首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Theoretical models of tree–grass coexistence in savannas have focused primarily on the role of resource availability and fire. It is clear that herbivores heavily impact vegetation structure in many savannas, but their role in driving tree–grass coexistence and the stability of the savanna state has received less attention. Theoretical models of tree–grass dynamics tend to treat herbivory as a constant rather than a dynamic variable, yet herbivores respond dynamically to changes in vegetation structure in addition to modifying it. In particular, many savannas host two distinct herbivore guilds, grazers and browsers, both of which have the potential to exert profound effects on tree/grass balance. For example, grazers may indirectly favor tree recruitment by suppressing the destructive effects of fire, and browsers may facilitate the expansion of grassland by reducing the competitive dominance of trees. We use a simple theoretical model to explore the role of grazer and browser dynamics on savanna vegetation structure and stability across fire and resource availability gradients. Our model suggests that herbivores may expand the range of conditions under which trees and grasses are able to stably coexist, as well as having positive reciprocal effects on their own niche spaces. In addition, we suggest that given reasonable assumptions, indirect mutualisms can arise in savannas between functional groups of herbivores because of the interplay of consumption and ecosystem feedbacks.  相似文献   

2.
The exceptional diversity of large mammals in African savannas provides an ideal opportunity to explore the relative importance of top‐down and bottom‐up controls of large terrestrial herbivore communities. Recent work has emphasized the role of herbivore and carnivore body size in shaping these trophic relationships. However, the lack of across‐ecosystem comparisons using a common methodology prohibits general conclusions. Here we used published data on primary production, herbivore and carnivore densities and diets to estimate the consumption fluxes between three trophic levels in four African savanna ecosystems. Our food web approach suggests that the body size distribution within and across trophic levels has a strong influence on the strength of top‐down control of herbivores by carnivores and on consumption fluxes within ecosystems, as predicted by theoretical food web models. We generalize findings from the Serengeti ecosystem that suggest herbivore species below 150 kg are more likely to be limited by predation. We also emphasize the key functional role played by the largest species at each trophic level. The abundance of the largest herbivore species largely governs the consumption of primary production in resident communities. Similarly, predator guilds in which the largest carnivore species represent a larger share of carnivore biomass are likely to exert a stronger top‐down impact on herbivores. Our study shows how a food web approach allows integrating current knowledge and offers a powerful framework to better understand the functioning of ecosystems.  相似文献   

3.
Niall P. Hanan 《Biotropica》2012,44(2):189-196
This paper examines the feasibility of applying self‐thinning concepts to savannas and how competition with herbaceous vegetation may modify self‐thinning patterns among woody plants in these ecosystems. Competition among woody plants has seldom been invoked as a major explanation for the persistence of herbaceous vegetation in mixed tree–grass ecosystems. On the contrary, the primary resource‐based explanations for tree–grass coexistence are based on tree–grass competition (niche‐separation) that assumes that trees are inferior competitors unless deeper rooting depths provide them exclusive access to water. Alternative nonresource‐based hypotheses postulate that trees are the better competitors, but that tree populations are suppressed by mortality related to fire, herbivores, and other disturbances. If self‐thinning of woody plants can be detected in savannas, stronger evidence for resource‐limitation and competitive interactions among woody plants would suggest that the primary models of savannas need to be adjusted. We present data from savanna sites in South Africa to suggest that self‐thinning among woody plants can be detected in low‐disturbance situations, while also showing signs that juvenile trees, more so than adults, are suppressed when growing with herbaceous vegetation in these ecosystems. This finding we suggest is evidence for size‐asymmetric competition in savannas.  相似文献   

