首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy.

Methodology/Principal Findings

EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2±2.9% and 83.7±3.0% vs. 53.5±2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62±0.03 and 1.68±0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6±0.3 and 8.1±0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7±44.1 vs. 340.0±29.1 CD34+/CD45 cells/1×105 mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9±0.7 vs. 2.6±0.4 CD34+ cells/HPF, P<0.001) 3 days after the last injection.

Conclusions/Significance

Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.  相似文献   

3.

Objective

HIBM (Hereditary Inclusion Body Myopathy) is a recessive hereditary disease characterized by adult-onset, slowly progressive muscle weakness sparing the quadriceps. It is caused by a single missense mutation of each allele of the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, a bifunctional enzyme catalyzing the first two steps of sialic acid synthesis in mammals. However, the mechanisms and cellular pathways affected by the GNE mutation and causing the muscle weakness could not be identified so far. Based on recent evidence in literature, we investigated a new hypothesis, i.e. the involvement in the disease of the GM3 ganglioside, a specific glycolipid implicated in muscle cell proliferation and differentiation.

Methods

qRT-PCR analysis of St3gal5 (GM3 synthase) gene expression and HPLC quantification of GM3 ganglioside were conducted on muscle tissue from a mouse model of HIBM harboring the M712T mutation of GNE (GneM712T/M712T mouse) vs control mice (Gne+/+ mouse).

Results

St3gal5 mRNA levels were significantly lower in GneM712T/M712T mouse muscles vs Gne+/+ mouse muscles (64.41%±10% of Gne+/+ levels). GM3 ganglioside levels showed also a significant decrease in GneM712T/M712T mouse muscle compared to Gne+/+ mouse muscle (18.09%±5.33% of Gne+/+ levels). Although these GneM712T/M712T mice were described to suffer severe glomerular proteinuria, no GM3 alterations were noted in kidneys, highlighting a tissue specific alteration of gangliosides.

Conclusion

The M712T mutation of GNE hampers the muscle ability to synthesize normal levels of GM3. This is the first time that a mutation of GNE can be related to the molecular pathological mechanism of HIBM.  相似文献   

4.

Background

Acetamiprid (ACE) and imidacloprid (IMI) belong to a new, widely used class of pesticide, the neonicotinoids. With similar chemical structures to nicotine, neonicotinoids also share agonist activity at nicotinic acetylcholine receptors (nAChRs). Although their toxicities against insects are well established, their precise effects on mammalian nAChRs remain to be elucidated. Because of the importance of nAChRs for mammalian brain function, especially brain development, detailed investigation of the neonicotinoids is needed to protect the health of human children. We aimed to determine the effects of neonicotinoids on the nAChRs of developing mammalian neurons and compare their effects with nicotine, a neurotoxin of brain development.

Methodology/Principal Findings

Primary cultures of cerebellar neurons from neonatal rats allow for examinations of the developmental neurotoxicity of chemicals because the various stages of neurodevelopment—including proliferation, migration, differentiation, and morphological and functional maturation—can be observed in vitro. Using these cultures, an excitatory Ca2+-influx assay was employed as an indicator of neural physiological activity. Significant excitatory Ca2+ influxes were evoked by ACE, IMI, and nicotine at concentrations greater than 1 µM in small neurons in cerebellar cultures that expressed the mRNA of the α3, α4, and α7 nAChR subunits. The firing patterns, proportion of excited neurons, and peak excitatory Ca2+ influxes induced by ACE and IMI showed differences from those induced by nicotine. However, ACE and IMI had greater effects on mammalian neurons than those previously reported in binding assay studies. Furthermore, the effects of the neonicotinoids were significantly inhibited by the nAChR antagonists mecamylamine, α-bungarotoxin, and dihydro-β-erythroidine.

Conclusions/Significance

This study is the first to show that ACE, IMI, and nicotine exert similar excitatory effects on mammalian nAChRs at concentrations greater than 1 µM. Therefore, the neonicotinoids may adversely affect human health, especially the developing brain.  相似文献   

5.
6.

