首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Iron acquisition mechanisms play an important role in the pathogenesis of many infectious microbes. In Bacillus anthracis, the siderophore petrobactin is required for both growth in iron‐depleted conditions and for full virulence of the bacterium. Here we demonstrate the roles of two putative petrobactin binding proteins FatB and FpuA (encoded by GBAA5330 and GBAA4766 respectively) in B. anthracis iron acquisition and pathogenesis. Markerless deletion mutants were created using allelic exchange. The ΔfatB strain was capable of wild‐type levels of growth in iron‐depleted conditions, indicating that FatB does not play an essential role in petrobactin uptake. In contrast, ΔfpuA bacteria exhibited a significant decrease in growth under low‐iron conditions when compared with wild‐type bacteria. This mutant could not be rescued by the addition of exogenous purified petrobactin. Further examination of this strain demonstrated increased levels of petrobactin accumulation in the culture supernatants, suggesting no defect in siderophore synthesis or export but, instead, an inability of ΔfpuA to import this siderophore. ΔfpuA spores were also significantly attenuated in a murine model of inhalational anthrax. These results provide the first genetic evidence demonstrating the role of FpuA in petrobactin uptake.  相似文献   

2.
3.
The metal iron is a limiting nutrient for bacteria during infection. Bacillus anthracis, the causative agent of anthrax and a potential weapon of bioterrorism, grows rapidly in mammalian hosts, which suggests that it efficiently attains iron during infection. Recent studies have uncovered both heme (isd) and siderophore-mediated (asb) iron transport pathways in this pathogen. Whereas deletion of the asb genes results in reduced virulence, the loss of three surface components from isd had no effect, thereby leaving open the question of what additional factors in B. anthracis are responsible for iron uptake from the most abundant iron source for mammals, heme. Here, we describe the first functional characterization of bas0520, a gene recently implicated in anthrax disease progression. bas0520 encodes a single near-iron transporter (NEAT) domain and several leucine-rich repeats. The NEAT domain binds heme, despite lacking a stabilizing tyrosine common to the NEAT superfamily of hemoproteins. The NEAT domain also binds hemoglobin and can acquire heme from hemoglobin in solution. Finally, deletion of bas0520 resulted in bacilli unable to grow efficiently on heme or hemoglobin as an iron source and yielded the most significant phenotype relative to that for other putative heme uptake systems, a result that suggests that this protein plays a prominent role in the replication of B. anthracis in hematogenous environments. Thus, we have assigned the name of Hal (heme-acquisition leucine-rich repeat protein) to BAS0520. These studies advance our understanding of heme acquisition by this dangerous pathogen and justify efforts to determine the mechanistic function of this novel protein for vaccine or inhibitor development.  相似文献   

4.
5.
6.
7.
Aims: For the analysis of virulence factors produced and secreted by Bacillus anthracis vegetative cells during mammalian host infection, we evaluated the secretome of B. anthracis Sterne exposed to host‐specific factors specifically to host body temperature. Methods and Results: We employed a comparative proteomics‐based approach to analyse the proteins secreted by B. anthracis Sterne under host‐specific body temperature conditions. A total of 17 proteins encoded on a single chromosome and the pXO1 plasmid were identified by peptide mass fingerprinting. Multiple algorithms were used to predict the secretion mechanisms of the detected proteins in B. anthracis. Conclusions: Several putative virulence factors and known factors responsible for sporulation were differentially regulated, including CodY, pXO1‐130 and BA1952, revealing insights into temperature cues in the B. anthracis secretome. Significance and Impact of the Study: This study identified temperature‐regulated proteins. Further studies aimed at understanding the physical and functional roles of these proteins in infection and control by elevated temperatures will contribute to detection, diagnostics and prophylaxis.  相似文献   

