pathological findings included (1) membranoproliferative glomerulonephritis-like pattern in seven patients; (2) crescent glomerulonephritis in four; (3) minimal-change disease in three, and glomeruli without specific pathological abnormalities in three; (4) intraglomerular large B-cell lymphoma in one; (5) intracapillary monoclonal IgM deposits in one; (6) primary diffuse large B-cell lymphoma of the kidneys in one; and (7) lymphoma infiltration of the kidney in eight patients.

Conclusion

A wide spectrum of renal lesions can be observed in patients with NHL, and NHL may be first proven by renal biopsies for evaluation of kidney injury or proteinuria. Renal biopsy is necessary to establish the underlying cause of renal involvement in NHL.  相似文献   

9.

Background

Changes in host tumor genome DNA methylation patterns are among the molecular alterations associated with HPV-related carcinogenesis. However, there is little known about the epigenetic changes associated specifically with the development of anal squamous cell cancer (SCC). We sought to characterize broad methylation profiles across the spectrum of anal squamous neoplasia.

Methodology/Principal Findings

Twenty-nine formalin-fixed paraffin embedded samples from 24 patients were evaluated and included adjacent histologically normal anal mucosa (NM; n = 3), SCC-in situ (SCC-IS; n = 11) and invasive SCC (n = 15). Thirteen women and 11 men with a median age of 44 years (range 26–81) were included in the study. Using the SFP10 LiPA HPV-typing system, HPV was detected in at least one tissue from all patients with 93% (27/29) being positive for high-risk HPV types and 14 (93%) of 15 invasive SCC tissues testing positive for HPV 16. Bisulfite-modified DNA was interrogated for methylation at 1,505 CpG loci representing 807 genes using the Illumina GoldenGate Methylation Array. When comparing the progression from normal anal mucosa and SCC-IS to invasive SCC, 22 CpG loci representing 20 genes demonstrated significant differential methylation (p<0.01). The majority of differentially methylated gene targets occurred at or close to specific chromosomal locations such as previously described HPV methylation “hotspots” and viral integration sites.

Conclusions

We have identified a panel of differentially methlylated CpG loci across the spectrum of HPV-associated squamous neoplasia of the anus. To our knowledge, this is the first reported application of large-scale high throughput methylation analysis for the study of anal neoplasia. Our findings support further investigations into the role of host-genome methylation in HPV-associated anal carcinogenesis with implications towards enhanced diagnosis and screening strategies.  相似文献   

10.
A number of specific, distinct neoplastic entities occur in the pediatric kidney, including Wilms’ tumor, clear cell sarcoma of the kidney (CCSK), congenital mesoblastic nephroma (CMN), rhabdoid tumor of the kidney (RTK), and the Ewing’s sarcoma family of tumors (ESFT). By employing DNA methylation profiling using Illumina Infinium HumanMethylation27, we analyzed the epigenetic characteristics of the sarcomas including CCSK, RTK, and ESFT in comparison with those of the non-neoplastic kidney (NK), and these tumors exhibited distinct DNA methylation profiles in a tumor-type-specific manner. CCSK is the most frequently hypermethylated, but least frequently hypomethylated, at CpG sites among these sarcomas, and exhibited 490 hypermethylated and 46 hypomethylated CpG sites in compared with NK. We further validated the results by MassARRAY, and revealed that a combination of four genes was sufficient for the DNA methylation profile-based differentiation of these tumors by clustering analysis. Furthermore, THBS1 CpG sites were found to be specifically hypermethylated in CCSK and, thus, the DNA methylation status of these THBS1 sites alone was sufficient for the distinction of CCSK from other pediatric renal tumors, including Wilms’ tumor and CMN. Moreover, combined bisulfite restriction analysis could be applied for the detection of hypermethylation of a THBS1 CpG site. Besides the biological significance in the pathogenesis, the DNA methylation profile should be useful for the differential diagnosis of pediatric renal tumors.  相似文献   

11.

Objective

To investigate if viral load, integration and methylation of E2BS3 and 4 represent different ways of tumor transformation in vaginal and vulvar carcinoma and to elucidate its clinical impact.

Methods

Fifty-seven samples, positive for HPV16, were selected for the study. Detection of viral load was made with realtime-PCR using copy numbers of E6 and integration was calculated from comparing E2 to E6-copies. Methylation of E2BS3 and 4 was analysed using bisulphite treatment of tumor DNA, followed by PCR and pyrosequencing.

