首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used neutron-scattering experiments to probe the conformational dynamics of the light, oxygen, voltage (LOV) photoreceptor PpSB1-LOV from Pseudomonas putida in both the dark and light states. Global protein diffusion and internal macromolecular dynamics were measured using incoherent neutron time-of-flight and backscattering spectroscopy on the picosecond to nanosecond timescales. Global protein diffusion of PpSB1-LOV is not influenced by photoactivation. Observation-time-dependent global diffusion coefficients were found, which converge on the nanosecond timescale toward diffusion coefficients determined by dynamic light scattering. Mean-square displacements of localized internal motions and effective force constants, <k′>, describing the resilience of the proteins were determined on the respective timescales. Photoactivation significantly modifies the flexibility and the resilience of PpSB1-LOV. On the fast, picosecond timescale, small changes in the mean-square displacement and <k′> are observed, which are enhanced on the slower, nanosecond timescale. Photoactivation results in a slightly larger resilience of the photoreceptor on the fast, picosecond timescale, whereas in the nanosecond range, a significantly less resilient structure of the light-state protein is observed. For a residue-resolved interpretation of the experimental neutron-scattering data, we analyzed molecular dynamics simulations of the PpSB1-LOV X-ray structure. Based on these data, it is tempting to speculate that light-induced changes in the protein result in altered side-chain mobility mostly for residues on the protruding Jα helix and on the LOV-LOV dimer interface. Our results provide strong experimental evidence that side-chain dynamics play a crucial role in photoactivation and signaling of PpSB1-LOV via modulation of conformational entropy.  相似文献   

2.
Mass spectrometry (MS) is a powerful tool for determining the mass of biomolecules with high accuracy and sensitivity. MS performed under so-called “native conditions” (native MS) can be used to determine the mass of biomolecules that associate noncovalently. Here we review the application of native MS to the study of protein−ligand interactions and its emerging role in elucidating the structure of macromolecular assemblies, including soluble and membrane protein complexes. Moreover, we discuss strategies aimed at determining the stoichiometry and topology of subunits by inducing partial dissociation of the holo-complex. We also survey recent developments in "native top-down MS", an approach based on Fourier Transform MS, whereby covalent bonds are broken without disrupting non-covalent interactions. Given recent progress, native MS is anticipated to play an increasingly important role for researchers interested in the structure of macromolecular complexes.  相似文献   

3.
Oligomerization has important functional implications for many membrane proteins. However, obtaining structural insight into oligomeric assemblies is challenging, as they are large and resist crystallization. We focus on proteorhodopsin (PR), a protein with seven transmembrane α-helices that was found to assemble to hexamers in densely packed lipid membrane, or detergent-solubilized environments. Yet, the structural organization and the subunit interface of these PR oligomers were unknown. We used site-directed spin-labeling together with electron spin-resonance lineshape and Overhauser dynamic nuclear polarization analysis to construct a model for the specific orientation of PR subunits within the hexameric complex. We found intersubunit distances to average 16 Å between neighboring 55 residues and that residues 177 are >20 Å apart from each other. These distance constraints show that PR has a defined and radial orientation within a hexamer, with the 55-site of the A-B loop facing the hexamer core and the 177-site of the E-F loop facing the hexamer exterior. Dynamic nuclear polarization measurements of the local solvent dynamics complement the electron spin-resonance-based distance analysis, by resolving whether protein surfaces at positions 55, 58, and 177 are exposed to solvent, or covered by protein-protein or protein-detergent contacts.  相似文献   

4.
The amoeboid locomotion of nematode sperm is mediated by the assembly dynamics of the major sperm protein (MSP). MSP forms fibrous networks based on a hierarchy of macromolecular assemblies: helical subfilaments are built from MSP dimers; filaments are formed from two subfilaments coiling round one another; and filaments themselves supercoil to produce bundles. To provide a structural context for understanding the role of these macromolecular assemblies in cell locomotion, we have determined the 2.6 A resolution structure of crystals of Caenorhabditis elegans MSP that are constructed from helices of MSP chains that are analogous to the subfilaments from which filaments are constructed. Comparison with the crystal structures of dimers and helical assemblies of Ascaris suum MSP has identified five conserved interaction interfaces that suggest how subfilaments interact in filaments and how filaments can form bundles. The interfaces frequently involve the loop containing residues 78-85, which is divergent between MSP homologues, and the loop containing residues 98-103, which is highly conserved.  相似文献   

