首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute heat shock can induce apoptosis through a canonical pathway involving the upstream activation of caspase-2, followed by BID cleavage and stimulation of the intrinsic pathway. Herein, we report that the BH3-only protein BIM, rather than BID, is essential to heat shock-induced cell death. We observed that BIM-deficient cells were highly resistant to heat shock, exhibiting short and long-term survival equivalent to Bax−/−Bak−/− cells and better than either Bid−/− or dominant-negative caspase-9-expressing cells. Only Bim−/− and Bax−/−Bak−/− cells exhibited resistance to mitochondrial outer membrane permeabilization and loss of mitochondrial inner membrane potential. Moreover, while dimerized caspase-2 failed to induce apoptosis in Bid−/− cells, it readily did so in Bim−/− cells, implying that caspase-2 kills exclusively through BID, not BIM. Finally, BIM reportedly associates with MCL-1 following heat shock, and Mcl-1−/− cells were indeed sensitized to heat shock-induced apoptosis. However, pharmacological inhibition of BCL-2 and BCL-XL with ABT-737 also sensitized cells to heat shock, most likely through liberation of BIM. Thus, BIM mediates heat shock-induced apoptosis through a BAX/BAK-dependent pathway that is antagonized by antiapoptotic BCL-2 family members.  相似文献   

2.
Paclitaxel (Taxol)-induced cell death requires the intrinsic cell death pathway, but the specific participants and the precise mechanisms are poorly understood. Previous studies indicate that a BH3-only protein BIM (BCL-2 Interacting Mediator of cell death) plays a role in paclitaxel-induced apoptosis. We show here that BIM is dispensable in apoptosis with paclitaxel treatment using bim−/− MEFs (mouse embryonic fibroblasts), the bim−/− mouse breast tumor model, and shRNA-mediated down-regulation of BIM in human breast cancer cells. In contrast, both bak −/− MEFs and human breast cancer cells in which BAK was down-regulated by shRNA were more resistant to paclitaxel. However, paclitaxel sensitivity was not affected in bax−/− MEFs or in human breast cancer cells in which BAX was down-regulated, suggesting that paclitaxel-induced apoptosis is BAK-dependent, but BAX-independent. In human breast cancer cells, paclitaxel treatment resulted in MCL-1 degradation which was prevented by a proteasome inhibitor, MG132. A Cdk inhibitor, roscovitine, blocked paclitaxel-induced MCL-1 degradation and apoptosis, suggesting that Cdk activation at mitotic arrest could induce subsequent MCL-1 degradation in a proteasome-dependent manner. BAK was associated with MCL-1 in untreated cells and became activated in concert with loss of MCL-1 expression and its release from the complex. Our data suggest that BAK is the mediator of paclitaxel-induced apoptosis and could be an alternative target for overcoming paclitaxel resistance.  相似文献   

3.
Chagas disease is a life-threatening disorder caused by the protozoan parasite Trypanosoma cruzi. Parasite-specific antibodies, CD8+ T cells, as well as IFN-γ and nitric oxide (NO) are key elements of the adaptive and innate immunity against the extracellular and intracellular forms of the parasite. Bim is a potent pro-apoptotic member of the Bcl-2 family implicated in different aspects of the immune regulation, such as negative selection of self-reactive thymocytes and elimination of antigen-specific T cells at the end of an immune response. Interestingly, the role of Bim during infections remains largely unidentified. To explore the role of Bim in Chagas disease, we infected WT, Bim+/−, Bim−/− mice with trypomastigotes forms of the Y strain of T. cruzi. Strikingly, our data revealed that Bim−/− mice exhibit a delay in the development of parasitemia followed by a deficiency in the control of parasite load in the bloodstream and a decreased survival compared to WT and Bim+/− mice. At the peak of parasitemia, peritoneal macrophages of Bim−/− mice exhibit decreased NO production, which correlated with a decrease in the pro-inflammatory Small Peritoneal Macrophage (SPM) subset. A similar reduction in NO secretion, as well as in the pro-inflammatory cytokines IFN-γ and IL-6, was also observed in Bim−/− splenocytes. Moreover, an impaired anti-T. cruzi CD8+ T-cell response was found in Bim−/− mice at this time point. Taken together, our results suggest that these alterations may contribute to the establishment of a delayed yet enlarged parasitic load observed at day 9 after infection of Bim−/− mice and place Bim as an important protein in the control of T. cruzi infections.Subject terms: Cell death and immune response, Infectious diseases  相似文献   