Results

Vaginal tumors were found to have a higher viral load (p = 0.024) compared to vulvar tumors but a high copy number (> median value, 15 000) as well as high methylation (>50%) was significantly (p = 0.010 and p = 0.045) associated with a worse cancer-specific survival rate in vulvar carcinoma, but not in vaginal carcinoma. Four groups could be defined for the complete series using a Cluster Two step analysis; (1) tumors holding episomal viral DNA, viral load below 150 000 copies not highly methylated (n = 25, 46.3%); (2) tumors harboring episomal viral DNA and being highly methylated (>50%; n = 6, 11.1%); (3) tumors with viral DNA fully integrated (n = 11, 20.4%), and (4) tumors harboring episomal viral DNA and being medium- or unmethylated (<50%) and having a high viral load (> total mean value 150 000; n = 12, 22.2%). The completely integrated tumors were found to be distinct group, whilst some overlap between the groups with high methylation and high viral load was observed.

Conclusion

HPV16- related integration, methylation in E2BS3 and 4 and viral load may represent different viral characteristics driving vaginal and vulvar carcinogenesis. HPV16- related parameters were found to be of clinical importance in the vulvar series only.  相似文献   

12.

Background

The genetic background of Basal Cell Carcinoma (BCC) has been studied extensively, while its epigenetic makeup has received comparatively little attention. Epigenetic alterations such as promoter hypermethylation silence tumor suppressor genes (TSG) in several malignancies.

Objective

We sought to analyze the promoter methylation status of ten putative (tumor suppressor) genes that are associated with Sonic Hedgehog (SHH), WNT signaling and (hair follicle) tumors in a large series of 112 BCC and 124 healthy control samples by methylation-specific PCR.

Results

Gene promoters of SHH (P = 0.016), adenomatous polyposis coli (APC) (P = 0.003), secreted frizzled-related protein 5 (SFRP5) (P = 0.004) and Ras association domain family 1A (RASSF1A) (P = 0.023) showed significantly more methylation in BCC versus normal skin. mRNA levels of these four genes were reduced for APC and SFRP5 in BCC (n = 6) vs normal skin (n = 6). Down regulation of SHH, APC and RASSF1A could be confirmed on protein level as well (P<0.001 for all genes) by immunohistochemical staining. Increased canonical WNT activity was visualized by β-catenin staining, showing nuclear β-catenin in only 28/101 (27.7%) of BCC. Absence of nuclear β-catenin in some samples may be due to high levels of membranous E-cadherin (in 94.1% of the samples).

Conclusions

We provide evidence that promoter hypermethylation of key players within the SHH and WNT pathways is frequent in BCC, consistent with their known constitutive activation in BCC. Epigenetic gene silencing putatively contributes to BCC tumorigenesis, indicating new venues for treatment.  相似文献   

13.
Epigenetic alterations of gene expression are important in the development of cancer. In this study, we identified genes which are epigenetically altered in major lymphoma types. We used DNA microarray technology to assess changes in gene expression after treatment of 11 lymphoma cell lines with epigenetic drugs. We identified 233 genes with upregulated expression in treated cell lines and with downregulated expression in B-cell lymphoma patient samples (n = 480) when compared to normal B cells (n = 5). The top 30 genes were further analyzed by methylation specific PCR (MSP) in 18 lymphoma cell lines. Seven of the genes were methylated in more than 70% of the cell lines and were further subjected to quantitative MSP in 37 B-cell lymphoma patient samples (diffuse large B-cell lymphoma (activated B-cell like and germinal center B-cell like subtypes), follicular lymphoma and Burkitt`s lymphoma) and normal B lymphocytes from 10 healthy donors. The promoters of DSP, FZD8, KCNH2, and PPP1R14A were methylated in 28%, 67%, 22%, and 78% of the 36 tumor samples, respectively, but not in control samples. Validation using a second series of healthy donor controls (n = 42; normal B cells, peripheral blood mononuclear cells, bone marrow, tonsils and follicular hyperplasia) and fresh-frozen lymphoma biopsies (n = 25), confirmed the results. The DNA methylation biomarker panel consisting of DSP, FZD8, KCNH2, and PPP1R14A was positive in 89% (54/61) of all lymphomas. Receiver operating characteristic analysis to determine the discriminative power between lymphoma and healthy control samples showed a c-statistic of 0.96, indicating a possible role for the biomarker panel in monitoring of lymphoma patients.  相似文献   

14.
X Shen  Z He  H Li  C Yao  Y Zhang  L He  S Li  J Huang  Z Guo 《PloS one》2012,7(9):e44822

Background

Aberrant DNA methylation plays important roles in carcinogenesis. However, the functional significance of genome-wide hypermethylation and hypomethylation of gene promoters in carcinogenesis currently remain unclear.