8.
Anthrax toxin and capsule, determinants for successful infection by Bacillus anthracis, are encoded on the virulence plasmids pXO1 and pXO2, respectively. Each of these plasmids also encodes proteins that are highly homologous to the signal sensor domain of a chromosomally encoded major sporulation sensor histidine kinase (BA2291) in this organism. B. anthracis Sterne overexpressing the plasmid pXO2-61-encoded signal sensor domain exhibited a significant decrease in sporulation that was suppressed by the deletion of the BA2291 gene. Expression of the sensor domains from the pXO1-118 and pXO2-61 genes in Bacillus subtilis strains carrying the B. anthracis sporulation sensor kinase BA2291 gene resulted in BA2291-dependent inhibition of sporulation. These results indicate that sporulation sensor kinase BA2291 is converted from an activator to an inhibitor of sporulation in its native host by the virulence plasmid-encoded signal sensor domains. We speculate that activation of these signal sensor domains contributes to the initiation of B. anthracis sporulation in the bloodstream of its infected host, a salient characteristic in the virulence of this organism, and provides an additional role for the virulence plasmids in anthrax pathogenesis.  相似文献   

9.
10.
In the pathogenic bacterium Bacillus anthracis, virulence requires induced expression of the anthrax toxin and capsule genes. Elevated CO2/bicarbonate levels, an indicator of the host environment, provide a signal ex vivo to increase expression of virulence factors, but the mechanism underlying induction and its relevance in vivo are unknown. We identified a previously uncharacterized ABC transporter (BAS2714-12) similar to bicarbonate transporters in photosynthetic cyanobacteria, which is essential to the bicarbonate induction of virulence gene expression. Deletion of the genes for the transporter abolished induction of toxin gene expression and strongly decreased the rate of bicarbonate uptake ex vivo, demonstrating that the BAS2714-12 locus encodes a bicarbonate ABC transporter. The bicarbonate transporter deletion strain was avirulent in the A/J mouse model of infection. Carbonic anhydrase inhibitors, which prevent the interconversion of CO2 and bicarbonate, significantly affected toxin expression only in the absence of bicarbonate or the bicarbonate transporter, suggesting that carbonic anhydrase activity is not essential to virulence factor induction and that bicarbonate, and not CO2, is the signal essential for virulence induction. The identification of this novel bicarbonate transporter essential to virulence of B. anthracis may be of relevance to other pathogens, such as Streptococcus pyogenes, Escherichia coli, Borrelia burgdorferi, and Vibrio cholera that regulate virulence factor expression in response to CO2/bicarbonate, and suggests it may be a target for antibacterial intervention.  相似文献   

11.
12.
The cytochrome c maturation system influences the expression of virulence factors in Bacillus anthracis. B. anthracis carries two copies of the ccdA gene, encoding predicted thiol-disulfide oxidoreductases that contribute to cytochrome c maturation, while the closely related organism Bacillus subtilis carries only one copy of ccdA. To investigate the roles of the two ccdA gene copies in B. anthracis, strains were constructed without each ccdA gene, and one strain was constructed without both copies simultaneously. Loss of both ccdA genes results in a reduction of cytochrome c production, an increase in virulence factor expression, and a reduction in sporulation efficiency. Complementation and expression analyses indicate that ccdA2 encodes the primary CcdA in B. anthracis, active in all three pathways. While CcdA1 retains activity in cytochrome c maturation and virulence control, it has completely lost its activity in the sporulation pathway. In support of this finding, expression of ccdA1 is strongly reduced when cells are grown under sporulation-inducing conditions. When the activities of CcdA1 and CcdA2 were analyzed in B. subtilis, neither protein retained activity in cytochrome c maturation, but CcdA2 could still function in sporulation. These observations reveal the complexities of thiol-disulfide oxidoreductase function in pathways relevant to virulence and physiology.  相似文献   

13.
Bacillus anthracis is a member of the Bacillus cereus group species (also known as the “group 1 bacilli”), a collection of Gram-positive spore-forming soil bacteria that are non-fastidious facultative anaerobes with very similar growth characteristics and natural genetic exchange systems. Despite their close physiology and genetics, the B. cereus group species exhibit certain species-specific phenotypes, some of which are related to pathogenicity. B. anthracis is the etiologic agent of anthrax. Vegetative cells of B. anthracis produce anthrax toxin proteins and a poly-d-glutamic acid capsule during infection of mammalian hosts and when cultured in conditions considered to mimic the host environment. The genes associated with toxin and capsule synthesis are located on the B. anthracis plasmids, pXO1 and pXO2, respectively. Although plasmid content is considered a defining feature of the species, pXO1- and pXO2-like plasmids have been identified in strains that more closely resemble other members of the B. cereus group. The developmental nature of B. anthracis and its pathogenic (mammalian host) and environmental (soil) lifestyles of make it an interesting model for study of niche-specific bacterial gene expression and physiology.  相似文献   

