首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The CDKN2A gene is a tumor suppressor that encodes the CDK4/6 inhibitor p16ink4a. Loss of this tumor suppressor contributes to the bypass of critical senescent signals and is associated with progression to malignant disease. However, the high-level expression of p16ink4a in tumors is associated with aggressive subtypes of disease, and in certain clinical settings elevated p16ink4a expression is an important determinant for disease prognosis and therapeutic response. These seemingly contradictory facets of p16ink4a expression have lead to confusion related to the meaning of this tumor suppression in tumor pathobiology. As reviewed here, the alternative expression of p16ink4a represents an ideal marker for considering RB-pathway function, tumor heterogeneity and novel means for directing therapy.  相似文献   

3.
The CDKN2A gene is a tumor suppressor that encodes the CDK4/6 inhibitor p16ink4a. Loss of this tumor suppressor contributes to the bypass of critical senescent signals and is associated with progression to malignant disease. However, the high-level expression of p16ink4a in tumors is associated with aggressive subtypes of disease, and in certain clinical settings elevated p16ink4a expression is an important determinant for disease prognosis and therapeutic response. These seemingly contradictory facets of p16ink4a expression have lead to confusion related to the meaning of this tumor suppression in tumor pathobiology. As reviewed here, the alternative expression of p16ink4a represents an ideal marker for considering RB-pathway function, tumor heterogeneity and novel means for directing therapy.  相似文献   

4.
Bmi‐1 prevents stem cell aging, at least partly, by blocking expression of the cyclin‐dependent kinase inhibitor p16Ink4a. Therefore, dysregulation of the Bmi‐1/p16Ink4a pathway is considered key to the loss of tissue homeostasis and development of associated degenerative diseases during aging. However, because Bmi‐1 knockout (KO) mice die within 20 weeks after birth, it is difficult to determine exactly where and when dysregulation of the Bmi‐1/p16Ink4a pathway occurs during aging in vivo. Using real‐time in vivo imaging of p16Ink4a expression in Bmi‐1‐KO mice, we uncovered a novel function of the Bmi‐1/p16Ink4a pathway in controlling homeostasis of the submandibular glands (SMGs), which secrete saliva into the oral cavity. This pathway is dysregulated during aging in vivo, leading to induction of p16Ink4a expression and subsequent declined SMG function. These findings will advance our understanding of the molecular mechanisms underlying the aging‐related decline of SMG function and associated salivary gland hypofunction, which is particularly problematic among the elderly.  相似文献   

5.
The tumor suppressor p53, and the cyclin-dependent kinase inhibitor Ink4c, have been both implicated in spermatogenesis control. Both p53-/- and Ink4c-/- single knockout male mice are fertile, despite testicular hypertrophy, Leydig cell differentiation defect, and increased sperm count in Ink4c-/- males. To investigate their collaborative roles, we studied p53-/- Ink4c-/- dual knockout animals, and found that male p53-/- Ink4c-/- mice have profoundly reduced fertility. Dual knockout male mice show a marked decrease in sperm count, abnormal sperm morphology and motility, prolongation of spermatozoa proliferation and delay of meiosis entry, and accumulation of DNA damage. Genetic studies showed that the effects of p53 loss on fertility are independent of its downstream effector Cdkn1a. Absence of p53 also partially reverses the hyperplasia seen upon Ink4c loss, and normalizes the Leydig cell differentiation defect. These results implicate p53 in mitigating both the delayed entry into meiosis and the secondary apoptotic response that occur in the absence of Ink4c. We conclude that the cell cycle genes p53 and Ink4c collaborate in sperm cell development and differentiation, and may be important candidates to investigate in human male infertility conditions.  相似文献   

6.
The INK4a/ARF locus, which is frequently inactivated in human tumors, encodes two distinct tumor suppressive proteins, ARF and p16INK4a. ARF stabilizes and activates p53 by negating the effects of mdm2 on p53. Furthermore, its function is not restricted to the p53 pathway and it also inhibits cell proliferation in cells lacking p53. Expression of ARF is up-regulated in response to a number of oncogenic stimuli including E2F1. We show here that while oncogenic Ras does not significantly affect p14ARF expression in normal human cells it activates p14ARF in cells containing deregulated E2F. Moreover, oncogenic Ras and E2F1 synergize in activating p14ARF expression. Activation of p14ARF promoter by E2F1 persists in the absence of the consensus E2F-binding sites in this promoter, indicating that this activation also occurs through non- canonical binding sites. The activation by oncogenic Ras requires both E2F and Sp-1 activity, demonstrating the complex regulation of p14ARF in response to oncogenic stimuli.  相似文献   