5.
The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of therapeutics targeting EGF ligands or the receptor itself.  相似文献   

6.
The α-Hairpinins are a family of plant defense peptides with a common fold presenting two short α-helices stabilized by two invariant S–S-bridges. We have shown previously that substitution of just two amino acid residues in a wheat α-hairpinin Tk-AMP-X2 leads to Tk-hefu-2 that features specific affinity to voltage-gated potassium channels KV1.3. Here, we utilize a combined molecular modeling approach based on molecular dynamics simulations and protein surface topography technique to improve the affinity of Tk-hefu-2 to KV1.3 while preserving its specificity. An important advance of this work compared with our previous studies is transition from the analysis of various physicochemical properties of an isolated toxin molecule to its consideration in complex with its target, a membrane-bound ion channel. As a result, a panel of computationally designed Tk-hefu-2 derivatives was synthesized and tested against KV1.3. The most active mutant Tk-hefu-10 showed a half-maximal inhibitory concentration of ∼150 nM being >10 times more active than Tk-hefu-2 and >200 times more active than the original Tk-hefu. We conclude that α-hairpinins provide an attractive disulfide-stabilized scaffold for the rational design of ion channel inhibitors. Furthermore, the success rate can be considerably increased by the proposed “target-based” iterative strategy of molecular design.  相似文献   

7.
In the conventional paradigm of humoral immunity, B cells recognize their cognate antigen target in its native form. However, it is well known that relatively unstable peptides bearing only partial structural resemblance to the native protein can trigger antibodies recognizing higher-order structures found in the native protein. On the basis of sound thermodynamic principles, this work reveals that stability of immunogenic proteinlike motifs is a critical parameter rationalizing the diverse humoral immune responses induced by different linear peptide epitopes. In this paradigm, peptides with a minimal amount of stability (ΔGX<0 kcal/mol) around a proteinlike motif (X) are capable of inducing antibodies with similar affinity for both peptide and native protein, more weakly stable peptides (ΔGX>0 kcal/mol) trigger antibodies recognizing full protein but not peptide, and unstable peptides (ΔGX>8 kcal/mol) fail to generate antibodies against either peptide or protein. Immunization experiments involving peptides derived from the autoantigen histidyl-tRNA synthetase verify that selected peptides with varying relative stabilities predicted by molecular dynamics simulations induce antibody responses consistent with this theory. Collectively, these studies provide insight pertinent to the structural basis of immunogenicity and, at the same time, validate this form of thermodynamic and molecular modeling as an approach to probe the development/evolution of humoral immune responses.  相似文献   

8.
Extensive analyses of the base-pairing properties of deoxyinosine to A, C, G, and T were carried out by measuring the hybridisation of oligonucleotides with deoxyinosine in various positions to complementary sets of oligonucleotides made as an array on the surface of a glass microscope slide. With deoxyinosine in internal positions, results are consistent with previous studies, showing a preferential order for pairing of I-C > I-A > I-G approximately I-T. With two adjacent deoxyinosines in the centre of the oligonucleotide, the order in duplex yield is CC > CA > AA > AC > GC > GA > CG > TA > TC > CT = AG > AT > GT > TT. With deoxyinosine at the ends of the oligonucleotide, we find that at the 3' end there is the same order in duplex yield as for the deoxyinosine in internal positions, though with lower discrimination between the bases. When hybridisation is carried out in TMACI there is little base pairing discrimination with deoxyinosine, or indeed any of the four natural bases at the 5' end. Changing the cation to Na+ increased discrimination slightly.  相似文献   

