首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arabidopsis WAVE-DAMPENED 2 (WVD2) was identified by forward genetics as an activation-tagged allele that causes plant and organ stockiness and inversion of helical root growth handedness on agar surfaces. Plants with high constitutive expression of WVD2 or other members of the WVD2-LIKE (WDL) gene family have stems and roots that are short and thick, have reduced anisotropic cell elongation, are suppressed in a root-waving phenotype, and have inverted handedness of twisting in hypocotyls and roots compared with wild-type. The wvd2-1 mutant shows aberrantly organized cortical microtubules in peripheral root cap cells as well as reduced branching of trichomes, unicellular leaf structures whose development is regulated by microtubule stability. Orthologs of the WVD2/WDL family are found widely throughout the plant kingdom, but are not similar to non-plant proteins with the exception of a C-terminal domain distantly related to the vertebrate microtubule-associated protein TPX2. in vivo, WVD2 and its closest paralog WDL1 are localized to interphase cortical microtubules in leaves, hypocotyls and roots. Recombinant glutathione-S-transferase:WVD2 or maltose binding protein:WVD2 protein bind to and bundle microtubules in vitro. We speculate that a C-terminal domain of TPX2 has been utilised by the WVD2 family for functions critical to the organization of plant microtubules.  相似文献   

2.
Doublecortin (DCX) is required for normal migration of neurons into the cerebral cortex, since mutations in the human gene cause a disruption of cortical neuronal migration. To date, little is known about the distribution of DCX protein or its function. Here, we demonstrate that DCX is expressed in migrating neurons throughout the central and peripheral nervous system during embryonic and postnatal development. DCX protein localization overlaps with microtubules in cultured primary cortical neurons, and this overlapping expression is disrupted by microtubule depolymerization. DCX coassembles with brain microtubules, and recombinant DCX stimulates the polymerization of purified tubulin. Finally, overexpression of DCX in heterologous cells leads to a dramatic microtubule phenotype that is resistant to depolymerization. Therefore, DCX likely directs neuronal migration by regulating the organization and stability of microtubules.  相似文献   

3.
Aberrant phosphorylation of tau protein on serine and threonine residues has been shown to be critical in neurodegenerative disorders called tauopathies. An increasing amount of data suggest that tyrosine phosphorylation of tau might play an equally important role in pathology, with at least three putative tyrosine kinases of tau identified to date. It was recently shown that the tyrosine kinase Syk could efficiently phosphorylate alpha-synuclein, the aggregated protein found in Parkinson's disease and other synucleinopathies. We report herein that Syk is also a tau kinase, phosphorylating tau in vitro and in CHO cells when both proteins are expressed exogenously. In CHO cells, we have also demonstrated by co-immunoprecipitation that Syk binds to tau. Finally, by site-directed mutagenesis substituting the tyrosine residues of tau with phenylalanine, we established that tyrosine 18 was the primary residue in tau phosphorylated by Syk. The identification of Syk as a common tyrosine kinase of both tau and alpha-synuclein may be of potential significance in neurodegenerative disorders and also in neuronal physiology. These results bring another clue to the intriguing overlaps between tauopathies and synucleinopathies and provide new insights into the role of Syk in neuronal physiology.  相似文献   

4.
Different types of cargo vesicles containing presynaptic proteins are transported from the nerve cell body to the nerve terminal, and participate in the formation of active zones. However, the identity of the membranous cargoes and the nature of the motor-cargo interactions remain unsolved. Here, we report the identification of a syntaxin-1-binding protein named syntabulin. Syntabulin attaches syntaxin-containing vesicles to microtubules and migrates with syntaxin within the processes of hippocampal neurons. Knock-down of syntabulin expression with targeted small interfering RNAs (siRNAs) or interference with the syntabulin-syntaxin interaction inhibit attachment of syntaxin-cargo vesicles to microtubules and reduce syntaxin-1 distribution in neuronal processes. Furthermore, conventional kinesin I heavy chain binds to syntabulin and associates with syntabulin-linked syntaxin vesicles in vivo. These findings suggest that syntabulin functions as a linker molecule that attaches syntaxin-cargo vesicles to kinesin I, enabling the transport of syntaxin-1 to neuronal processes.  相似文献   

5.
Sea urchin sperm contain two isozymes of creatine kinase (CrK) in the sperm head and tail, as termini of a phosphocreatine shuttle to transport energy. The head isozyme is located at the mitochondrion. By using an antibody prepared against denatured flagellar CrK, we now show that the tail isozyme exists along the entire flagellum. This unusual CrK isozyme, of Mr 145 kDa, is a component of the flagellar axoneme as indicated by electron microscopic immunolocalization and cell fractionation. Flagellar CrK specifically reassociated with extracted sperm axonemes as well as with in vitro polymerized sea urchin egg microtubules. Neither sperm mitochondrial CrK nor mammalian muscle CrK bound to axonemes under similar conditions. Thus, although the two sperm isozymes have similar kinetic properties, they differ in affinity for microtubules, a characteristic that may determine the regional differentiation needed for establishing a phosphocreatine shuttle.  相似文献   