7.
8.
A subset of AKAPs (A Kinase Anchoring Proteins) regulate signaling and cytoskeletal pathways through the spaciotemporal scaffolding of multiple protein kinases (PK), such as PKC and PKA, and associations with the plasma membrane and the actin-based cytoskeleton. SSeCKS/Gravin/Akap12 expression is severely downregulated in many advanced cancers and exhibits tumor- and metastasis-suppressing activity. akap12-null (KO) mice develop prostatic hyperplasia with focal dysplasia, but the precise mechanism how Akap12 prevents oncogenic progression remains unclear. Here, we show that KO mouse embryonic fibroblasts (MEF) exhibit premature senescence marked by polyploidy and multinucleation, and by increased susceptibility to oncogenic transformation. Although p53 and Rb pathways are activated in the absence of Akap12, senescence is dependent on Rb. Senescence is driven by the activation of PKCα, which induces p16Ink4a/Rb through a MEK-dependent downregulation of Id1, and PKCδ, which downregulates Lats1/Warts, a mitotic exit network kinase required for cytokinesis. Our data strongly suggest that Akap12 controls Rb-mediated cell aging and oncogenic progression by directly scaffolding and attenuating PKCα/δ.Key words: SSeCKS/Akap12, PKC, senescence, MEF, Rb, Lats1/Warts, p16Ink4a, Id1, polyploidy, binucleation  相似文献   

9.
p16INK4a and p21WAF1, two major cyclin-dependent kinase inhibitors, are the products of two tumor suppressor genes that play important roles in various cellular metabolic pathways. p21WAF1 is up-regulated in response to different DNA damaging agents. While the activation of p21WAF1 is p53-dependent following γ-rays, the effect of ultraviolet (UV) light on p21WAF1 protein level is still unclear. In the present report, we show that the level of the p21WAF1 protein augments in response to low UVC fluences in different mammalian cells. This up-regulation is mediated through the stabilization of p21WAF1 mRNA in a p16INK4a-dependent manner in both human and mouse cells. Furthermore, using p16-siRNA treated human skin fibroblast; we have shown that p16 controls the UV-dependent cytoplasmic accumulation of the mRNA binding HuR protein. In addition, HuR immunoprecipitations showed that UV-dependent binding of HuR to p21 mRNA is p16-related. This suggests that p16 induces p21 by enabling the relocalization of HuR from the nucleus to the cytoplasm. Accordingly, we have also shown that p16 is necessary for efficient UV-dependent p53 up-regulation, which also requires HuR. These results indicate that, in addition to its role in cell proliferation, p16INK4a is also an important regulator of the cellular response to UV damage.  相似文献   

10.
Members of the INK4 protein family specifically inhibit cyclin-dependent kinase 4 (cdk4) and cdk6-mediated phosphorylation of the retinoblastoma susceptibility gene product (Rb). p16INK4A, a prototypic INK4 protein, has been identified as a tumor suppressor in many human cancers. Inactivation of p16INK4A in tumors expressing wild-type Rb is thought to be required in order for many malignant cell types to enter S phase efficiently or to escape senescence. Here, we demonstrate another mechanism of tumor suppression by implicating p16INK4A in a G1 arrest checkpoint in response to DNA damage. Calu-1 non-small cell lung cancer cells, which retain Rb and lack p53, do not arrest in G1 following DNA damage. However, engineered expression of p16INK4A at levels compatible with cell proliferation restores a G1 arrest checkpoint in response to treatment with γ-irradiation, topoisomerase I and II inhibitors, and cisplatin. A similar checkpoint can be demonstrated in p53−/− fibroblasts that express p16INK4A. DNA damage-induced G1 arrest, which requires the expression of pocket proteins such as Rb, can be abrogated by overexpression of cdk4, kinase-inactive cdk4 variants capable of sequestering p16INK4A, or a cdk4 variant incapable of binding p16INK4A. After exposure to DNA-damaging agents, there was no change either in overall levels of p16INK4A or in amounts of p16INK4A found in complex with cdks 4 and 6. Nonetheless, p16INK4A expression is required for the reduction in cdk4- and cdk6-mediated Rb kinase activity observed in response to DNA damage. During tumor progression, loss of p16INK4A expression may be necessary for cells with wild-type Rb to bypass this G1 arrest checkpoint and attain a fully transformed phenotype.  相似文献   