14.
15.
16.
17.
The genetic distribution of 295 Bacillus cereus group members has been investigated by using a modified Multilocus Sequence Typing method (MLST). By comparing the nucleic acid sequence of the adk gene fragment, isolates of B. cereus group members most related to B. anthracis may be easily identified. The genetic distribution, with focus on the B. anthracis close neighbours, was used to evaluate a new primer set for specific identification of B. anthracis. This primer set, BA5510-1/2, targeted the putative B. anthracis specific gene BA5510. Real-time PCR using BA5510-1/2 amplified the target fragment from all B. anthracis strains tested and only two (of 289) non-B. anthracis strains analysed. This is one of the most thoroughly validated chromosomal B. anthracis markers for real-time PCR identification, in which the screened collection contained several very closely related B. anthracis strains.  相似文献   

18.
19.
Several Gram-positive pathogenic bacteria employ near-iron transporter (NEAT) domains to acquire heme from hemoglobin during infection. However, the structural requirements and mechanism of action for NEAT-mediated heme extraction remains unknown. Bacillus anthracis exhibits a rapid growth rate during systemic infection, suggesting that the bacterium expresses efficient iron acquisition systems. To understand how B. anthracis acquires iron from heme sources, which account for 80% of mammalian iron stores, we investigated the properties of the five-NEAT domain hemophore IsdX2. Using a combination of bioinformatics and site-directed mutagenesis, we determined that the heme extraction properties of IsdX2 are dependent on an amino acid with an amide side chain within the 310-helix of the NEAT domain. Additionally, we used a spectroscopic analysis to show that IsdX2 NEAT domains only scavenge heme from methemoglobin (metHb) and that autoxidation of oxyhemoglobin to metHb must occur prior to extraction. We also report the crystal structures of NEAT5 wild type and a Q29T mutant and present surface plasmon resonance data that indicate that the loss of this amide side chain reduces the affinity of the NEAT domain for metHb. We propose a model whereby the amide side chain is first required to drive an interaction with metHb that destabilizes heme, which is subsequently extracted and coordinated in the aliphatic heme-binding environment of the NEAT domain. Because an amino acid with an amide side chain in this position is observed in NEAT domains of several genera of Gram-positive pathogenic bacteria, these results suggest that specific targeting of this or nearby residues may be an entry point for inhibitor development aimed at blocking bacterial iron acquisition during infection.  相似文献   

20.
While anthrax is typically associated with bioterrorism, in many parts of the world the anthrax bacillus (Bacillus anthracis) is endemic in soils, where it causes sporadic disease in livestock. These soils are typically rich in organic matter and calcium that promote survival of resilient B. anthracis spores. Outbreaks of anthrax tend to occur in warm weather following rains that are believed to concentrate spores in low-lying areas where runoff collects. It has been concluded that elevated spore concentrations are not the result of vegetative growth as B. anthracis competes poorly against indigenous bacteria. Here, we test an alternative hypothesis in which amoebas, common in moist soils and pools of standing water, serve as amplifiers of B. anthracis spores by enabling germination and intracellular multiplication. Under simulated environmental conditions, we show that B. anthracis germinates and multiplies within Acanthamoeba castellanii. The growth kinetics of a fully virulent B. anthracis Ames strain (containing both the pX01 and pX02 virulence plasmids) and vaccine strain Sterne (containing only pX01) inoculated as spores in coculture with A. castellanii showed a nearly 50-fold increase in spore numbers after 72 h. In contrast, the plasmidless strain 9131 showed little growth, demonstrating that plasmid pX01 is essential for growth within A. castellanii. Electron and time-lapse fluorescence microscopy revealed that spores germinate within amoebal phagosomes, vegetative bacilli undergo multiplication, and, following demise of the amoebas, bacilli sporulate in the extracellular milieu. This analysis supports our hypothesis that amoebas contribute to the persistence and amplification of B. anthracis in natural environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号