首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coral bleaching has caused catastrophic changes to coral reef ecosystems around the world with profound ecological, social and economic repercussions. While its occurrence is predicted to increase in the future, we have little understanding of mechanisms that underlie changes in the fish community associated with coral degradation. The present study uses a field-based experiment to examine how the intensity of interference competition between juveniles of two species of damselfish changes as healthy corals degrade through thermal bleaching. The mortality of a damselfish that is a live coral specialist (Pomacentrus moluccensis) increased on bleached and dead coral in the presence of the habitat generalist (Pomacentrus amboinensis). Increased mortality of the specialist was indirectly owing to enhanced aggression by the generalist forcing the specialist higher up and further away from shelter on bleached and dead coral. Evidence from this study stresses the importance of changing interspecific interactions to community dynamics as habitats change.  相似文献   

2.
Influence of habitat degradation on fish replenishment   总被引:1,自引:0,他引:1  
Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.  相似文献   

3.
Elevated water temperatures, a decrease in ocean pH, and an increasing prevalence of severe storms have lead to bleaching and death of the hard corals that underpin coral reef ecosystems. As coral cover declines, fish diversity and abundance declines. How degradation of coral reefs affects behavior of reef inhabitants is unknown. Here, we demonstrate that risk assessment behaviors of prey are severely affected by coral degradation. Juvenile damselfish were exposed to visual and olfactory indicators of predation risk in healthy live, thermally bleached, and dead coral in a series of laboratory and field experiments. While fish still responded to visual cues in all habitats, they did not respond to olfactory indicators of risk in dead coral habitats, likely as a result of alteration or degradation of chemical cues. These cues are critical for learning and avoiding predators, and a failure to respond can have dramatic repercussions for survival and recruitment.  相似文献   

4.
The impacts of the unusually strong Cyclone Erica (March 2003) on coral reef habitats at a site located on the northwest coast of New Caledonia (South Pacific) were assessed using a 6-year data set (2002–2007). We examined the interannual variations of key variables describing reef habitats (live hard and soft corals, dead corals in place, coral debris, algae and relative proportion of mechanically vulnerable and resistant live hard corals). The cyclone-induced disturbances of habitats differed according to three reef types: patch reefs, barrier reefs far from passes (more than 3 km from the nearest pass) and barrier reefs near passes (less than 3 km from the nearest pass). Short-term mechanical damage was detected on the three-dimensional structure of reef habitats with a notable shift from a community dominated by mechanically vulnerable corals to one dominated by resistant corals on barrier reefs far from passes. The history of habitats and their pre-disturbance characteristics, in link with local hydrodynamics, was found to influence their short-term susceptibility to extreme events such as cyclones. However, the most significant effects appeared in the midterm (within 2 years after the cyclone) as the cover of live hard corals significantly decreased by approximately 45% between 2002 and 2004 on all reef types. The short- and midterm disturbances of coral reef habitats are discussed with regard to published temporal variations in reef fish assemblages, underlining the delayed effects of this cyclonic event on fish as well as benthic habitats. Coral reef habitats and live corals had shown significant patterns of recovery 4 years after the cyclone, followed by similar recovery in fish community, suggesting good resilience in a face of this major natural disturbance in an area under moderate anthropogenic pressure.  相似文献   

5.

Widespread coral mortality is leading to coral reef degradation worldwide. Many juvenile reef fishes settle on live coral, and their predator-avoidance behaviour is disrupted in seawater exposed to dead corals, ultimately increasing predation risk. Gnathiid isopods are micropredatory fish ectoparasites that occur in higher abundances in dead coral. However, the effect of seawater associated with dead coral on the susceptibility of fish to micropredators has never been investigated. We tested whether the infection rate of cultured gnathiid ectoparasites on individual damselfish, Pomacentrus amboinensis Bleeker 1868, from two different ontogenetic stages (juveniles and adults) was influenced by seawater exposed to three different treatments: dead coral, live coral, or no coral. Seawater treatments were presumed to contain different chemical properties and are meant to represent environmental changes associated with habitat degradation on coral reefs. Gnathiid infection of juvenile fish in seawater exposed to dead coral was twice as high as that of fish in live coral or no coral. Infection rates did not significantly differ between live coral and no coral treatments. In contrast to juveniles, the susceptibility of adults to gnathiids was not affected by seawater treatment. During experiments, juvenile fish mortality was relatively low, but was higher for infected fish (9.7%), compared to fish held without exposure to gnathiids (1.7%). No mortality occurred in adult fish that became infected with gnathiids. Our results suggest that chemical cues released from dead corals and/or dead coral colonisers affect the ability of juvenile, but not adult fish to avoid parasite infection. Considering increased habitat degradation on coral reefs and that gnathiids are more abundant in dead coral substrate, it is possible that wild juvenile fish may experience increased susceptibility to parasitic infection and reduced survival rate. This highlights the importance of including parasitism in ecological studies of global environmental change.