11.
12.
The Ink4a/Arf ( CDKN2a) locus encodes two proteins that regulate distinct important tumor suppressor pathways represented by p53 and Rb. Loss of either p16INK4a or p19ARF was recently reported to reduce the ability of mouse cells to repair UV-induced DNA damage and to induce a UV-mutator phenotype. This observation was independent of cell cycle effects incurred by either p16INK4a and/or p19ARF loss, as it was demonstrable in unirradiated cells using UV-treated DNA. We suggest that this might explain why germ line mutations of INK4a/ARF predispose mainly to malignant melanoma, a UV-induced skin cancer, and provides a molecular explanation for the link between melanoma-genesis and impaired DNA repair. It also further demonstrates that regulation of cell cycle check points and DNA repair in response to genomic insults, such as ultraviolet irradiation are intricately interwoven processes. Differences in the apoptotic response to ultraviolet light between melanocytes and keratinocytes might explain why INK4a/ARF mutations predispose to malignant melanoma, but not to keratinocyte-derived skin cancers.  相似文献   

13.
14.
Epithelial tumors of the pancreas exhibit a wide spectrum of histologies with varying propensities for metastasis and tissue invasion. The histogenic relationship among these tumor types is not well established; moreover, the specific role of genetic lesions in the progression of these malignancies is largely undefined. Transgenic mice with ectopic expression of transforming growth factor alpha (TGF-alpha) in the pancreatic acinar cells develop tubular metaplasia, a potential premalignant lesion of the pancreatic ductal epithelium. To evaluate the cooperative interactions between TGF-alpha and signature mutations in pancreatic tumor genesis and progression, TGFalpha transgenic mice were crossed onto Ink4a/Arf and/or p53 mutant backgrounds. These compound mutant mice developed a novel pancreatic neoplasm, serous cystadenoma (SCA), presenting as large epithelial tumors bearing conspicuous gross and histological resemblances to their human counterpart. TGFalpha animals heterozygous for both the Ink4a/Arf and the p53 mutation showed a dramatically increased incidence of SCA, indicating synergistic interaction of these alleles. Inactivation of p16(Ink4a) by loss of heterozygosity, intragenic mutation, or promoter hypermethylation was a common feature in these SCAs, and correspondingly, none of the tumors expressed wild-type p16(Ink4a). All tumors sustained loss of p53 or Arf, generally in a mutually exclusive fashion. The tumor incidence data and molecular profiles establish a pathogenic role for the dual inactivation of p16(Ink4a) and p19(Arf)-p53 in the development of SCA in mice, demonstrating that p16(Ink4a) is a murine tumor suppressor. This genetically defined model provides insights into the molecular pathogenesis of SCA and serves as a platform for dissection of cell-specific programs of epithelial tumor suppression.  相似文献   

15.
Activated oncogenes restrict cell proliferation and transformation by triggering a DNA damage‐dependent senescence checkpoint in response to DNA hyper‐replication. Here, we show that loss of the p16INK4a cyclin‐dependent kinase inhibitor and melanoma tumour suppressor facilitates a DNA damage response after a hyper‐replicative phase in human melanocytes. Unlike cells expressing activated oncogenes, however, melanocytes depleted for p16INK4a display enhanced proliferation and an extended replicative lifespan in the presence of replication‐associated DNA damage. Analysis of human benign naevi confirmed that DNA damage and loss of p16INK4a expression co‐segregate closely. Thus, we propose that loss of p16INK4a facilitates tumourigenesis by promoting the proliferation of genetically unstable cells.  相似文献   

16.
17.
18.

Background

p16INK4a and p21WAF1 are two independent cyclin-dependent kinase inhibitors encoded by the CDKN2A and CDKN1A genes, respectively. p16INK4a and p21WAF1 are similarly involved in various anti-cancer processes, including the regulation of the critical G1 to S phase transition of the cell cycle, senescence and apoptosis. Therefore, we sought to elucidate the molecular mechanisms underlying the link between these two important tumor suppressor proteins.