4.
Tropical savannas are typically highly productive yet fire‐prone ecosystems, and it has been suggested that reducing fire frequency in savannas could substantially increase the size of the global carbon sink. However, the long‐term demographic consequences of modifying fire regimes in savannas are difficult to predict, with the effects of fire on many parameters, such as tree growth rates, poorly understood. Over 10 years, we examined the effects of fire frequency on the growth rates (annual increment of diameter at breast height) of 3075 tagged trees, at 137 locations throughout the mesic savannas of Kakadu, Nitmiluk and Litchfield National Parks, in northern Australia. Frequent fires substantially reduced tree growth rates, with the magnitude of the effect markedly increasing with fire severity. The highest observed frequencies of mild, moderate and severe fires (1.0, 0.8 and 0.4 fires yr?1, respectively) reduced tree growth by 24%, 40% and 66% respectively, relative to unburnt areas. These reductions in tree growth imply reductions in the net primary productivity of trees by between 0.19 t C ha?1 yr?1, in the case of mild fires, and 0.51 t C ha?1 yr?1, in the case of severe fires. Such reductions are relatively large, given that net biome productivity (carbon sequestration potential) of these savannas is estimated to be just 1–2 t C ha?1 yr?1. Our results suggest that current models of savanna tree demography, that do not account for a relationship between severe fire frequency and tree growth rate, are likely to underestimate the long‐term negative effects of frequent severe fires on tree populations. Additionally, the negative impact of frequent severe fires on carbon sequestration rates may have been underestimated; reducing fire frequencies in savannas may increase carbon sequestration to a greater extent than previously thought.  相似文献   

5.
Soil seed banks are an important source of new individuals for many plant populations and contribute to future genetic variability. In general, the size and persistence of soil seed banks is predicted to be greater where growth occurs in unpredictable pulses, where opportunities for disturbance‐related recruitment are frequent and where the probability of recruitment failure is high. In savanna ecosystems, characterized by disturbance from fire and unpredictable water availability, soil seed banks should be relatively important sources of recruitment. However, the few studies conducted in savannas are inconclusive about the importance of soil seed banks and, more specifically, how seed banks should change across environmental gradients. We determined the number of viable seeds in the soil seed bank across savanna‐grasslands in the Serengeti, an ecosystem characterized by frequent fire and seasonal drought. Soils were exposed to a combination of smoke and heat, cues which may be required to break seed dormancy in such ecosystems. Our a priori expectation was to observe large seed banks in regions characterized by seasonal drought and comparatively smaller seed banks in regions of higher moisture availability and high fire frequencies. In contrast to our hypothesis, seed germination increased strongly with precipitation and fire frequency. In addition, there was a significant interaction effect between fire and rainfall: low rainfall sites with frequent fire had greater seed germination than low rainfall sites with low fire frequency. Moreover, in laboratory experiments, heat had a negative, smoke a positive effect on final seed germination numbers. Together, these findings suggest that fire may be a key factor in driving herbaceous seed bank dynamics in tropical savannas.  相似文献   

6.
Ludwig F  De Kroon H  Prins HH 《Oecologia》2008,155(3):487-496
Recently, cover of large trees in African savannas has rapidly declined due to elephant pressure, frequent fires and charcoal production. The reduction in large trees could have consequences for large herbivores through a change in forage quality. In Tarangire National Park, in Northern Tanzania, we studied the impact of large savanna trees on forage quality for wildebeest by collecting samples of dominant grass species in open grassland and under and around large Acacia tortilis trees. Grasses growing under trees had a much higher forage quality than grasses from the open field indicated by a more favourable leaf/stem ratio and higher protein and lower fibre concentrations. Analysing the grass leaf data with a linear programming model indicated that large savanna trees could be essential for the survival of wildebeest, the dominant herbivore in Tarangire. Due to the high fibre content and low nutrient and protein concentrations of grasses from the open field, maximum fibre intake is reached before nutrient requirements are satisfied. All requirements can only be satisfied by combining forage from open grassland with either forage from under or around tree canopies. Forage quality was also higher around dead trees than in the open field. So forage quality does not reduce immediately after trees die which explains why negative effects of reduced tree numbers probably go initially unnoticed. In conclusion our results suggest that continued destruction of large trees could affect future numbers of large herbivores in African savannas and better protection of large trees is probably necessary to sustain high animal densities in these ecosystems.  相似文献   