  相似文献   

6.
Many marine populations exhibit high variability in the recruitment of young into the population. While environmental cycles and oceanography explain some patterns of replenishment, the role of other growth-related processes in influencing settlement and recruitment is less clear. Examination of a 65-mo. time series of recruitment of a common coral reef fish, Stegastes partitus, to the reefs of the upper Florida Keys revealed that during peak recruitment months, settlement stage larvae arriving during dark lunar phases grew faster as larvae and were larger at settlement compared to those settling during the light lunar phases. However, the strength and direction of early trait-mediated selective mortality also varied by settlement lunar phase such that the early life history traits of 2–4 week old recruit survivors that settled across the lunar cycle converged to more similar values. Similarly, within peak settlement periods, early life history traits of settling larvae and selective mortality of recruits varied by the magnitude of the settlement event: larvae settling in larger events had longer PLDs and consequently were larger at settlement than those settling in smaller pulses. Traits also varied by recruitment habitat: recruits surviving in live coral habitat (vs rubble) or areas with higher densities of adult conspecifics were those that were larger at settlement. Reef habitats, especially those with high densities of territorial conspecifics, are more challenging habitats for young fish to occupy and small settlers (due to lower larval growth and/or shorter PLDs) to these habitats have a lower chance of survival than they do in rubble habitats. Settling reef fish are not all equal and the time and location of settlement influences the likelihood that individuals will survive to contribute to the population.  相似文献   

7.
Coral reefs and their associated fauna are largely impacted by ongoing climate change. Unravelling species responses to past climatic variations might provide clues on the consequence of ongoing changes. Here, we tested the relationship between changes in sea surface temperature and sea levels during the Quaternary and present‐day distributions of coral reef fish species. We investigated whether species‐specific responses are associated with life‐history traits. We collected a database of coral reef fish distribution together with life‐history traits for the Indo‐Pacific Ocean. We ran species distribution models (SDMs) on 3,725 tropical reef fish species using contemporary environmental factors together with a variable describing isolation from stable coral reef areas during the Quaternary. We quantified the variance explained independently by isolation from stable areas in the SDMs and related it to a set of species traits including body size and mobility. The variance purely explained by isolation from stable coral reef areas on the distribution of extant coral reef fish species largely varied across species. We observed a triangular relationship between the contribution of isolation from stable areas in the SDMs and body size. Species, whose distribution is more associated with historical changes, occurred predominantly in the Indo‐Australian archipelago, where the mean size of fish assemblages is the lowest. Our results suggest that the legacy of habitat changes of the Quaternary is still detectable in the extant distribution of many fish species, especially those with small body size and the most sedentary. Because they were the least able to colonize distant habitats in the past, fish species with smaller body size might have the most pronounced lags in tracking ongoing climate change.  相似文献   

8.
Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres) 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting) were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and protecting reefs resilient to this should be a conservation priority.  相似文献   

9.
Although the global decline in coral reef health is likely to have profound effects on reef associated fishes, these effects are poorly understood. While declining coral cover can reduce the abundance of reef fishes through direct effects on recruitment and/or mortality, recent evidence suggests that individuals may survive in disturbed habitats, but may experience sublethal reductions in their condition. This study examined the response of 2 coral associated damselfishes (Pomacentridae), Chrysiptera parasema and Dascyllus melanurus, to varying levels of live coral cover. Growth, persistence, and the condition of individuals were quantified on replicate coral colonies in 3 coral treatments: 100% live coral (control), 50% live coral (partial) and 0% live coral (dead). The growth rates of both species were directly related to the percentage live coral cover, with individuals associated with dead corals exhibiting the slowest growth, and highest growth on control corals. Such differences in individual growth between treatments were apparent after 29 d. There was no significant difference in the numbers of fishes persisting or the physiological condition of individuals between different treatments on this time-scale. Slower growth in disturbed habitats will delay the onset of maturity, reduce lifetime fecundity and increase individual's vulnerability to gape-limited predation. Hence, immediate effects on recruitment and survival may underestimate the longer-term impacts of declining coral on the structure and diversity of coral-associated reef fish communities.  相似文献   