9.
Protein misfolding disorders are associated with conformational changes in specific proteins, leading to the formation of potentially neurotoxic amyloid fibrils. During pathogenesis of prion disease, the prion protein misfolds into β-sheet rich, protease-resistant isoforms. A key, hydrophobic domain within the prion protein, comprising residues 109–122, recapitulates many properties of the full protein, such as helix-to-sheet structural transition, formation of fibrils and cytotoxicity of the misfolded isoform. Using all-atom, molecular simulations, it is demonstrated that the monomeric 109–122 peptide has a preference for α-helical conformations, but that this peptide can also form β-hairpin structures resulting from turns around specific glycine residues of the peptide. Altering a single amino acid within the 109–122 peptide (A117V, associated with familial prion disease) increases the prevalence of β-hairpin formation and these observations are replicated in a longer peptide, comprising residues 106–126. Multi-molecule simulations of aggregation yield different assemblies of peptide molecules composed of conformationally-distinct monomer units. Small molecular assemblies, consistent with oligomers, comprise peptide monomers in a β-hairpin-like conformation and in many simulations appear to exist only transiently. Conversely, larger assemblies are comprised of extended peptides in predominately antiparallel β-sheets and are stable relative to the length of the simulations. These larger assemblies are consistent with amyloid fibrils, show cross-β structure and can form through elongation of monomer units within pre-existing oligomers. In some simulations, assemblies containing both β-hairpin and linear peptides are evident. Thus, in this work oligomers are on pathway to fibril formation and a preference for β-hairpin structure should enhance oligomer formation whilst inhibiting maturation into fibrils. These simulations provide an important new atomic-level model for the formation of oligomers and fibrils of the prion protein and suggest that stabilization of β-hairpin structure may enhance cellular toxicity by altering the balance between oligomeric and fibrillar protein assemblies.  相似文献   

10.
Improving farming practices of soil and water conservation has profound effects on the yield of wheat (Triticum aestivum L.) in dryland farming regions of the Loess Plateau in China. Mulching has proven to be an effective practice to increase crop yield, and possibly contribute to replenishing groundwater. This evaluation study collected and analyzed the data of 1849 observations published in 38 papers using meta-analysis to investigate effects of the mulching practices on wheat yield in terms of different rainfall and regions in comparison with conventional tillage. The main results of the study follow. The effects of the mulching practices were ranked in the order of RFM (ridge–furrow mulching) > MTMC (mulching with two materials combined) > MOM (mulching with other materials) > WSM (wheat straw mulching) > FM (flat mulching). The effects of the mulching practices at the different levels of rainfall during the wheat growing season were in the order: (< 150 mm) > (> 250 mm) > (150–250 mm). The effects of the mulching practices in the different regions were in the order of Henan > Shanxi > Shaanxi > Gansu. WSM, MTMC and FM performed better in improving wheat yield for rainfall of < 150, 150–250 and > 250 mm during the growing season, respectively. The wheat yield with FM, MTMC, MOM and MOM was higher than those with the other mulching practices in Shaanxi, Gansu, Henan and Shanxi. The wheat yield with RFM was 27.4% higher than that with FM, indicating that RFM was the most effective practice to improve wheat yield among all the practices. These findings have important implications for choosing appropriate crop field management to improve wheat yield.  相似文献   

11.
The majority of proteins exist in vivo within macromolecular assemblies whose functions are dependent on dynamical processes spanning a wide range of time scales. One such assembly is formed by the molecular chaperone αB-crystallin that exists in a variety of exchanging oligomeric states, centred on a mass of approximately 560 kDa. For many macromolecular assemblies, including αB-crystallin, the inherent dynamics, heterogeneity and high mass contribute to difficulties in quantitative studies. Here, we demonstrate a strategy based on correlating solution-state nuclear magnetic resonance spectroscopy and mass spectrometry data to characterize simultaneously the organization and dynamics of the polydisperse αB-crystallin ensemble. We show that protomeric dimers assemble into oligomers via the binding of extended C-termini, with each monomer donating and receiving one terminus. Moreover, we establish that the C-termini undergo millisecond fluctuations that regulate the interconversion of oligomeric forms. The combined biophysical approach allows construction of an energy profile for a single monomer that completely describes the equilibrium dynamics of the ensemble. It also facilitates an analysis of dynamics spanning the millisecond to hour time scales and secondary to quaternary structural levels, and provides an approach for, obtaining simultaneously detailed structural, thermodynamic and kinetic information on a heterogeneous protein assembly.  相似文献   