Background

The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr) or ΔR4-21 “micro” utrophin (μUtr) protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice.

Methods and Findings

Recombinant TAT-Utr and TAT-μUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-μUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290±920 U versus 5,950±1,120 U; PBS versus TAT), the prevalence of muscle degeneration/regeneration (54%±5% versus 37%±4% of centrally nucleated fibers; PBS versus TAT), the susceptibility to eccentric contraction-induced force drop (72%±5% versus 40%±8% drop; PBS versus TAT), and increased specific force production (9.7±1.1 N/cm2 versus 12.8±0.9 N/cm2; PBS versus TAT).

Conclusions

These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.  相似文献   

7.

Background

The positron-emitting radionuclide 89Zr (t 1/2 = 3.17 days) was used to prepare 89Zr-radiolabeled trastuzumab for use as a radiotracer for characterizing HER2/neu-positive breast tumors. In addition, pharmacodynamic studies on HER2/neu expression levels in response to therapeutic doses of PU-H71 (a specific inhibitor of heat-shock protein 90 [Hsp90]) were conducted.

Methodology/Principal Findings

Trastuzumab was functionalized with desferrioxamine B (DFO) and radiolabeled with [89Zr]Zr-oxalate at room temperature using modified literature methods. ImmunoPET and biodistribution experiments in female, athymic nu/nu mice bearing sub-cutaneous BT-474 (HER2/neu positive) and/or MDA-MB-468 (HER2/neu negative) tumor xenografts were conducted. The change in 89Zr-DFO-trastuzumab tissue uptake in response to high- and low-specific-activity formulations and co-administration of PU-H71 was evaluated by biodistribution studies, Western blot analysis and immunoPET. 89Zr-DFO-trastuzumab radiolabeling proceeded in high radiochemical yield and specific-activity 104.3±2.1 MBq/mg (2.82±0.05 mCi/mg of mAb). In vitro assays demonstrated >99% radiochemical purity with an immunoreactive fraction of 0.87±0.07. In vivo biodistribution experiments revealed high specific BT-474 uptake after 24, 48 and 72 h (64.68±13.06%ID/g; 71.71±10.35%ID/g and 85.18±11.10%ID/g, respectively) with retention of activity for over 120 h. Pre-treatment with PU-H71 was followed by biodistribution studies and immunoPET of 89Zr-DFO-trastuzumab. Expression levels of HER2/neu were modulated during the first 24 and 48 h post-administration (29.75±4.43%ID/g and 41.42±3.64%ID/g, respectively). By 72 h radiotracer uptake (73.64±12.17%ID/g) and Western blot analysis demonstrated that HER2/neu expression recovered to baseline levels.

Conclusions/Significance

The results indicate that 89Zr-DFO-trastuzumab provides quantitative and highly-specific delineation of HER2/neu positive tumors, and has potential to be used to measure the efficacy of long-term treatment with Hsp90 inhibitors, like PU-H71, which display extended pharmacodynamic profiles.  相似文献   

8.

Background

Cardiovascular disease is the leading cause of mortality in diabetics, and it has a complex etiology that operates on several levels. Endothelial dysfunction and increased generation of reactive oxygen species are believed to be an underlying cause of vascular dysfunction and coronary artery disease in diabetes. This impairment is likely the result of decreased bioavailability of nitric oxide (NO) within the vasculature. However, it is unclear whether hyperglycemia per se stimulates NADPH oxidase-derived superoxide generation in vascular tissue.

Methods and Results

This study focused on whether NADPH oxidase-derived superoxide is elevated in vasculature tissue evoking endothelial/smooth muscle dysfunction in the hyperglycemic (169±4 mg%) Goto-Kakizaki (GK) rat. By dihydroethidine fluorescence staining, we determined that aorta superoxide levels were significantly elevated in 9 month-old GK compared with age matched Wistar (GK; 195±6%, Wistar; 100±3.5%). Consistent with these findings, 10−6 mol/L acetylcholine-induced relaxation of the carotid artery was significantly reduced in GK rats compared with age matched Wistar (GK; 41±7%, Wistar; 100±5%) and measurements in the aorta showed a similar trend (p = .08). In contrast, relaxation to the NO donor SNAP was unaltered in GK compared to Wistar. Endothelial dysfunction was reversed by lowering of superoxide with apocynin, a specific Nox inhibitor.