7.
For the past century, woody plants have increased in grasslands and savannas worldwide. Woody encroachment may significantly alter ecosystem functioning including fire regimes, herbivore carrying capacity, biodiversity and carbon storage capacity. Traditionally, increases in woody cover and density have been ascribed to changes in the disturbance regime (fire and herbivores) or rainfall. Increased atmospheric CO2 concentrations may also contribute, by increasing growth rates of trees relative to grasses. This hypothesis is still heavily debated because usually potential CO2 effects are confounded by changes in land use (disturbance regime). Here we analyse changes in woody density in fire experiments at three sites in South African savannas where the disturbance regime (fire and herbivores) was kept constant for 30 and 50 years. If global drivers had significant effects on woody plants, we would expect significant increases in tree densities and biomass over time under the constant disturbance regime. Woody density remained constant in a semiarid savanna but tripled in a mesic savanna between the 1970s and 1990s. At the third site, a semiarid savanna near the southern limits of the biome, tree density doubled from the mid 1990s to 2010. Interpretation of the causes is confounded by population recovery after clearing, but aerial photograph analysis on adjacent non‐cleared areas showed an accompanying 48% increase in woody cover. Increased CO2 concentrations are consistent with increased woody density while other global drivers (rainfall) remained constant over the duration of the experiments. The absence of a response in one semiarid savanna could be explained by a smaller carbon sink capacity of the dominant species, which would therefore benefit less from increased CO2. Understanding how savannas and grasslands respond to increased CO2 and identifying the causes of woody encroachment are essential for the successful management of these systems.  相似文献   

8.
Trees critically affect the functioning of savanna ecosystems through their effects on nutrient cycling, water availability, and patterns of space use by wildlife. Therefore, whatever factors influence successful recruitment of tree seedlings are important filters controlling savanna ecosystem function. In African savannas, large mammals have been considered the most important agents of mortality for adult trees, but their impacts on tree seedlings are not well‐known. Similarly, the effects of rodents and invertebrates as seedling predators are largely unstudied in Africa. To assess the relative roles of large mammals, rodents, and invertebrates as predators of Acacia seedlings in an African savanna, we conducted two experiments in which we exposed Acacia drepanolobium seedlings to different guilds of herbivores. In the first experiment, seedlings exposed to rodent and invertebrate herbivores did not suffer greater damage than did seedlings exposed only to invertebrates, suggesting that invertebrates caused most of the damage to the seedlings. In the second experiment, 63% of seedlings exposed to all herbivores (large mammals, rodents, and invertebrates) suffered major damage or mortality in 14 days. Seedlings exposed to only rodents and invertebrates, however, suffered damage at a faster rate than did seedlings exposed to rodents, invertebrates, and large mammals, suggesting that small herbivores (rodents and invertebrates) might be compensating for the removal of large herbivores. Certain specific types of damage, such as cotyledon removal, were significantly more common in areas from which large mammals had been excluded, suggesting that the invertebrate herbivore community may differ between areas with and without large mammals. Overall, invertebrates caused the greatest damage to seedlings while rodents had relatively little effect and no seedlings were consumed or trampled by large mammals. Our results indicate that invertebrates can have a pronounced influence on seedling survival for a dominant savanna tree, which in turn may influence tree recruitment and ecosystem function.  相似文献   

9.
This paper documents the existence and character of a little known fire‐maintained anthropogenic ecosystem in the southeastern Olympic Peninsula of Washington State, U.S.A. Due to cessation of anthropogenic burning, there is no longer an intact example of this ecosystem. We present evidence from Skokomish oral tradition, historical documents, floral composition, tree‐ring analysis, stand structure, and site potential to describe former savanna structure and function. We believe this system was a mosaic of prairies, savannas, and woodlands in a forest matrix maintained through repeated burning to provide culturally important plants and animals. The overstory was dominated by Douglas‐fir (Pseudotsuga menziesii). Bear grass (Xerophyllum tenax) likely was a dominant understory component of the savannas, woodlands, and prairie edges. These lands grew forests in the absence of anthropogenic burning. Wide spacing of older trees or stumps in former stands and rapid invasion by younger trees in the late 1800s and early 1900s suggest a sudden change in stand structure. Shade‐intolerant prairie species are still present where openings have been maintained but not in surrounding forests. Bark charcoal, fire scars, tree establishment patterns, and oral traditions point to use of fire to maintain this system. A common successional trajectory for all these lands leads to forested vegetation. These findings suggest that frequent application of prescribed burning would be necessary to restore this ecosystem.  相似文献   

10.
Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management.  相似文献   

11.
Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general, has been to identify compartments, or modules, defined by many links within compartments and few links between them. This approach can identify large habitat boundaries in the network but may fail to identify other important structures. Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure using a flexible definition that can describe both functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove instrumental in a variety of biological contexts.  相似文献   