12.
SARS-CoV-2 is the novel coronavirus that is the causative agent of COVID-19, a sometimes-lethal respiratory infection responsible for a world-wide pandemic. The envelope (E) protein, one of four structural proteins encoded in the viral genome, is a 75-residue integral membrane protein whose transmembrane domain exhibits ion channel activity and whose cytoplasmic domain participates in protein-protein interactions. These activities contribute to several aspects of the viral replication-cycle, including virion assembly, budding, release, and pathogenesis. Here, we describe the structure and dynamics of full-length SARS-CoV-2 E protein in hexadecylphosphocholine micelles by NMR spectroscopy. We also characterized its interactions with four putative ion channel inhibitors. The chemical shift index and dipolar wave plots establish that E protein consists of a long transmembrane helix (residues 8–43) and a short cytoplasmic helix (residues 53–60) connected by a complex linker that exhibits some internal mobility. The conformations of the N-terminal transmembrane domain and the C-terminal cytoplasmic domain are unaffected by truncation from the intact protein. The chemical shift perturbations of E protein spectra induced by the addition of the inhibitors demonstrate that the N-terminal region (residues 6–18) is the principal binding site. The binding affinity of the inhibitors to E protein in micelles correlates with their antiviral potency in Vero E6 cells: HMA ≈ EIPA > DMA >> Amiloride, suggesting that bulky hydrophobic groups in the 5’ position of the amiloride pyrazine ring play essential roles in binding to E protein and in antiviral activity. An N15A mutation increased the production of virus-like particles, induced significant chemical shift changes from residues in the inhibitor binding site, and abolished HMA binding, suggesting that Asn15 plays a key role in maintaining the protein conformation near the binding site. These studies provide the foundation for complete structure determination of E protein and for structure-based drug discovery targeting this protein.  相似文献   

13.
Recognition of cell-surface sialyldisaccharides by influenza A hemagglutinin (HA) triggers the infection process of influenza. The changes in glycosidic torsional linkage and the receptor conformations may alter the binding specificity of HAs to the sialylglycans. In this study, 10-ns molecular dynamics simulations were carried out to examine the structural and dynamic behavior of the HAs bound with sialyldisaccharides Neu5Acα(2–3)Gal (N23G) and Neu5Acα(2–6)Gal (N26G). The analysis of the glycosidic torsional angles and the pair interaction energy between the receptor and the interacting residues of the binding site reveal that N23G has two binding modes for H1 and H5 and a single binding mode for H3 and H9. For N26G, H1 and H3 has two binding modes, and H5 and H9 has a single binding mode. The direct and water-mediated hydrogen bonding interactions between the receptors and HAs play dominant roles in the structural stabilization of the complexes. It is concluded from pair interaction energy and Molecular Mechanic-Poisson-Boltzmann Surface Area calculations that N26G is a better receptor for H1 when compared with N23G. N23G is a better receptor for H5 when compared with N26G. However, H3 and H9 can recognize N23G and N26G in equal binding specificity due to the marginal energy difference (≈2.5 kcal/mol). The order of binding specificity of N23G is H3 > H5 > H9 > H1 and N26G is H1 > H3 > H5 > H9, respectively. The proposed conformational models will be helpful in designing inhibitors for influenza virus.  相似文献   

14.
To search for functional links between glycosylphosphatidylinositol (GPI) protein monomer–oligomer exchange and membrane dynamics and confinement, we studied urokinase plasminogen activator (uPA) receptor (uPAR), a GPI receptor involved in the regulation of cell adhesion, migration, and proliferation. Using a functionally active fluorescent protein–uPAR in live cells, we analyzed the effect that extracellular matrix proteins and uPAR ligands have on uPAR dynamics and dimerization at the cell membrane. Vitronectin directs the recruitment of dimers and slows down the diffusion of the receptors at the basal membrane. The commitment to uPA–plasminogen activator inhibitor type 1–mediated endocytosis and recycling modifies uPAR diffusion and induces an exchange between uPAR monomers and dimers. This exchange is fully reversible. The data demonstrate that cell surface protein assemblies are important in regulating the dynamics and localization of uPAR at the cell membrane and the exchange of monomers and dimers. These results also provide a strong rationale for dynamic studies of GPI-anchored molecules in live cells at steady state and in the absence of cross-linker/clustering agents.  相似文献   