Conclusions

The major findings from this study are that chronic hyperglycemia induces significant vascular dysfunction in both the aorta and small arteries. Hyperglycemic induced increases in NAD(P)H oxidase activity that did not come from an increase in the expression of the NAD(P)H oxidase subunits, but more likely as a result of chronic activation via intracellular signaling pathways.  相似文献   

9.

Background

Obesity hypoventilation syndrome (OHS) is associated with increased cardiovascular morbidity. What moderate chronic hypoventilation adds to obesity on systemic inflammation and endothelial dysfunction remains unknown.

Question

To compare inflammatory status and endothelial function in OHS versus eucapnic obese patients.

Methodology

14 OHS and 39 eucapnic obese patients matched for BMI and age were compared. Diurnal blood gazes, overnight polysomnography and endothelial function, measured by reactive hyperemia peripheral arterial tonometry (RH-PAT), were assessed. Inflammatory (Leptin, RANTES, MCP-1, IL-6, IL-8, TNFα, Resistin) and anti-inflammatory (adiponectin, IL-1Ra) cytokines were measured by multiplex beads immunoassays.

Principal Findings

OHS exhibited a higher PaCO2, a lower forced vital capacity (FVC) and tended to have a lower PaO2 than eucapnic obese patients. HS-CRP, RANTES levels and glycated haemoglobin (HbA1c) were significantly increased in OHS (respectively 11.1±10.9 vs. 5.7±5.5 mg.l−1 for HS-CRP, 55.9±55.3 vs 23.3±15.8 ng/ml for RANTES and 7.3±4.3 vs 6.1±1.7 for HbA1c). Serum adiponectin was reduced in OHS (7606±2977 vs 13660±7854 ng/ml). Endothelial function was significantly more impaired in OHS (RH-PAT index: 0.22±0.06 vs 0.51±0.11).

Conclusions

Compared to eucapnic obesity, OHS is associated with a specific increase in the pro-atherosclerotic RANTES chemokine, a decrease in the anti-inflammatory adipokine adiponectin and impaired endothelial function. These three conditions are known to be strongly associated with an increased cardiovascular risk.

Trial Registration

ClinicalTrials.gov NCT00603096  相似文献   

10.

Background

Metabolic and behavioral adaptations to caloric restriction (CR) in free-living conditions have not yet been objectively measured.

Methodology and Principal Findings

Forty-eight (36.8±1.0 y), overweight (BMI 27.8±0.7 kg/m2) participants were randomized to four groups for 6-months; Control: energy intake at 100% of energy requirements; CR: 25% calorie restriction; CR+EX: 12.5% CR plus 12.5% increase in energy expenditure by structured exercise; LCD: low calorie diet (890 kcal/d) until 15% weight reduction followed by weight maintenance. Body composition (DXA) and total daily energy expenditure (TDEE) over 14-days by doubly labeled water (DLW) and activity related energy activity (AREE) were measured after 3 (M3) and 6 (M6) months of intervention. Weight changes at M6 were −1.0±1.1% (Control), −10.4±0.9% (CR), −10.0±0.8% (CR+EX) and −13.9±0.8% (LCD). At M3, absolute TDEE was significantly reduced in CR (−454±76 kcal/d) and LCD (−633±66 kcal/d) but not in CR+EX or controls. At M6 the reduction in TDEE remained lower than baseline in CR (−316±118 kcal/d) and LCD (−389±124 kcal/d) but reached significance only when CR and LCD were combined (−351±83 kcal/d). In response to caloric restriction (CR/LCD combined), TDEE adjusted for body composition, was significantly lower by −431±51 and −240±83 kcal/d at M3 and M6, respectively, indicating a metabolic adaptation. Likewise, physical activity (TDEE adjusted for sleeping metabolic rate) was significantly reduced from baseline at both time points. For control and CR+EX, adjusted TDEE (body composition or sleeping metabolic rate) was not changed at either M3 or M6.