4.
5.
Multicellular organisms maintain genomic integrity and resist tumorigenesis through a tightly regulated DNA damage response (DDR) that prevents propagation of deleterious mutations either through DNA repair or programmed cell death. An impaired DDR leads to tumorigenesis that is accelerated when programmed cell death is prevented. Loss of the ATM (ataxia telangiectasia mutated)-mediated DDR in mice results in T-cell leukemia driven by accumulation of DNA damage accrued during normal T-cell development. Pro-apoptotic BH3-only Bid is a substrate of Atm, and Bid phosphorylation is required for proper cell cycle checkpoint control and regulation of hematopoietic function. In this report, we demonstrate that, surprisingly, loss of Bid increases the latency of leukemogenesis in Atm−/− mice. Bid−/−Atm−/− mice display impaired checkpoint control and increased cell death of DN3 thymocytes. Loss of Bid thus inhibits T-cell tumorigenesis by increasing clearance of damaged cells, and preventing propagation of deleterious mutations.  相似文献   

6.
The multi-BCL-2 homology domain pro-apoptotic BCL-2 family members BAK and BAX have critical roles in apoptosis. They are essential for mitochondrial outer-membrane permeabilization, leading to the release of apoptogenic factors such as cytochrome-c, which promote activation of the caspase cascade and cellular demolition. The BOK protein has extensive amino-acid sequence similarity to BAK and BAX and is expressed in diverse cell types, particularly those of the female reproductive tissues. The BOK-deficient mice have no readily discernible abnormalities, and its function therefore remains unresolved. We hypothesized that BOK may exert functions that overlap with those of BAK and/or BAX and examined this by generating Bok−/−Bak−/− and Bok−/−Bax−/− mice. Combined loss of BOK and BAK did not elicit any noticeable defects, although it remains possible that BOK and BAK have critical roles in developmental cell death that overlap with those of BAX. In most tissues examined, loss of BOK did not exacerbate the abnormalities caused by loss of BAX, such as defects in spermatogenesis or the increase in neuronal populations in the brain and retina. Notably, however, old Bok−/−Bax−/− females had abnormally increased numbers of oocytes from different stages of development, indicating that BOK may have a pro-apoptotic function overlapping with that of BAX in age-related follicular atresia.  相似文献   

7.
The p53 pathway displays a large degree of redundancy in the expression of a number of pro-apoptotic mechanisms following DNA damage that, among others, involves increased expression of several pro-apoptotic genes through transactivation. Spatial and temporal cellular contexts contribute to the complexity of the regulation of apoptosis, hence different genes may show a cell- and tissue-dependent specificity with regard to the regulation of cell death and act in concert or show redundancy with one and another. We used siRNA technology to assess the effect of multiple ablations of documented pro-apoptotic p53 target genes (PPG) in the colorectal cancer cell line HCT116 and generated mice deficient in both of the extrinsic and intrinsic PPGs genes Dr5 and Puma following treatment with chemotherapeutics and ionizing radiation. DR5, Fas, Bax, Bad, Puma and Bnip3L were induced by 5-FU and adriamycin (ADR) in HCT116 cells in a p53-dependent manner. The resulting caspase 3/7 activity in HCT116 cells following treatment were suppressed by ablated expression of the PPGs in the extrinsic as well as the intrinsic pathway. To our surprise, knocking-down any of the PPGs concomitantly with DR5 did not further inhibit caspase 3/7 activity whereas inhibiting DR5-expression in HCT116Bax knockdown (kd) and HCT116Fas kd did, suggesting that these genes act downstream or in synergy with DR5. This was supported by our in vivo observations, since Puma and Dr5 were equally efficient in protecting cells of the spleen from sub-lethal radiation-induced apoptosis but less effective compared with irradiated p53−/− mice. To our surprise, Dr5−/−; Puma−/− mice did not show additive protection from radiation-induced apoptosis in any of the investigated organs. Our data indicates that the intrinsic pathway may rely on extrinsic signals to promote cell death in a cell- and tissue-dependent manner following DNA damage. Furthermore, p53 must rely on mechanisms independent of DR5 and PUMA to initiate apoptosis following γ-radiation in the spleen and thymus in vivo.Key words: p53, KILLER/DR5, PUMA, apoptosis, DNA damage  相似文献   