15.
Intraspecific competition plays an important role for territory acquisition and occupancy, in turn affecting individual fitness. Thus, understanding the drivers of intraspecific aggression can increase our understanding of population dynamics. Here, we investigated intraspecific aggression in Eurasian (Castor fiber) and North American (Castor canadensis) beavers that are both monogamous, territorial mammals. Combined, we examined tail scars from >1,000 beavers (>2,000 capture events) as part of two long‐term studies in Norway and the USA. We investigated the influence of landscape structure, population density, sex, age, and (for Eurasian beavers only) social status and group size on the number of tail scars caused by conspecifics. The number of tail scars was affected by population density in well‐connected landscape types (large lakes and rivers), but not in more isolated areas (ponds), where individuals generally had fewer tail scars. Further, the relationship of population density was not linear. In the North American beaver population occurring in large lakes, intraspecific aggression increased with population density. Conversely, in the saturated Eurasian beaver population, intraspecific aggression was in a negative relationship with population density (except at the highest densities), likely due to inverse density‐dependent intruder pressure via dispersers. Our findings emphasize that population density can affect intraspecific aggression depending on landscape structure, which might have important consequences for local patterns of dispersal, mate change, and territory occupancy, all of which can affect population dynamics.  相似文献   

16.
Prolyl oligopeptidase (POP) is a large 80 kDa protease, which cleaves oligopeptides at the C-terminal side of proline residues and constitutes an important pharmaceutical target. Despite the existence of several crystallographic structures, there is an open debate about migration (entrance and exit) pathways for ligands, and their coupling with protein dynamics. Recent studies have shown the capabilities of molecular dynamics and classical force fields in describing spontaneous binding events and nonbiased ligand migration pathways. Due to POP’s size and to the buried nature of its active site, an exhaustive sampling by means of conventional long enough molecular dynamics trajectories is still a nearly impossible task. Such a level of sampling, however, is possible with the breakthrough protein energy landscape exploration technique. Here, we present an exhaustive sampling of POP with a known inhibitor, Z-pro-prolinal. In >3000 trajectories Z-pro-prolinal explores all the accessible surface area, showing multiple entrance events into the large internal cavity through the pore in the β-propeller domain. Moreover, we modeled a natural substrate binding and product release by predicting the entrance of an undecapeptide substrate, followed by manual active site cleavage and nonbiased exit of one of the products (a dipeptide). The product exit shows preference from a flexible 18-amino acid residues loop, pointing to an overall mechanism where entrance and exit occur in different sites.  相似文献   

17.
Much uncertainty still exists over what T-cell responses need to be induced by an effective human immunodeficiency virus (HIV) vaccine. Previous studies have hypothesized that the effective CD8+ T-cell responses are those driving the selection of escape mutations that reduce viral fitness and therefore revert posttransmission. In this study, we adopted a novel approach to define better the role of reverting escape mutations in immune control of HIV infection. This analysis of sequences from 710 study subjects with chronic C-clade HIV type 1 infection demonstrates the importance of mutations that impose a fitness cost in the control of viremia. Consistent with previous studies, the viral set points associated with each HLA-B allele are strongly correlated with the number of Gag-specific polymorphisms associated with the relevant HLA-B allele (r = −0.56, P = 0.0034). The viral set points associated with each HLA-C allele were also strongly correlated with the number of Pol-specific polymorphisms associated with the relevant HLA-C allele (r = −0.67, P = 0.0047). However, critically, both these correlations were dependent solely on the polymorphisms identified as reverting. Therefore, despite the inevitable evolution of viral escape, viremia can be controlled through the selection of mutations that are detrimental to viral fitness. The significance of these results is in highlighting the rationale for an HIV vaccine that can induce these broad responses.  相似文献   