Conclusions

For the first time we show that in free-living conditions, CR results in a metabolic adaptation and a behavioral adaptation with decreased physical activity levels. These data also suggest potential mechanisms by which CR causes large inter-individual variability in the rates of weight loss and how exercise may influence weight loss and weight loss maintenance.

Trial Registration

ClinicalTrials.gov NCT00099151  相似文献   

11.

Objective

The α7 nicotinic acetylcholine receptors (nAChRs) play a vital role in the pathophysiology of neuropsychiatric diseases such as Alzheimer’s disease and depression. However, there is currently no suitable positron emission tomography (PET) or Single-Photon Emission Computed Tomography (SPECT) radioligands for imaging α7 nAChRs in brain. Here our aim is to radiosynthesize a novel SPECT radioligand 131I-CHIBA-1001 for whole body biodistribution study and in vivo imaging of α7 nAChRs in brain.

Method

131I-CHIBA-1001 was radiosynthesized by chloramine-T method. Different conditions of reaction time and temperature were tested to get a better radiolabeling yield. Radiolabeling yield and radiochemical purities of 131I-CHIBA-1001 were analyzed by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) system. Whole body biodistribution study was performed at different time points post injection of 131I-CHIBA-1001 in KM mice. Monkey subject was used for in vivo SPECT imaging in brain.

Result

The radiolabeling yield of 131I-CHIBA-1001 reached 96% within 1.5∼2.0 h at 90∼95°C. The radiochemical purity reached more than 99% after HPLC purification. 131I-CHIBA-1001 was highly stable in saline and fresh human serum in room temperature and 37°C separately. The biodistribution data of brain at 15, 30, and 60 min were 11.05±1.04%ID/g, 8.8±0.04%ID/g and 6.28±1.13%ID/g, respectively. In experimental SPECT imaging, the distribution of radioactivity in the brain regions was paralleled with the distribution of α7 nAChRs in the monkey brain. Moreover, in the blocking SPECT imaging study, the selective α7 nAChR agonist SSR180711 blocked the radioactive uptake in the brain successfully.

Conclusion

The CHIBA-1001 can be successfully radiolabeled with 131I using the chloramine-T method. 131I-CHIBA-1001 can successfully accumulate in the monkey brain and image the α7 acetylcholine receptors. 131I-CHIBA-1001 can be a candidate for imagingα7 acetylcholine receptors, which will be of great value for the diagnosis and treatment of mental diseases.  相似文献   

12.

Background

Most forms of chronic kidney disease are characterized by progressive renal and cardiac fibrosis leading to dysfunction. Preliminary evidence suggests that various bone marrow-derived cell populations have antifibrotic effects. In exploring the therapeutic potential of bone marrow derived cells in chronic cardio-renal disease, we examined the anti-fibrotic effects of bone marrow-derived culture modified cells (CMCs) and stromal cells (SCs).

Methodology/Principal Findings

In vitro, CMC-conditioned medium, but not SC-conditioned medium, inhibited fibroblast collagen production and cell signalling in response to transforming growth factor-ß. The antifibrotic effects of CMCs and SCs were then evaluated in the 5/6 nephrectomy model of chronic cardio-renal disease. While intravascular infusion of 106 SCs had no effect, 106 CMCs reduced renal fibrosis compared to saline in the glomeruli (glomerulosclerosis index: 0.8±0.1 v 1.9±0.2 arbitrary units) and the tubulointersitium (% area type IV collagen: 1.2±0.3 v 8.4±2.0, p<0.05 for both). Similarly, 106 CMCs reduced cardiac fibrosis compared to saline (% area stained with picrosirius red: 3.2±0.3 v 5.1±0.4, p<0.05), whereas 106 SCs had no effect. Structural changes induced by CMC therapy were accompanied by improved function, as reflected by reductions in plasma creatinine (58±3 v 81±11 µmol/L), urinary protein excretion (9×/÷1 v 64×/÷1 mg/day), and diastolic cardiac stiffness (left ventricular end-diastolic pressure-volume relationship: 0.030±0.003 v 0.058±0.011 mm Hg/µL, p<0.05 for all). Despite substantial improvements in structure and function, only rare CMCs were present in the kidney and heart, whereas abundant CMCs were detected in the liver and spleen.