8.
Both signaling by nitric oxide (NO) and by the Ca2+/calmodulin (CaM)-dependent protein kinase II α isoform (CaMKIIα) are implicated in two opposing forms of synaptic plasticity underlying learning and memory, as well as in excitotoxic/ischemic neuronal cell death. For CaMKIIα, these functions specifically involve also Ca2+-independent autonomous activity, traditionally generated by Thr-286 autophosphorylation. Here, we demonstrate that NO-induced S-nitrosylation of CaMKIIα also directly generated autonomous activity, and that CaMKII inhibition protected from NO-induced neuronal cell death. NO induced S-nitrosylation at Cys-280/289, and mutation of either site abolished autonomy, indicating that simultaneous nitrosylation at both sites was required. Additionally, autonomy was generated only when Ca2+/CaM was present during NO exposure. Thus, generation of this form of CaMKIIα autonomy requires simultaneous signaling by NO and Ca2+. Nitrosylation also significantly reduced subsequent CaMKIIα autophosphorylation specifically at Thr-286, but not at Thr-305. A previously described reduction of CaMKII activity by S-nitrosylation at Cys-6 was also observed here, but only after prolonged (>5 min) exposure to NO donors. These results demonstrate a novel regulation of CaMKII by another second messenger system and indicate its involvement in excitotoxic neuronal cell death.  相似文献   

9.
Dissociated cerebellar granule cells maintained in medium containing 25 mM potassium undergo an apoptotic death when switched to medium with 5 mM potassium. Granule cells from mice in which Bax, a proapoptotic Bcl-2 family member, had been deleted, did not undergo apoptosis in 5 mM potassium, yet did undergo an excitotoxic cell death in response to stimulation with 30 or 100 μM NMDA. Within 2 h after switching to 5 mM K+, both wild-type and Bax-deficient granule cells decreased glucose uptake to <20% of control. Protein synthesis also decreased rapidly in both wild-type and Bax-deficient granule cells to 50% of control within 12 h after switching to 5 mM potassium. Both wild-type and Bax −/− neurons increased mRNA levels of c-jun, and caspase 3 (CPP32) and increased phosphorylation of the transactivation domain of c-Jun after K+ deprivation. Wild-type granule cells in 5 mM K+ increased cleavage of DEVD–aminomethylcoumarin (DEVD-AMC), a fluorogenic substrate for caspases 2, 3, and 7; in contrast, Bax-deficient granule cells did not cleave DEVD-AMC. These results place BAX downstream of metabolic changes, changes in mRNA levels, and increased phosphorylation of c-Jun, yet upstream of the activation of caspases and indicate that BAX is required for apoptotic, but not excitotoxic, cell death. In wild-type cells, Boc-Asp-FMK and ZVAD-FMK, general inhibitors of caspases, blocked cleavage of DEVD-AMC and blocked the increase in TdT-mediated dUTP nick end labeling (TUNEL) positivity. However, these inhibitors had only a marginal effect on preventing cell death, suggesting a caspase-independent death pathway downstream of BAX in cerebellar granule cells.  相似文献   