10.
Global climate change is rapidly altering disturbance regimes in many ecosystems including coral reefs, yet the long-term impacts of these changes on ecosystem structure and function are difficult to predict. A major ecosystem service provided by coral reefs is the provisioning of physical habitat for other organisms, and consequently, many of the effects of climate change on coral reefs will be mediated by their impacts on habitat structure. Therefore, there is an urgent need to understand the independent and combined effects of coral mortality and loss of physical habitat on reef-associated biota. Here, we use a unique series of events affecting the coral reefs around the Pacific island of Moorea, French Polynesia to differentiate between the impacts of coral mortality and the degradation of physical habitat on the structure of reef fish communities. We found that, by removing large amounts of physical habitat, a tropical cyclone had larger impacts on reef fish communities than an outbreak of coral-eating sea stars that caused widespread coral mortality but left the physical structure intact. In addition, the impacts of declining structural complexity on reef fish assemblages accelerated as structure became increasingly rare. Structure provided by dead coral colonies can take up to decades to erode following coral mortality, and, consequently, our results suggest that predictions based on short-term studies are likely to grossly underestimate the long-term impacts of coral decline on reef fish communities.  相似文献   

11.
Coral reefs are undergoing rapid changes as living corals give way to dead coral on which other benthic organisms grow. This decline in live coral could influence habitat availability for fish parasites with benthic life stages. Gnathiid isopod larvae live in the substratum and are common blood-feeding parasites of reef fishes. We examined substrate associations and preferences of a common Caribbean gnathiid, Gnathia marleyi. Emergence traps set over predominantly live coral substrata captured significantly fewer gnathiids than traps set over dead coral substrata. In laboratory experiments, gnathiids preferred dead coral and sponge and tended to avoid contact with live coral. When live gnathiids were added to containers with dead or live coral, significantly fewer were recovered from the latter after 24 h. Our data therefore suggest that live coral is not suitable microhabitat for parasitic gnathiid isopods and that a decrease in live coral cover increases available habitat for gnathiids.  相似文献   

12.
Conservation, precaution, and Caribbean reefs   总被引:6,自引:0,他引:6  
Some authors argue that overfishing is an important reason that reef corals have declined in recent decades. Their reasoning is that overfishing removes herbivores, releasing macroalgae to overgrow and kill the corals. The evidence suggests, however, that global climate change and emergent marine diseases make a far greater contribution to coral mortality, and that macroalgae generally grow on the exposed skeletal surfaces of corals that are already dead. Macroalgal dominance, therefore, is an effect rather than a cause of coral mortality. Marine protected areas (MPAs), which are usually established to protect stocks of reef fish, foster populations of herbivorous fish under at least some circumstances. Increased herbivory can reduce algal cover, potentially accelerating the recovery of coral populations inside MPAs; however, establishing MPAs will have only a limited impact on coral recovery unless policymakers confront the accelerating negative effects of the global-scale sources of coral mortality.  相似文献   

13.
We examined coral reef communities at 11 sites within Mafia Island Marine Park using a point count method for substrate and visually censused belt transects for fish populations. Multivariate ordinations showed that the benthic habitat differed among reefs. The patterns were mainly attributed to variations in depth, hydrodynamics and benthic composition. In total, the substratum was dominated by dead coral (49%) and algae (25%), with a live coral cover of only 14%. Three hundred and ninety-four fish species belonging to 56 families were recorded. According to MDS-ordinations and RELATE procedures, fish assemblage composition varied among sites in concordance with the habitats provided. Sites with highest proportion of dead coral exhibited highest degree of dispersion in the multivariate ordinations of fish assemblages. Stepwise multiple regression was used to determine the proportion of variance among sites which could be explained by depth, exposure, rugosity, substrate diversity, branching substrate, live coral cover, dead coral cover and different types of algae. The results showed that habitat variables explained up to 92% of the variation in species numbers and in total, and taxon-specific, abundance. Live coral cover was the foremost predictor of both numerical and species abundance, as well as of corallivores, invertivores, planktivores and of the families Pomacentridae, Chaetodontidae and Pomacanthidae. Our results suggest that habitat characteristics play a dominant role in determining fish assemblage composition on coral reefs.  相似文献   