Methodology/Principal Findings

We have shown here that the p16INK4a protein positively controls the expression of p21WAF1 in both human and mouse cells. p16INK4a stabilizes the CDKN1A mRNA through negative regulation of the mRNA decay-promoting AUF1 protein. Immunoprecipitation of AUF1-associated RNAs followed by quantitative RT-PCR indicated that endogenous AUF1 binds to the CDKN1A mRNA in a p16INK4A-dependent manner. Furthermore, while AUF1 down-regulation increased the expression level of the CDKN1A mRNA, the concurrent knockdown of AUF1 and CDKN2A, using specific silencing RNAs, restored the normal expression of the gene. Moreover, we used EGFP reporter fused to the CDKN2A AU-rich element (ARE) to demonstrate that p16INK4A regulation of the CDKN1A mRNA is AUF1- and ARE-dependent. Furthermore, ectopic expression of p16INK4A in p16INK4A-deficient breast epithelial MCF-10A cells significantly increased the level of p21WAF1, with no effect on cell proliferation. In addition, we have shown direct correlation between p16INK4a and p21WAF1 levels in various cancer cell lines.

Conclusion/Significance

These findings show that p16INK4a stabilizes the CDKN1A mRNA in an AUF1-dependent manner, and further confirm the presence of a direct link between the 2 important cancer-related pathways, pRB/p16INK4A and p14ARF/p53/p21WAF1.  相似文献   

19.
Pre-B-cell transformation by Abelson virus (Ab-MLV) is a multistep process in which primary transformants are stimulated to proliferate but subsequently undergo crisis, a period of erratic growth marked by high levels of apoptosis. Inactivation of the p53 tumor suppressor pathway is an important step in this process and can be accomplished by mutation of p53 or down-modulation of p19(Arf), a p53 regulatory protein. Consistent with these data, pre-B cells from either p53 or Ink4a/Arf null mice bypass crisis. However, the Ink4a/Arf locus encodes both p19(Arf) and a second tumor suppressor, p16(Ink4a), that blocks cell cycle progression by inhibiting Cdk4/6. To determine if p16(Ink4a) plays a role in Ab-MLV transformation, primary transformants derived from Arf(-/-) and p16(Ink4a(-/-)) mice were compared. A fraction of those derived from Arf(-/-) animals underwent crisis, and even though all p16(Ink4a(-/-)) primary transformants experienced crisis, these cells became established more readily than cells derived from +/+ mice. Analyses of Ink4a/Arf(-/-) cells infected with a virus that expresses both v-Abl and p16(Ink4a) revealed that p16(Ink4a) expression does not alter cell cycle profiles but does increase the level of apoptosis in primary transformants. These results indicate that both products of the Ink4a/Arf locus influence Ab-MLV transformation and reveal that in addition to its well-recognized effects on the cell cycle, p16(Ink4a) can suppress transformation by inducing apoptosis.  相似文献   

20.

Introduction

Recent evidence suggests that tissue accumulation of senescent p16INK4a-positive cells during the life span would be deleterious for tissue functions and could be the consequence of inherent age-associated disorders. Osteoarthritis (OA) is characterized by the accumulation of chondrocytes expressing p16INK4a and markers of the senescence-associated secretory phenotype (SASP), including the matrix remodeling metalloproteases MMP1/MMP13 and pro-inflammatory cytokines interleukin-8 (IL-8) and IL-6. Here, we evaluated the role of p16INK4a in the OA-induced SASP and its regulation by microRNAs (miRs).

Methods

We used IL-1-beta-treated primary OA chondrocytes cultured in three-dimensional setting or mesenchymal stem cells differentiated into chondrocyte to follow p16INK4a expression. By transient transfection experiments and the use of knockout mice, we validate p16INK4a function in chondrocytes and its regulation by one miR identified by means of a genome-wide miR-array analysis.

Results

p16INK4a is induced upon IL-1-beta treatment and also during in vitro chondrogenesis. In the mouse model, Ink4a locus favors in vivo the proportion of terminally differentiated chondrocytes. When overexpressed in chondrocytes, p16INK4a is sufficient to induce the production of the two matrix remodeling enzymes, MMP1 and MMP13, thus linking senescence with OA pathogenesis and bone development. We identified miR-24 as a negative regulator of p16INK4a. Accordingly, p16INK4a expression increased while miR-24 level was repressed upon IL-1-beta addition, in OA cartilage and during in vitro terminal chondrogenesis.

Conclusions

We disclosed herein a new role of the senescence marker p16INK4a and its regulation by miR-24 during OA and terminal chondrogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号