12.
The central organizing theme of this paper is to discuss the dynamics of the Serengeti grassland ecosystem from the perspective of recent developments in food-web theory. The seasonal rainfall patterns that characterize the East African climate create an annually oscillating, large-scale, spatial mosaic of feeding opportunities for the larger ungulates in the Serengeti; this in turn creates a significant annual variation in the food available for their predators. At a smaller spatial scale, periodic fires during the dry season create patches of highly nutritious grazing that are eaten in preference to the surrounding older patches of less palatable vegetation. The species interactions between herbivores and plants, and carnivores and herbivores, are hierarchically nested in the Serengeti food web, with the largest bodied consumers on each trophic level having the broadest diets that include species from a large variety of different habitats in the ecosystem. The different major habitats of the Serengeti are also used in a nested fashion; the highly nutritious forage of the short grass plains is available only to the larger migratory species for a few months each year. The longer grass areas, the woodlands and kopjes (large partially wooded rocky islands in the surrounding mosaic of grassland) contain species that are resident throughout the year; these species often have smaller body size and more specialized diets than the migratory species. Only the larger herbivores and carnivores obtain their nutrition from all the different major habitat types in the ecosystem. The net effect of this is to create a nested hierarchy of subchains of energy flow within the larger Serengeti food web; these flows are seasonally forced by rainfall and operate at different rates in different major branches of the web. The nested structure that couples sequential trophic levels together interacts with annual seasonal variation in the fast and slow chains of nutrient flow in a way that is likely to be central to the stability of the whole web. If the Serengeti is to be successfully conserved as a fully functioning ecosystem, then it is essential that the full diversity of natural habitats be maintained within the greater Serengeti ecosystem. The best way to do this is by controlling the external forces that threaten the boundaries of the ecosystem and by balancing the economic services the park provides between local, national and international needs. I conclude by discussing how the ecosystem services provided by the Serengeti are driven by species on different trophic levels. Tourism provides the largest financial revenue to the national economy, but it could be better organized to provide more sustained revenue to the park. Ultimately, ecotourism needs to be developed in ways that take lessons from the structure of the Serengeti food webs, and in ways that provide tangible benefits to people living around the park while also improving the experience of all visitors.  相似文献   

13.
Deron E. Burkepile 《Oikos》2013,122(2):306-312
‘Grazing ecosystem’ is typically used to describe terrestrial ecosystems with high densities of mammalian herbivores such as the Serengeti in East Africa or the Greater Yellowstone Ecosystem in North America. These abundant, large herbivores determine plant community dynamics and ecosystem processes. The general concepts that define grazing ecosystems also aptly describe many aquatic ecosystems, including coral reefs, seagrass beds, and lakes, where herbivores such as parrotfishes, turtles, and zooplankton have strong impacts on ecosystem processes. Here, I compare the ecology of grazing ecosystems in search of common concepts that transcend the terrestrial‐aquatic boundary. Specifically, I evaluate: 1) the feedbacks between herbivory and primary production, 2) the roles of herbivore richness and facilitation, 3) how predators and diet quality shape patterns of herbivory, and 4) how altering herbivory mediates alternative states.  相似文献   

14.
Porensky LM  Veblen KE 《Oecologia》2012,168(3):749-759
Spatial heterogeneity in woody cover affects biodiversity and ecosystem function, and may be particularly influential in savanna ecosystems. Browsing and interactions with herbaceous plants can create and maintain heterogeneity in woody cover, but the relative importance of these drivers remains unclear, especially when considered across multiple edaphic contexts. In African savannas, abandoned temporary livestock corrals (bomas) develop into long-term, nutrient-rich ecosystem hotspots with unique vegetation. In central Kenya, abandoned corral sites persist for decades as treeless ‘glades’ in a wooded matrix. Though glades are treeless, areas between adjacent glades have higher tree densities than the background savanna or areas near isolated glades. The mechanisms maintaining these distinctive woody cover patterns remain unclear. We asked whether browsing or interactions with herbaceous plants help to maintain landscape heterogeneity by differentially impacting young trees in different locations. We planted the mono-dominant tree species (Acacia drepanolobium) in four locations: inside glades, far from glades, at edges of isolated glades and at edges between adjacent glades. Within each location, we assessed the separate and combined effects of herbivore exclusion (caging) and herbaceous plant removal (clearing) on tree survival and growth. Both caging and clearing improved tree survival and growth inside glades. When herbaceous plants were removed, trees inside glades grew more than trees in other locations, suggesting that glade soils were favorable for tree growth. Different types of glade edges (isolated vs. non-isolated) did not have significantly different impacts on tree performance. This represents one of the first field-based experiments testing the separate and interactive effects of browsing, grass competition and edaphic context on savanna tree performance. Our findings suggest that, by excluding trees from otherwise favorable sites, both herbaceous plants and herbivores help to maintain functionally important landscape heterogeneity in African savannas.  相似文献   