14.
One striking feature of coral reef ecosystems is the complex benthic architecture which supports diverse and abundant fauna, particularly of reef fish. Reef‐building corals are in decline worldwide, with a corresponding loss of live coral cover resulting in a loss of architectural complexity. Understanding the dynamics of the reef architecture is therefore important to envision the ability of corals to maintain functional habitats in an era of climate change. Here, we develop a mechanistic model of reef topographical complexity for contemporary Caribbean reefs. The model describes the dynamics of corals and other benthic taxa under climate‐driven disturbances (hurricanes and coral bleaching). Corals have a simplified shape with explicit diameter and height, allowing species‐specific calculation of their colony surface and volume. Growth and the mechanical (hurricanes) and biological erosion (parrotfish) of carbonate skeletons are important in driving the pace of extension/reduction in the upper reef surface, the net outcome being quantified by a simple surface roughness index (reef rugosity). The model accurately simulated the decadal changes of coral cover observed in Cozumel (Mexico) between 1984 and 2008, and provided a realistic hindcast of coral colony‐scale (1–10 m) changing rugosity over the same period. We then projected future changes of Caribbean reef rugosity in response to global warming. Under severe and frequent thermal stress, the model predicted a dramatic loss of rugosity over the next two or three decades. Critically, reefs with managed parrotfish populations were able to delay the general loss of architectural complexity, as the benefits of grazing in maintaining living coral outweighed the bioerosion of dead coral skeletons. Overall, this model provides the first explicit projections of reef rugosity in a warming climate, and highlights the need of combining local (protecting and restoring high grazing) to global (mitigation of greenhouse gas emissions) interventions for the persistence of functional reef habitats.  相似文献   

15.
The present study aimed to investigate the spatial structure of fish communities at juvenile and adult stages on coral reefs at Kudaka Island (Ryukyu Archipelago, Japan) and to relate spatial patterns in the structure of the fish communities to gradients in environmental variables. Diurnal visual censuses allowed us to record 2,602 juveniles belonging to 60 species and 1,543 adults belonging to 53 species from October to December 2005. The distribution of species highlighted that the juvenile community was organised into three distinct assemblages, rather than exhibiting gradual change in community structure along the cross-reef gradient. Correlations between spatial patterns of juvenile community and environmental variables revealed that the most significant factors explaining variation in community structure were coral rubble and coral slab. In contrast, the adult community was organised into one assemblage, and the most significant variation factors in community structure were depth, live coral in massive form, live coral in branched form, dead coral and sand. Overall, the present study showed that most juvenile and adult coral reef fish at Kudaka Island exhibited striking patterns in their distribution and depth and some biological factors (e.g., abundance of live coral, dead coral and coral rubble) might exert considerable influence on the distribution of fishes.  相似文献   

16.
Nubbins of the coral Acropora aspera were artificially bleached and nitrogen fixation (acetylene reduction) rates were measured on the developing epilithic communities. Seasonal comparisons were made between corals that died in summer of heat stress and corals that died in winter from natural cold stress. Rates of acetylene reduction from artificially bleached corals peaked at 26.66 nmol cm−2 h−1 2 weeks after summer mortality, while rates from natural winter mortality peaked at 18.07 nmol cm−2 h−1 12 days after coral death. Comparative rates of acetylene reduction taken from live corals and coral rubble ranged between 0.56 and 1.16 nmol cm−2 h−1, and 0.15 and 12.77 nmol cm−2 h−1, respectively. N2-fixation rates from dead corals were up to 30 times greater than those measured on live corals. The observed increase in N2-fixation from dead corals may increase the availability of nitrogen for use in trophic processes within the reef for an extended period following the initial mortality event. If the spatial scale over which coral mortality has occurred in past thermal bleaching events is considered the ramifications of such an increase may be substantial.  相似文献   

17.
Competition is often most intense between similar sized organisms that have similar ecological requirements. Many coral reef fish species settle preferentially to live coral at the end of their larval phase where they interact with other species that recruited to the same habitat patch at a similar time. Mortality is high and usually selective and individuals must compete for low risk space. This study examined the competitive interactions between two species of juvenile damselfish and the extent to which interactions that occurred within a recruitment cohort established the disjunct distribution patterns that were displayed in later life stages. Censuses and field experiments with juveniles found that one species, the ambon damsel, was dominant immediately after settlement and pushed the subordinate species higher up the reef and further from shelter. Presence of a competitor resulted in reduced growth for both species. Juvenile size was the best predictor of competitive success and outweighed the effects of short term prior residency. Size at settlement also dramatically influenced survival, with slightly larger individuals displaying higher aggression, pushing the subordinate species into higher risk habitats. While subordinates had higher feeding rates, they also sustained higher mortality. The study highlights the importance of interaction dynamics between species within a recruitment cohort to patterns of growth and distribution of species within communities.  相似文献   