10.
11.
12.
Tachykinins are a large group of neuropeptides with both central and peripheral activity. Despite the increasing number of studies reporting a growth supportive effect of tachykinin peptides in various in vitro stem cell systems, it remains unclear whether these findings are applicable in vivo. To determine how neurokinin-1 receptor (NK-1R) deficient hematopoietic stem cells would behave in a normal in vivo environment, we tested their reconstitution efficiency using competitive bone marrow repopulation assays. We show here that bone marrow taken from NK-1R deficient mice (Tacr1−/−) showed lineage specific B and T cell engraftment deficits compared to wild-type competitor bone marrow cells, providing evidence for an involvement of NK-1R signalling in adult hematopoiesis. Tachykinin knockout mice lacking the peptides SP and/or HK-1 (Tac1 −/−, Tac4 −/− and Tac1 −/−/Tac4 −/− mice) repopulated a lethally irradiated wild-type host with similar efficiency as competing wild-type bone marrow. The difference between peptide and receptor deficient mice indicates a paracrine and/or endocrine mechanism of action rather than autocrine signalling, as tachykinin peptides are supplied by the host environment.  相似文献   

13.

Background

Phenobarbital (PB) is the most well-known among numerous non-genotoxic carcinogens that cause the development of hepatocellular carcinoma (HCC). PB activates nuclear xenobiotic receptor Constitutive Active/Androstane Receptor (CAR; NR1I3) and this activation is shown to determine PB promotion of HCC in mice. The molecular mechanism of CAR-mediated tumor promotion, however, remains elusive at the present time. Here we have identified Growth Arrest and DNA Damage-inducible 45β (GADD45B) as a novel CAR target, through which CAR represses cell death.

Methodology/Principal Findings

PB activation of nuclear xenobiotic receptor CAR is found to induce the Gadd45b gene in mouse liver throughout the development of HCC as well as in liver tumors. Given the known function of GADD45B as a factor that represses Mitogen-activated protein Kinase Kinase 7 - c-Jun N-terminal Kinase (MKK7-JNK) pathway-mediated apoptosis, we have now demonstrated that CAR interacts with GADD45B to repress Tumor Necrosis Factor α ( TNFα)-induced JNK1 phosphorylation as well as cell death. Primary hepatocytes, prepared from Car+/+, Car−/−, Gadd45b+/+ and Gadd45b−/− mice, were treated with TNFα and Actinomycin D to induce phosphorylation of JNK1 and cell death. Co-treatment with the CAR activating ligand TCPOBOP (1,4 bis[2-(3,5-dichloropyridyloxy)]benzene) has resulted in repression of both phosphorylation and cell death in the primary hepatocytes from Car+/+ but not Car−/−mice. Repression by TCPOBOP was not observed in those prepared from Gadd45b−/− mice. In vitro protein-protein interaction and phosphorylation assays have revealed that CAR interacts with MKK7 and represses the MKK7-mediated phosphorylation of JNK1.

Conclusions/Significance

CAR can form a protein complex with GADD45B, through which CAR represses MKK7-mediated phosphorylation of JNK1. In addition to activating the Gadd45b gene, CAR may repress death of mouse primary hepatocytes by forming a GADD45B complex and repressing MKK7-mediated phosphorylation of JNK1. The present finding that CAR can repress cell death via its interaction with GADD45B provides an insight for further investigations into the CAR-regulated molecular mechanism by which PB promotes development of HCC.  相似文献   

14.
Disruption of p53/Puma-mediated apoptosis protects against lethality due to DNA damage. Here we demonstrate the unexpected requirement of the pro-apoptotic p53-target gene Puma to mount a successful innate immune response to bacterial sepsis. Puma−/− mice rapidly died when challenged with bacteria. While the immune response in Puma−/− mice was unchanged in cell migration, phagocytosis and bacterial killing, sites of infection accumulated large abscesses and sepsis was progressive. Blocking p53/Puma-induced apoptosis during infection caused resistance to ROS-induced cell death in the CD49d+ neutrophil subpopulation, resulting in insufficient immune resolution. This study identifies a biological role for p53/Puma apoptosis in optimizing neutrophil lifespan so as to ensure the proper clearance of bacteria and exposes a counter-balance between the innate immune response to infection and survival from DNA damage.  相似文献   