Conclusions/Significance

Together, these findings provide the first evidence suggesting that CMCs, but not SCs, exert a protective action in cardio-renal disease and that these effects may be mediated by the secretion of diffusible anti-fibrotic factor(s).  相似文献   

13.

Background

We conducted a Phase I dose-escalation trial of ADMVA, a Clade-B''/C-based HIV-1 candidate vaccine expressing env, gag, pol, nef, and tat in a modified vaccinia Ankara viral vector. Sequences were derived from a prevalent circulating HIV-1 recombinant form in Yunnan, China, an area of high HIV incidence. The objective was to evaluate the safety and immunogenicity of ADMVA in human volunteers.

Methodology/Principal Findings

ADMVA or placebo was administered intramuscularly at months 0, 1 and 6 to 50 healthy adult volunteers not at high risk for HIV-1. In each dosage group [1×107 (low), 5×107 (mid), or 2.5×108 pfu (high)] volunteers were randomized in a 3∶1 ratio to receive ADMVA or placebo in a double-blinded design. Subjects were followed for local and systemic reactogenicity, adverse events including cardiac adverse events, and clinical laboratory parameters. Study follow up was 18 months. Humoral immunogenicity was evaluated by anti-gp120 binding ELISA, immunoflourescent staining, and HIV-1 neutralization. Cellular immunogenicity was assessed by a validated IFNγ ELISpot assay and intracellular cytokine staining. Anti-vaccinia binding titers were measured by ELISA.ADMVA was generally well-tolerated, with no vaccine-related serious adverse events or cardiac adverse events. Local or systemic reactogenicity events were reported by 77% and 78% of volunteers, respectively. The majority of events were of mild intensity. The IFNγ ELISpot response rate to any HIV antigen was 0/12 (0%) in the placebo group, 3/12 (25%) in the low dosage group, 6/12 (50%) in the mid dosage group, and 8/13 (62%) in the high dosage group. Responses were often multigenic and occasionally persisted up to one year post vaccination. Antibodies to gp120 were detected in 0/12 (0%), 8/13 (62%), 6/12 (50%) and 10/13 (77%) in the placebo, low, mid, and high dosage groups, respectively. Antibodies persisted up to 12 months after vaccination, with a trend toward agreement with the ability to neutralize HIV-1 SF162 in vitro. Two volunteers mounted antibodies that were able to neutralize clade-matched viruses.

Conclusions/Significance

ADMVA was well-tolerated and elicited durable humoral and cellular immune responses.

Trial Registration

Clinicaltrials.gov NCT00252148  相似文献   

14.

Background

Although the etiology of idiopathic pulmonary fibrosis (IPF) remains perplexing, adaptive immune activation is evident among many afflicted patients. Repeated cycles of antigen-induced proliferation cause T-cells to lose surface expression of CD28, and we hypothesized this process might also occur in IPF.

Methodology/Principal Findings

Peripheral blood CD4 T-cells from 89 IPF patients were analyzed by flow cytometry and cytokine multiplex assays, and correlated with clinical events. In comparison to autologous CD4+CD28+cells, the unusual CD4+CD28null lymphocytes seen in many IPF patients had discordant expressions of activation markers, more frequently produced cytotoxic mediators perforin (2.4±0.8% vs. 60.0±7.4%, p<0.0001) and granzyme B (4.5±2.8% vs.74.9±6.5%, p<0.0001), produced greater amounts of many pro-inflammatory cytokines, and less frequently expressed the regulatory T-cell marker FoxP3 (12.9±1.1% vs. 3.3±0.6% p<0.0001). Infiltration of CD4+CD28null T-cells in IPF lungs was confirmed by confocal microscopy. Interval changes of CD28 expression among subjects who had replicate studies were correlated with conterminous changes of their forced vital capacities (rs = 0.49, p = 0.012). Most importantly, one-year freedom from major adverse clinical events (either death or lung transplantation) was 56±6% among 78 IPF patients with CD4+CD28+/CD4total≥82%, compared to 9±9% among those with more extensive CD28 down-regulation (CD4+CD28+/CD4total<82%) (p = 0.0004). The odds ratio for major adverse events among those with the most extensive CD28 down-regulation was 13.0, with 95% confidence intervals 1.6-111.1.