Principal Findings

Based on genome-wide methylation data for five cancer types, we showed that genes with promoter hypermethylation were highly consistent in function across different cancer types, and so were genes with promoter hypomethylation. Functions related to “developmental processes” and “regulation of biology processes” were significantly enriched with hypermethylated genes but were depleted of hypomethylated genes. In contrast, functions related to “cell killing” and “response to stimulus”, including immune and inflammatory response, were associated with an enrichment of hypomethylated genes and depletion of hypermethylated genes. We also observed that some families of cytokines secreted by immune cells, such as IL10 family cytokines and chemokines, tended to be hypomethylated in various cancer types. These results provide new hints for understanding the distinct functional roles of genome-wide hypermethylation and hypomethylation of gene promoters in carcinogenesis.

Conclusions

Genes with promoter hypermethylation and hypomethylation are highly consistent in function across different cancer types, respectively, but these two groups of genes tend to be enriched in different functions associated with cancer. Especially, we speculate that hypomethylation of gene promoters may play roles in inducing immunity and inflammation disorders in precancerous conditions, which may provide hints for improving epigenetic therapy and immunotherapy of cancer.  相似文献   

15.
Excessive fibroproliferation is a central hallmark of idiopathic pulmonary fibrosis (IPF), a chronic, progressive disorder that results in impaired gas exchange and respiratory failure. Fibroblasts are the key effector cells in IPF, and aberrant expression of multiple genes contributes to their excessive fibroproliferative phenotype. DNA methylation changes are critical to the development of many diseases, but the DNA methylome of IPF fibroblasts has never been characterized. Here, we utilized the HumanMethylation 27 array, which assays the DNA methylation level of 27,568 CpG sites across the genome, to compare the DNA methylation patterns of IPF fibroblasts (n = 6) with those of nonfibrotic patient controls (n = 3) and commercially available normal lung fibroblast cell lines (n = 3). We found that multiple CpG sites across the genome are differentially methylated (as defined by P value less than 0.05 and fold change greater than 2) in IPF fibroblasts compared to fibroblasts from nonfibrotic controls. These methylation differences occurred both in genes recognized to be important in fibroproliferation and extracellular matrix generation, as well as in genes not previously recognized to participate in those processes (including organ morphogenesis and potassium ion channels). We used bisulfite sequencing to independently verify DNA methylation differences in 3 genes (CDKN2B, CARD10, and MGMT); these methylation changes corresponded with differences in gene expression at the mRNA and protein level. These differences in DNA methylation were stable throughout multiple cell passages. DNA methylation differences may thus help to explain a proportion of the differences in gene expression previously observed in studies of IPF fibroblasts. Moreover, significant variability in DNA methylation was observed among individual IPF cell lines, suggesting that differences in DNA methylation may contribute to fibroblast heterogeneity among patients with IPF. These results demonstrate that IPF fibroblasts exhibit global differences in DNA methylation that may contribute to the excessive fibroproliferation associated with this disease.  相似文献   

16.
17.

Objective

Early-onset colorectal cancer (CRC) represents a clinically distinct form of CRC that is often associated with a poor prognosis. Methylation levels of genomic repeats such as LINE-1 elements have been recognized as independent factors for increased cancer-related mortality. The methylation status of LINE-1 elements in early-onset CRC has not been analyzed previously.

Design

We analyzed 343 CRC tissues and 32 normal colonic mucosa samples, including 2 independent cohorts of CRC diagnosed ≤50 years old (n = 188), a group of sporadic CRC >50 years (MSS n = 89; MSI n = 46), and a group of Lynch syndrome CRCs (n = 20). Tumor mismatch repair protein expression, microsatellite instability status, LINE-1 and MLH1 methylation, somatic BRAF V600E mutation, and germline MUTYH mutations were evaluated.

Results

Mean LINE-1 methylation levels (±SD) in the five study groups were early-onset CRC, 56.6% (8.6); sporadic MSI, 67.1% (5.5); sporadic MSS, 65.1% (6.3); Lynch syndrome, 66.3% (4.5) and normal mucosa, 76.5% (1.5). Early-onset CRC had significantly lower LINE-1 methylation than any other group (p<0.0001). Compared to patients with <65% LINE-1 methylation in tumors, those with ≥65% LINE-1 methylation had significantly better overall survival (p = 0.026, log rank test).