15.
Programmed cell death (PCD) is an integrated cellular process occurring in plant growth, development, and defense responses to facilitate normal growth and development and better survival against various stresses as a whole. As universal toxic chemicals in plant and animal cells, reactive oxygen or nitrogen species (ROS or RNS), mainly superoxide anion (O2−•), hydrogen peroxide (H2O2) or nitric oxide (NO), have been studied extensively for their roles in PCD induction. Physiological and genetic studies have convincingly shown their essential roles. However, the details and mechanisms by which ROS and NO interplay and induce PCD are not well understood. Our recent study on Cupressus lusitanica culture cell death revealed the elicitor-induced co-accumulation of ROS and NO and interactions between NO and H2O2 or O2- in different ways to regulate cell death. NO and H2O2 reciprocally enhanced the production of each other whereas NO and O2−• showed reciprocal suppression on each other''s production. It was the interaction between NO and O2- but not between NO and H2O2 that induced PCD, probably through peroxynitrite (ONOO). In this addendum, some unsolved issues in the study were discussed based on recent studies on the complex network of ROS and NO leading to PCD in animals and plants.Key Words: cell death, nitric oxide, reactive oxygen species, interaction, posttranslational modification  相似文献   

16.
Thioredoxin-interacting protein (TXNIP) has multiple functions, including tumor suppression and involvement in cell proliferation and apoptosis. However, its role in the inflammatory process remains unclear. In this report, we demonstrate that Txnip−/− mice are significantly more susceptible to lipopolysaccharide (LPS)-induced endotoxic shock. In response to LPS, Txnip−/− macrophages produced significantly higher levels of nitric oxide (NO) and inducible nitric oxide synthase (iNOS), and an iNOS inhibitor rescued Txnip−/− mice from endotoxic shock-induced death, demonstrating that NO is a major factor in TXNIP-mediated endotoxic shock. This susceptibility phenotype of Txnip−/− mice occurred despite reduced IL-1β secretion due to increased S-nitrosylation of NLRP3 compared to wild-type controls. Taken together, these data demonstrate that TXNIP is a novel molecule that links NO synthesis and NLRP3 inflammasome activation during endotoxic shock.  相似文献   

17.
Although nitric oxide (NO) plays key signaling roles in the nervous systems, excess NO leads to cell death. In this study, the involvement of p38 mitogen-activated protein kinase (p38 MAPK) and apoptosis signal-regulating kinase-1 (ASK1) in NO-induced cell death was investigated in PC12 cells. NO donor transiently activated p38 MAPK in the wild type parental PC12 cells, whereas the p38 MAPK activation was abolished in NO-resistant PC12 cells (PC12-NO-R). p38 MAPK inhibitors protected the cells against NO-induced death, whereas the inhibitors were not significantly protective against the cytotoxicity of reactive oxygen species. Stable transfection with dominant negative p38 MAPK mutant reduced NO-induced cell death. Stable transfection with dominant negative mutant of ASK1 attenuated NO-stimulated activation of p38 MAPK and decreased NO-induced cell death. These results suggest that p38 MAPK and its upstream regulator ASK1 are involved in NO-induced PC12 cell death.  相似文献   

18.
Trypanosoma cruzi, the causative agent of Chagas disease, contains exclusively iron-dependent superoxide dismutases (Fe-SODs) located in different subcellular compartments. Peroxynitrite, a key cytotoxic and oxidizing effector biomolecule, reacted with T. cruzi mitochondrial (Fe-SODA) and cytosolic (Fe-SODB) SODs with second order rate constants of 4.6 ± 0.2 × 104 m−1 s−1 and 4.3 ± 0.4 × 104 m−1 s−1 at pH 7.4 and 37 °C, respectively. Both isoforms are dose-dependently nitrated and inactivated by peroxynitrite. Susceptibility of T. cruzi Fe-SODA toward peroxynitrite was similar to that reported previously for Escherichia coli Mn- and Fe-SODs and mammalian Mn-SOD, whereas Fe-SODB was exceptionally resistant to oxidant-mediated inactivation. We report mass spectrometry analysis indicating that peroxynitrite-mediated inactivation of T. cruzi Fe-SODs is due to the site-specific nitration of the critical and universally conserved Tyr35. Searching for structural differences, the crystal structure of Fe-SODA was solved at 2.2 Å resolution. Structural analysis comparing both Fe-SOD isoforms reveals differences in key cysteines and tryptophan residues. Thiol alkylation of Fe-SODB cysteines made the enzyme more susceptible to peroxynitrite. In particular, Cys83 mutation (C83S, absent in Fe-SODA) increased the Fe-SODB sensitivity toward peroxynitrite. Molecular dynamics, electron paramagnetic resonance, and immunospin trapping analysis revealed that Cys83 present in Fe-SODB acts as an electron donor that repairs Tyr35 radical via intramolecular electron transfer, preventing peroxynitrite-dependent nitration and consequent inactivation of Fe-SODB. Parasites exposed to exogenous or endogenous sources of peroxynitrite resulted in nitration and inactivation of Fe-SODA but not Fe-SODB, suggesting that these enzymes play distinctive biological roles during parasite infection of mammalian cells.  相似文献   