Conclusions/Significance

Marked down-regulation of CD28 on circulating CD4 T-cells, a result of repeated antigen-driven proliferations, is associated with poor outcomes in IPF patients. The CD4+CD28null cells of these patients have potentially enhanced pathogenic characteristics, including increased productions of cytotoxic mediators and pro-inflammatory cytokines. These findings show proliferative T-cell responses to antigen(s) resulting in CD28 down-regulation are associated with progression and manifestations of IPF, and suggest assays of circulating CD4 T-cells may identify patients at greatest risk for clinical deterioration.  相似文献   

15.

Background

Caffeine is one of the most widely consumed pharmacologically active substances. Its acute effect on myocardial blood flow is widely unknown. Our aim was to assess the acute effect of caffeine in a dose corresponding to two cups of coffee on myocardial blood flow (MBF) in coronary artery disease (CAD).

Methodology/Principal Findings

MBF was measured with 15O-labelled H2O and Positron Emission Tomography (PET) at rest and after supine bicycle exercise in controls (n = 15, mean age 58±13 years) and in CAD patients (n = 15, mean age 61±9 years). In the latter, regional MBF was assessed in segments subtended by stenotic and remote coronary arteries. All measurements were repeated fifty minutes after oral caffeine ingestion (200 mg). Myocardial perfusion reserve (MPR) was calculated as ratio of MBF during bicycle stress divided by MBF at rest. Resting MBF was not affected by caffeine in both groups. Exercise-induced MBF response decreased significantly after caffeine in controls (2.26±0.56 vs. 2.02±0.56, P<0.005), remote (2.40±0.70 vs. 1.78±0.46, P<0.001) and in stenotic segments (1.90±0.41 vs. 1.38±0.30, P<0.001). Caffeine decreased MPR significantly by 14% in controls (P<0.05 vs. baseline). In CAD patients MPR decreased by 18% (P<0.05 vs. baseline) in remote and by 25% in stenotic segments (P<0.01 vs. baseline).

Conclusions

We conclude that caffeine impairs exercise-induced hyperaemic MBF response in patients with CAD to a greater degree than age-matched controls.  相似文献   

16.

Background

In vitro fertilization (IVF) of eggs by frozen and thawed C57BL/6J mouse sperm is inhibited by dead sperm and enhanced by preincubation of the sperm in calcium-free medium. In other species, the presence of sperm killed by freezing and thawing has been associated with the generation of hydrogen peroxide.

Methodology/Principal Findings

The proportion of eggs fertilized by cryopreserved C57BL/6J mouse sperm was increased significantly by increasing the volume of fertilization medium in which sperm and eggs were coincubated. Enhanced fertilization occurred even though the concentration of potentially fertile sperm was decreased fivefold. This suggested that if a putative soluble factor was inhibiting fertilization, dilution of that factor, but not the sperm, should increase the fertilization rate. This was achieved by coincubation of the gametes in cell culture inserts (Transwells®) that during incubation were transferred progressively to wells containing fresh fertilization medium. Fertilization rates using inserts were high (66.6±2.4% versus 27.3%±2.8% in wells alone). On the assumption that the soluble factor could be H2O2, reduced glutathione was added to the fertilization medium. This enhanced fertilization rate significantly (76.6%±2.0% versus 21.2%±1.9%), while addition of oxidized glutathione did not (82.7%±6.5% with reduced glutathione; 44.5±8.8% with oxidized glutathione; 47.8%±12.1% with no glutathione). Positive effects of reduced glutathione on IVF were also seen with frozen 129S1, FVB, and C3H sperm, and sperm from two lines of genetically modified C57BL/6J mice.