18.
The structure of coral reef habitat has a pronounced influence on the diversity, composition and abundance of reef-associated fishes. However, the particular features of the habitat that are most critical are not always known. Coral habitats can vary in many characteristics, notably live coral cover, topographic complexity and coral diversity, but the relative effects of these habitat characteristics are often not distinguished. Here, we investigate the strength of the relationships between these habitat features and local fish diversity, abundance and community structure in the lagoon of Lizard Island, Great Barrier Reef. In a spatial comparison using sixty-six 2m2 quadrats, fish species richness, total abundance and community structure were examined in relation to a wide range of habitat variables, including topographic complexity, habitat diversity, coral diversity, coral species richness, hard coral cover, branching coral cover and the cover of corymbose corals. Fish species richness and total abundance were strongly associated with coral species richness and cover, but only weakly associated with topographic complexity. Regression tree analysis showed that coral species richness accounted for most of the variation in fish species richness (63.6%), while hard coral cover explained more variation in total fish abundance (17.4%), than any other variable. In contrast, topographic complexity accounted for little spatial variation in reef fish assemblages. In degrading coral reef environments, the potential effects of loss of coral cover and topographic complexity are often emphasized, but these findings suggest that reduced coral biodiversity may ultimately have an equal, or greater, impact on reef-associated fish communities.  相似文献   

19.
The global degradation of coral reefs is having profound effects on the structure and species richness of associated reef fish assemblages. Historically, variation in the composition of fish communities has largely been attributed to factors affecting settlement of reef fish larvae. However, the mechanisms that determine how fish settlers respond to different stages of coral stress and the extent of coral loss on fish settlement are poorly understood. Here, we examined the effects of habitat degradation on fish settlement using a two-stage experimental approach. First, we employed laboratory choice experiments to test how settlers responded to early and terminal stages of coral degradation. We then quantified the settlement response of the whole reef fish assemblage in a field perturbation experiment. The laboratory choice experiments tested how juveniles from nine common Indo-Pacific fishes chose among live colonies, partially degraded colonies, and dead colonies with recent algal growth. Many species did not distinguish between live and partially degraded colonies, suggesting settlement patterns are resilient to the early stages of declining coral health. Several species preferred live or degraded corals, and none preferred to associate with dead, algal-covered colonies. In the field experiment, fish recruitment to coral colonies was monitored before and after the introduction of a coral predator (the crown-of-thorns starfish) and compared with undisturbed control colonies. Starfish reduced live coral cover by 95–100%, causing persistent negative effects on the recruitment of coral-associated fishes. Rapid reductions in new recruit abundance, greater numbers of unoccupied colonies and a shift in the recruit community structure from one dominated by coral-associated fishes before degradation to one predominantly composed of algal-associated fish species were observed. Our results suggest that while resistant to coral stress, coral death alters the process of replenishment of coral reef fish communities.  相似文献   

20.
Habitat degradation not only disrupts habitat‐forming species, but alters the sensory landscape within which most species must balance behavioural activities against predation risk. Rapidly developing a cautious behavioural phenotype, a condition known as neophobia, is advantageous when entering a novel risky habitat. Many aquatic organisms rely on damage‐released conspecific cues (i.e. alarm cues) as an indicator of impending danger and use them to assess general risk and develop neophobia. This study tested whether settlement‐stage damselfish associated with degraded coral reef habitats were able to use alarm cues as an indicator of risk and, in turn, develop a neophobic response at the end of their larval phase. Our results indicate that fish in live coral habitats that were exposed to alarm cues developed neophobia, and, in situ, were found to be more cautious, more closely associated with their coral shelters and survived four‐times better than non‐neophobic control fish. In contrast, fish that settled onto degraded coral habitats did not exhibit neophobia and consequently suffered much greater mortality on the reef, regardless of their history of exposure to alarm cues. Our results show that habitat degradation alters the efficacy of alarm cues with phenotypic and survival consequences for newly settled recruits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号