19.
Spermatogonia- stem cells and progenitors of adult spermatogenesis- are killed through a p53-regulated apoptotic process after γ-irradiation but the death effectors are still poorly characterized. Our data demonstrate that both intrinsic and extrinsic apoptotic pathways are involved, and especially that spermatogonia can be split into two main populations, according to apoptotic effectors. Following irradiation both Dr5 and Puma genes are upregulated in the α6-integrin-positive Side Population (SP) fraction, which is highly enriched in spermatogonia. Flow cytometric analysis confirms an increased number of Dr5-expressing SP cells, and Puma-β isoform accumulates in α6-integrin positive cellular extracts, enriched in spermatogonia. Trail−/− or Puma−/− spermatogonia display a reduced sensitivity to radiation-induced apoptosis. The TUNEL kinetics strongly suggest that the extrinsic and intrinsic pathways, via Trail/Dr5 and Puma respectively, could be engaged in distinct subpopulations of spermatogonia. Indeed flow cytometric studies show that Dr5 receptor is constitutively present on more than half of the undifferentiated progenitors (Kit α6 + SP) and half of the differentiated ones (Kit+ α6 + SP). In addition after irradiation, Puma is not detected in the Dr5-positive cellular fraction isolated by immunomagnetic purification, while Puma is present in the Dr5-negative cell extracts. In conclusion, adult testicular progenitors are divided into distinct sub-populations by apoptotic effectors, independently of progenitor types (immature Kit-negative versus mature Kit-positive), underscoring differential radiosensitivities characterizing the stem cell/progenitors compartment.  相似文献   

20.
The microaerophilic protozoan parasite Giardia intestinalis, causative of one of the most common human intestinal diseases worldwide, infects the mucosa of the proximal small intestine, where it has to cope with O2 and nitric oxide (NO). Elucidating the antioxidant defense system of this pathogen lacking catalase and other conventional antioxidant enzymes is thus important to unveil novel potential drug targets. Enzymes metabolizing O2, NO and superoxide anion (O2 −•) have been recently reported for Giardia, but it is yet unknown how the parasite copes with H2O2 and peroxynitrite (ONOO). Giardia encodes two yet uncharacterized 2-cys peroxiredoxins (Prxs), GiPrx1a and GiPrx1b. Peroxiredoxins are peroxidases implicated in virulence and drug resistance in several parasitic protozoa, able to protect from nitroxidative stress and repair oxidatively damaged molecules. GiPrx1a and a truncated form of GiPrx1b (deltaGiPrx1b) were expressed in Escherichia coli, purified and functionally characterized. Both Prxs effectively metabolize H2O2 and alkyl-hydroperoxides (cumyl- and tert-butyl-hydroperoxide) in the presence of NADPH and E. coli thioredoxin reductase/thioredoxin as the reducing system. Stopped-flow experiments show that both proteins in the reduced state react with ONOO rapidly (k = 4×105 M−1 s−1 and 2×105 M−1 s−1 at 4°C, for GiPrx1a and deltaGiPrx1b, respectively). Consistent with a protective role against oxidative stress, expression of GiPrx1a (but not deltaGiPrx1b) is induced in parasitic cells exposed to air O2 for 24 h. Based on these results, GiPrx1a and deltaGiPrx1b are suggested to play an important role in the antioxidant defense of Giardia, possibly contributing to pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号