Conclusions/Significance

IVF in cell culture inserts and addition of glutathione to fertilization medium significantly increased the proportion of eggs fertilized by cryopreserved mouse sperm from four inbred strains, suggesting that reactive oxygen species generated during fertilization inhibit fertilization. The modified IVF techniques developed here enhance the feasibility and efficiency of using cryopreserved sperm from genetically modified lines of inbred mice.  相似文献   

17.

Introduction

We studied the effect of rosuvastatin on endothelial and macrovascular function, cardiovascular risk factors and the complement pathway in patients with systemic sclerosis (SSc).

Methods

Altogether 28 patients with SSc underwent laboratory and complex vascular assessments before and after six months of 20 mg rosuvastatin treatment. Flow-mediated dilation (FMD) of the brachial artery, as well as carotid artery intima-media thickness (ccIMT), carotid-femoral and aorto-femoral pulse wave-velocity (PWV) were analyzed by ECG-synchronized ultrasound. Ankle-brachial index (ABI) was determined by Doppler, and forearm skin microcirculation was assessed by Laser Doppler perfusion monitoring.

Results

Brachial artery FMD significantly improved upon rosuvastatin therapy (2.2% ± 3.3% before versus 5.7% ± 3.9% after treatment, P = 0.0002). With regard to patient subsets, FMD significantly improved in the 21 lcSSc patients (from 2.1% to 5.6%, P = 0.001). In the seven dcSSc patients, we observed a tendency of improvement in FMD (from 3% to 6%, P = 0.25). Changes in PWV, ccIMT and ABI were not significant. Mean triglyceride (1.7 ± 0.97 versus 1.3 ± 0.46 mmol/l, P = 0.0004), total cholesterol (5.3 ± 1.6 mmol/l versus 4.2 ± 1.3 mmol/l, P = 0.0003), low density lipoprotein cholesterol (3.0 ± 1.3 versus 2.2 ± 1.0 mmol/l, P = 0.005) and C-reactive protein levels (CRP) (5.1 ± 5.2 versus 3.4 ± 2.7, P = 0.01) levels significantly decreased after rosuvastatin treatment. Mean C3, C4 and IC levels also decreased significantly as compared to pretreatment values.

Conclusions

Six-month rosuvastatin therapy improves endothelial function and lowers CRP, C3, C4 and IC levels indicating possible favourable effects of this statin on the cardiovascular and immune system in SSc.  相似文献   

18.

Background

Global programs of anti-HIV treatment depend on sustained laboratory capacity to assess treatment initiation thresholds and treatment response over time. Currently, there is no valid alternative to CD4 count testing for monitoring immunologic responses to treatment, but laboratory cost and capacity limit access to CD4 testing in resource-constrained settings. Thus, methods to prioritize patients for CD4 count testing could improve treatment monitoring by optimizing resource allocation.

Methods and Findings

Using a prospective cohort of HIV-infected patients (n = 1,956) monitored upon antiretroviral therapy initiation in seven clinical sites with distinct geographical and socio-economic settings, we retrospectively apply a novel prediction-based classification (PBC) modeling method. The model uses repeatedly measured biomarkers (white blood cell count and lymphocyte percent) to predict CD4+ T cell outcome through first-stage modeling and subsequent classification based on clinically relevant thresholds (CD4+ T cell count of 200 or 350 cells/µl). The algorithm correctly classified 90% (cross-validation estimate = 91.5%, standard deviation [SD] = 4.5%) of CD4 count measurements <200 cells/µl in the first year of follow-up; if laboratory testing is applied only to patients predicted to be below the 200-cells/µl threshold, we estimate a potential savings of 54.3% (SD = 4.2%) in CD4 testing capacity. A capacity savings of 34% (SD = 3.9%) is predicted using a CD4 threshold of 350 cells/µl. Similar results were obtained over the 3 y of follow-up available (n = 619). Limitations include a need for future economic healthcare outcome analysis, a need for assessment of extensibility beyond the 3-y observation time, and the need to assign a false positive threshold.