18.
Tropomyosin (Tm) is a coiled-coil protein that binds to filamentous actin (F-actin) and regulates its interactions with actin-binding proteins like myosin by moving between three positions on F-actin (the blocked, closed, and open positions). To elucidate the molecular details of Tm flexibility in relation to its binding to F-actin, we conducted extensive molecular dynamics simulations for both Tm alone and Tm-F-actin complex in the presence of explicit solvent (total simulation time >400 ns). Based on the simulations, we systematically analyzed the local flexibility of the Tm coiled coil using multiple parameters. We found a good correlation between the regions with high local flexibility and a number of destabilizing regions in Tm, including six clusters of core alanines. Despite the stabilization by F-actin binding, the distribution of local flexibility in Tm is largely unchanged in the absence and presence of F-actin. Our simulations showed variable fluctuations of individual Tm periods from the closed position toward the open position. In addition, we performed Tm-F-actin binding calculations based on the simulation trajectories, which support the importance of Tm flexibility to Tm-F-actin binding. We identified key residues of Tm involved in its dynamic interactions with F-actin, many of which have been found in recent mutational studies to be functionally important, and the rest of which will make promising targets for future mutational experiments.  相似文献   

19.
L Thomas  J J Bell 《Heredity》2013,111(4):345-354
Connectivity is widely recognized as an important component in developing effective management and conservation strategies. Although managers are generally most interested in demographic, rather than genetic connectivity, new analytic approaches are able to provide estimates of both demographic and genetic connectivity measures from genetic data. Combining such genetic data with mathematical models represents a powerful approach for accurately determining patterns of population connectivity. Here, we use microsatellite markers to investigate the genetic population structure of the New Zealand Rock Lobster, Jasus edwardsii, which has one of the longest known larval durations of all marine species (>2 years), a very large geographic range (>5500 km), and has been the subject of extensive dispersal modeling. Despite earlier mitochondrial DNA studies finding homogeneous genetic structure, the mathematical model suggests that there are source-sink dynamics for this species. We found evidence of genetic structure in J. edwardsii populations with three distinct genetic groups across New Zealand and a further Australian group; these groups and patterns of gene flow were generally congruent with the earlier mathematical model. Of particular interest was the consistent identification of a self-recruiting population/region from both modeling and genetic approaches. Although there is the potential for selection and harvesting to influence the patterns we observed, we believe oceanographic processes are most likely responsible for the genetic structure observed in J. edwardsii. Our results, using a species at the extreme end of the dispersal spectrum, demonstrate that source-sink population dynamics may still exist for such species.  相似文献   

20.
It is unknown whether patterns of human immunodeficiency virus (HIV)-specific T-cell responses during acute infection may influence the viral set point and the course of disease. We wished to establish whether the magnitude and breadth of HIV type 1 (HIV-1)-specific T-cell responses at 3 months postinfection were correlated with the viral-load set point at 12 months and hypothesized that the magnitude and breadth of HIV-specific T-cell responses during primary infection would predict the set point. Gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay responses across the complete proteome were measured in 47 subtype C HIV-1-infected participants at a median of 12 weeks postinfection. When corrected for amino acid length and individuals responding to each region, the order of recognition was as follows: Nef > Gag > Pol > Rev > Vpr > Env > Vpu > Vif > Tat. Nef responses were significantly (P < 0.05) dominant, targeted six epitopic regions, and were unrelated to the course of viremia. There was no significant difference in the magnitude and breadth of responses for each protein region with disease progression, although there was a trend of increased breadth (mean, four to seven pools) in rapid progressors. Correlation of the magnitude and breadth of IFN-γ responses with the viral set point at 12 months revealed almost zero association for each protein region. Taken together, these data demonstrate that the magnitude and breadth of IFN-γ ELISPOT assay responses at 3 months postinfection are unrelated to the course of disease in the first year of infection and are not associated with, and have low predictive power for, the viral set point at 12 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号