15.
The mechanisms permitting the co-existence of tree and grass in savannas have been a source of contention for many years. The two main classes of explanations involve either competition for resources, or differential sensitivity to disturbances. Published models focus principally on one or the other of these mechanisms. Here we introduce a simple ecohydrologic model of savanna vegetation involving both competition for water, and differential sensitivity of trees and grasses to fire disturbances. We show how the co-existence of trees and grasses in savannas can be simultaneously controlled by rainfall and fire, and how the relative importance of the two factors distinguishes between dry and moist savannas. The stability map allows to predict the changes in vegetation structure along gradients of rainfall and fire disturbances realistically, and to clarify the distinction between climate- and disturbance-dependent ecosystems.  相似文献   

16.
Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought‐fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire‐driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2‐million km2 Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait‐based differences in fire tolerance is critical for determining the climate‐carbon‐fire feedback in tropical savanna and forest biomes.  相似文献   

17.
Aim To determine how responses of an established velvet mesquite (Prosopis velutina Woot.) population to a 2002 wildfire were shaped by grazing and non‐native herbaceous species invasions, both of which influenced fire behaviour. Location The study was conducted on contiguous ranches (one actively grazed by cattle, one that had not been grazed since 1968) in the Sonoita Valley of southern Arizona. Plant communities on both ranches were comprised of Chihuahuan semi‐desert grassland, savanna, and Madrean evergreen woodland ecosystems, but large areas were dominated by Lehmann and Boer lovegrass, African grass species that were introduced more than 50 years ago. Methods We selected 243 individuals that had been defoliated and bark scorched during the fire using a stratified random design based on pre‐fire grazing status and dominant grass cover. After the start of the 2003 growing season, we recorded individual tree characteristics, fire damage, and measures of post‐fire response, and tested for relationships among classes of: grazing status, bark damage, dominant grass cover type, abundance of live and dead aboveground branches, flowering status, and sprout number and size. Analyses of fire damage and post‐fire response were interpreted with respect to values of fireline intensity, scorch height and energy release that were projected by a fire behaviour model, nexus . Results Nearly all of the trees on grazed areas suffered low levels of fire damage, while a majority on ungrazed areas suffered moderate to severe damage. Trees on grazed areas consequently had significantly more leaf‐bearing twigs and branches in 2003 but a very low number of root sprouts, while individuals on ungrazed areas had a greater density of root sprouts but little post‐fire dead branching and almost no living branches. Among the ungrazed grassland types, more than 75% of the trees on Boer lovegrass plots suffered moderate to severe damage, while a similar percentage of trees in native grass areas suffered low damage. These differences were: (1) attributed to variations in fire characteristics that were caused by differences in litter production and removal, and (2) ecologically significant because trees in the severe damage class showed almost no aboveground post‐fire branching, either live or dead in 2003, while trees in the low damage class exhibited a greater amount of both. Main conclusions Our results affirm the notion that effective management of western grasslands where mesquite encroachment has or will become a problem requires a better understanding of how interactions among key ecosystem influences (e.g. fire, grazing, non‐native species) affect not only mesquite seedlings and saplings but also larger, established individuals and thereby the long‐term structure and functioning of semi‐desert grassland ecosystems. As managers shift their focus from eradication to management of mesquite in western grasslands and savannas, our results provide insights into how prescribed fires (and their effects on mesquite populations) differ from wildfires and how such effects may be mediated by the altered land uses and ecosystem characteristics that now exist in many western ecosystems.  相似文献   