Conclusions

Our results support the use of PBC modeling as a triage point at the laboratory, lessening the need for laboratory-based CD4+ T cell count testing; implementation of this tool could help optimize the use of laboratory resources, directing CD4 testing towards higher-risk patients. However, further prospective studies and economic analyses are needed to demonstrate that the PBC model can be effectively applied in clinical settings. Please see later in the article for the Editors'' Summary  相似文献   

19.

Background and Aims

Although it is well known that fire acts as a selective pressure shaping plant phenotypes, there are no quantitative estimates of the heritability of any trait related to plant persistence under recurrent fires, such as serotiny. In this study, the heritability of serotiny in Pinus halepensis is calculated, and an evaluation is made as to whether fire has left a selection signature on the level of serotiny among populations by comparing the genetic divergence of serotiny with the expected divergence of neutral molecular markers (QSTFST comparison).

Methods

A common garden of P. halepensis was used, located in inland Spain and composed of 145 open-pollinated families from 29 provenances covering the entire natural range of P. halepensis in the Iberian Peninsula and Balearic Islands. Narrow-sense heritability (h2) and quantitative genetic differentiation among populations for serotiny (QST) were estimated by means of an ‘animal model’ fitted by Bayesian inference. In order to determine whether genetic differentiation for serotiny is the result of differential natural selection, QST estimates for serotiny were compared with FST estimates obtained from allozyme data. Finally, a test was made of whether levels of serotiny in the different provenances were related to different fire regimes, using summer rainfall as a proxy for fire regime in each provenance.

Key Results

Serotiny showed a significant narrow-sense heritability (h2) of 0·20 (credible interval 0·09–0·40). Quantitative genetic differentiation among provenances for serotiny (QST = 0·44) was significantly higher than expected under a neutral process (FST = 0·12), suggesting adaptive differentiation. A significant negative relationship was found between the serotiny level of trees in the common garden and summer rainfall of their provenance sites.

Conclusions

Serotiny is a heritable trait in P. halepensis, and selection acts on it, giving rise to contrasting serotiny levels among populations depending on the fire regime, and supporting the role of fire in generating genetic divergence for adaptive traits.  相似文献   

20.

Background

Trans fatty acids (TFA) lower HDL and increase triglyceride concentrations while polyunsaturated fatty acids (PUFA) lower triglycerides and may decrease HDL concentrations. The effect of the interaction between trans fat and PUFA on lipids is uncertain.

Methods

Men and women (n = 1032) in the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) study were included. Fatty acids in erythrocyte membranes were measured with gas chromatography while data on potential confounders were obtained from questionnaires. To test the interaction between total erythrocyte PUFA (ePUFA) and TFA (eTFA) on lipid concentrations we distributed eTFA into tertiles and dichotomized ePUFA at the median concentration.

Results

For the 1st, 2nd and 3rd tertiles of eTFA, multivariate-adjusted means±s.e.m for HDL were 46.2±1.1, 46.3±1.1 and 45.5±1.0 mg/dL among those with low ePUFA, respectively, while they were 50.0±1.1, 46.9±1.1 and 44.7±1.1 mg/dL among those with high ePUFA, respectively (P for interaction = 0.01). For the 1st, 2nd and 3rd tertiles of eTFA, multivariate-adjusted means±s.e.m for triglycerides were 178.6±11.3, 144.7±10.9 and 140.8±10.6, respectively, among those with low ePUFA, while they were 133.8±11.3, 145.7±10.9 and 149.3±11.5, respectively, among those with high ePUFA (P for interaction = 0.005). Results for VLDL were similar to those for triglycerides. No significant interactions were observed for LDL or total cholesterol.

Conclusions

The relation between trans fat and HDL, VLDL and triglycerides may depend on PUFA. The benefit of avoiding trans fat may be greater among individuals with higher PUFA intake. Supplementation with PUFA among individuals with relatively high trans fat intake may have limited benefits on lipid profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号