Conclusions

LINE-1 hypomethylation constitutes a potentially important feature of early-onset CRC, and suggests a distinct molecular subtype. Further studies are needed to assess the potential of LINE-1 methylation status as a prognostic biomarker for young people with CRC.  相似文献   

18.
High density DNA methylation microarrays were used to study the differences of gene methylation level in six pairs of colorectal cancer (CRC) and adjacent normal mucosa. We analyzed the profile of methylated genes by NimbleGen Microarray and the biologic functions by NIH-NAVID. In addition, preliminary validation studies were done in six pairs of samples by MSP (methylation-specific PCR). A total of 4,644 genes had a difference in methylation levels. Among them 2,296 were hypermethylated (log2ratio > 1), 2,348 genes were hypomethylated (log2ratio < ?1), in which 293 hypermethylated and 313 hypomethylated genes were unmapped according to the NIH-NAVID. All these genes were randomly distributed on all the chromosomes. However, chromosome 1 contained the most of the hypermethylated genes (232 genes), followed by chromosome 19 (149 genes), chromosome 11 (144 genes), chromosome 2 (141 genes), chromosomes 3 (127 genes). Through the analysis of the statistics, There were 2 hypermethylated/3 hypomethylated genes involved in six pairs of samples simultaneously, followed by 10/14 in five samples, 34/37 in four samples, 101/113 in three samples, 341/377 in two samples, 1,808/1,804 in one sample. According to gene ontology analysis, some physiological processes play important roles in the cell division and the development of tumor, such as apoptosis, DNA repair, immune, cell cycle, cell cycle checkpoint, cell adhesion and invasion etc. Through Preliminary validation, there were two genes (St3gal6, Opcml) in thirty top-ranking genes shown hypermethylated in six pairs of CRC and adjacent normal mucosa. Conclusions High density DNA methylation microarrays is an effective method for screening aberrantly methylated genes in CRC. The methylated genes should be further studied for diagnostic or prognostic markers for CRC.  相似文献   

19.
RL Huang  CC Chang  PH Su  YC Chen  YP Liao  HC Wang  YT Yo  TK Chao  HC Huang  CY Lin  TY Chu  HC Lai 《PloS one》2012,7(7):e41060

Background

Despite of the trend that the application of DNA methylation as a biomarker for cancer detection is promising, clinically applicable genes are few. Therefore, we looked for novel hypermethylated genes for cervical cancer screening.

Methods and Findings

At the discovery phase, we analyzed the methylation profiles of human cervical carcinomas and normal cervixes by methylated DNA immunoprecipitation coupled to promoter tiling arrays (MeDIP-on-chip). Methylation-specific PCR (MSP), quantitative MSP and bisulfite sequencing were used to verify the methylation status in cancer tissues and cervical scrapings from patients with different severities. Immunohistochemical staining of a cervical tissue microarray was used to confirm protein expression. We narrowed to three candidate genes: DBC1, PDE8B, and ZNF582; their methylation frequencies in tumors were 93%, 29%, and 100%, respectively. At the pre-validation phase, the methylation frequency of DBC1 and ZNF582 in cervical scraping correlated significantly with disease severity in an independent cohort (n = 330, both P<0.001). For the detection of cervical intraepithelial neoplasia 3 (CIN3) and worse, the area under the receiver operating characteristic curve (AUC) of ZNF582 was 0.82 (95% confidence interval  = 0.76–0.87).

Conclusions

Our study shows ZNF582 is frequently methylated in CIN3 and worse lesions, and it is demonstrated as a potential biomarker for the molecular screening of cervical cancer.  相似文献   

20.
DNA methylation is a critical epigenetic mechanism involved in key cellular processes. Its deregulation has been linked to many human cancers including esophageal squamous cell carcinoma (ESCC). This study was designed to explore the whole methylation status of ESCC and to identify potential plasma biomarkers for early diagnosis. We used Infinium Methylation 450k array to analyze ESCC tissues (n = 4), paired normal surrounding tissues (n = 4) and normal mucosa from healthy individuals (n = 4), and combined these with gene expression data from the GEO database. One hundred and sixty eight genes had differentially methylated CpG sites in their promoter region and a gene expression pattern inverse to the direction of change in DNA methylation. These genes were involved in several cancer-related pathways. Three genes were validated in additional 42 ESCC tissues and paired normal surrounding tissues. The methylation frequency of EPB41L3, GPX3, and COL14A1 were higher in tumor tissues than in normal surrounding tissues (P<0.017). The higher methylation frequency of EPB41l3 was correlated with large tumor size (P = 0.044) and advanced pT tumor stage (P = 0.001). The higher methylation frequency of GPX3 and COL14A1 were correlated with advanced pN tumor stage (P = 0.001 and P<0.001). The methylation of EPB41L3, GPX3, and COL14A1 genes were only found in ESCC patients'' plasma, but not in normal individuals upon testing 42 ESCC patients and 50 healthy individuals. Diagnostic sensitivity was increased when methylation of any of the 3 genes were counted (64.3% sensitivity and 100% specificity). These differentially methylated genes in plasma may be used as biomarkers for early diagnosis of ESCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号