18.
Termites are considered to be ecosystem engineers because they modify their biophysical environments. We tested the effects of soil-nutrient alteration in termite-enriched soils compared with termite-free open savannas. We also tested whether non-nutrient alterations (soil disturbance) induced by termites led to changes in tree-seedling growth. Soil samples taken from termite-enriched soils and adjacent open savanna sites in KwaZulu-Natal, South Africa were analyzed for nitrogen, pH, organic carbon and water-holding capacity. Seeds from three dominant tree species, Acacia sieberiana, Celtis africana and Ziziphus mucronata, were grown in soils taken from termite-enriched soils and adjacent savannas. Overall, organic carbon and nitrogen content were higher in termite-enriched soils than in adjacent savannas. We found that these differences in nutrients did not directly affect seedling growth rates or final height. However, C. africana had increased growth rates in compacted termite-enriched soils, while A. sieberiana seedlings were taller in non-compacted soils. We conclude that the indirect effects of disturbance by termites may be as important as the direct effects of increased nutrients for growth of savanna trees.  相似文献   

19.
Abstract Horning vegetation, an expression of aggression predominately among adult males, may be universal among horned ungulates. We found that horning by wildebeest (Connochaetes taurinus) males had an important impact on the Serengeti ecosystem, Africa, from the 1960s to the 1980s, as the wildebeest population increased from 0.25 million to 1.5 million. Between 1979 and 2003, we sampled 2,626 trees and bushes to assess horning impacts. In the 1986 survey, 57% (n = 1,416) of trees and bushes had suffered moderate to severe horning injury. Severe damage frequency was highest (68%) in open grassland, where a few trees were exposed to many wildebeests, and lowest (24%) inside savanna woodland where wildebeest rarely go. Horning by 300,000–400,000 adult male wildebeest contributed to converting savanna woodland into tree savanna and open grassland. Horning by wildebeest, in combination with known impacts such as grazing, manuring, and trampling, may result in ecological impacts to Serengeti ecosystems only exceeded by the elephant (Loxodonta africana) and fire. More research is needed to understand the ecological and management implications of horning.  相似文献   

20.
Aims Both dominance distribution of species and the composition of the dominant species determine the distribution of traits within community. Leaf carbon (C) and nitrogen (N) isotopic composition are important leaf traits, and such traits of dominant species are associated with ecosystem C, water and N cycling. Very little is known how dominant species with distinct traits (e.g. N-fixing leguminous and non-leguminous trees) mediate resource utilization of the ecosystems in stressful environment.Methods Leaves of 81 dominant leguminous and non-leguminous trees were collected in forest (moist semi-deciduous and dry semi-deciduous ecosystems) and savanna (costal savanna, Guinean savanna and west Sudanian savanna ecosystems) areas and the transitional zone (between the forest and the savanna) along the transect from the south to the north of Ghana. We measured leaf traits, i.e. leaf δ 13 C, leaf δ 15 N, leaf water content, leaf mass per area (LMA) and C and N concentration. Correlation analyses were used to examine trait–trait relationships, and relationships of leaf traits with temperature and precipitation. We used analysis of covariance to test the differences in slopes of the linear regressions between legumes and non-legumes.Important findings Leaf δ 13 C, δ 15 N, leaf water content and LMA did not differ between leguminous and non-leguminous trees. Leaf N concentration and C:N ratio differed between the two groups. Moreover, leaf traits varied significantly among the six ecosystems. δ 13 C values were negatively correlated with annual precipitation and positively correlated with mean annual temperature. In contrast, leaf δ 15 N of non-leguminous trees were positively correlated with annual precipitation and negatively correlated with mean annual temperature. For leguminous trees, such correlations were not significant. We also found significant coordination between leaf traits. However, the slopes of the linear relationships were significantly different between leguminous and non-leguminous trees. Our results indicate that shifts in dominant trees with distinct water-use efficiency were corresponded to the rainfall gradient. Moreover, leguminous trees, those characterized with relative high water-use efficiency in the low rainfall ecosystems, were also corresponded to the relative high N use efficiency. The high proportion of leguminous trees in the savannas is crucial to mitigate nutrient stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号