6.
A subsynaptic protein of Mr approximately 300 kD is a major component of Torpedo electric organ postsynaptic membranes and copurifies with the AChR and the 43-kD subsynaptic protein. mAbs against this protein react with neuromuscular synapses in higher vertebrates, but not at synapses in dystrophic muscle. The Torpedo 300-kD protein comigrates in SDS-PAGE with murine dystrophin and reacts with antibodies against murine dystrophin. The sequence of a partial cDNA isolated by screening an expression library with mAbs against the Torpedo 300-kD protein shows striking homology to mammalian dystrophin, and in particular to the b isoform of dystrophin. These results indicate that dystrophin is a component of the postsynaptic membrane at neuromuscular synapses and raise the possibility that loss of dystrophin from synapses in dystrophic muscle may have consequences that contribute to muscular dystrophy.  相似文献   

7.
Lissencephaly, a severe brain malformation, may be caused by mutations in the LIS1 gene. LIS1 encodes a microtubule-associated protein (MAP) that is also part of the enzyme complex, platelet-activating factor acetylhydrolase. LIS1 is also found in a complex with two protein kinases; a T-cell Tat-associated kinase, which contains casein-dependent kinase (CDK) activating kinase (CAK), as well as CAK-inducing activity, and with a spleen protein-tyrosine kinase similar to the catalytic domain of p72syk. As phosphorylation is one of the ways to control cellular localization and protein-protein interactions, we investigated whether LIS1 undergoes this post-translational modification. Our results demonstrate that LIS1 is a developmentally regulated phosphoprotein. Phosphorylated LIS1 is mainly found in the MAP fraction. Phosphoamino acid analysis revealed that LIS1 is phosphorylated on serine residues. Alkaline phosphatase treatment reduced the number of visible LIS1 isoforms. In-gel assays demonstrate a 50-kDa LIS1 kinase that is enriched in microtubule-associated fractions. In vitro, LIS1 was phosphorylated by protein kinase CKII (casein kinase II), but not many other kinases that were tested. We suggest that LIS1 activity may be regulated by phosphorylation.  相似文献   

8.
Formin proteins, characterized by the presence of conserved formin homology (FH) domains, play important roles in cytoskeletal regulation via their abilities to nucleate actin filament formation and to interact with multiple other proteins involved in cytoskeletal regulation. The C-terminal FH2 domain of formins is key for actin filament interactions and has been implicated in playing a role in interactions with microtubules. Inverted formin 1 (INF1) is unusual among the formin family in having the conserved FH1 and FH2 domains in its N-terminal half, with its C-terminal half being composed of a unique polypeptide sequence. In this study, we have examined a potential role for INF1 in regulating microtubule structure. INF1 associates discretely with microtubules, and this association is dependent on a novel C-terminal microtubule-binding domain. INF1 expressed in fibroblast cells induced actin stress fiber formation, coalignment of microtubules with actin filaments, and the formation of bundled, acetylated microtubules. Endogenous INF1 showed an association with acetylated microtubules, and knockdown of INF1 resulted in decreased levels of acetylated microtubules. Our data suggests a role for INF1 in microtubule modification and potentially in coordinating microtubule and F-actin structure.  相似文献   

9.
A-kinase anchoring proteins (AKAPs) function to target protein kinase A (PKA) to specific locations within the cell. AKAPs are functionally identified by their ability to bind the type II regulatory subunits (RII) of PKA in an in vitro overlay assay. We previously showed that follicle-stimulating hormone (FSH) induces the expression of an 80-kDa AKAP (AKAP 80) in ovarian granulosa cells as they mature from a preantral to a preovulatory phenotype. In this report, we identify AKAP 80 as microtubule-associated protein 2D (MAP2D), a low molecular weight splice variant of the neuronal MAP2 protein. MAP2D is induced in granulosa cells by dexamethasone and by FSH in a time-dependent manner that mimics that of AKAP 80, and immunoprecipitation of MAP2D depletes extracts of AKAP 80. MAP2D is the only MAP2 protein present in ovaries and is localized to granulosa cells of preovulatory follicles and to luteal cells. MAP2D is concentrated at the Golgi apparatus along with RI and RII and, based on coimmunoprecipitation results, appears to bind both RI and RII in granulosa cells. Reduced expression of MAP2D resulting from treatment of granulosa cells with antisense oligonucleotides to MAP2 inhibited the phosphorylation of cAMP-response element-binding protein. These results suggest that this classic neuronal RII AKAP is a dual RI/RII AKAP that performs unique functions in ovarian granulosa cells that contribute to the preovulatory phenotype.  相似文献   

10.
Plants can adapt their shape to environmental stimuli. This response is mediated by the reorganization of cortical microtubules, a unique element of the cytoskeleton. However, the molecular base of this response has remained obscure so far. In an attempt to solve this problem, signal-dependent changes in the pattern of microtubule-binding proteins were analysed during coleoptile elongation in maize, that is, under the control of the plant photoreceptor phytochrome. Two putative MAPs of 100 kDa (P100) and 50 kDa apparent molecular weights were identified in cytosolic extracts from non-elongating and elongating cells. Both proteins co-assembled with endogenous tubulin, bound to neurotubules and were immunologically related to the neural MAP τ: the P100 protein, depending on the physiological situation, was manifest as a double band and was always found to be heat-stable. In contrast, the 50 kDa MAP was heat-stable only for particular tissues and physiological treatments. The P100 protein was present in all tissues, however in a reduced amount in elongating coleoptiles. The 50 kDa MAP was expressed exclusively upon induction of phytochrome-dependent cell elongation. As shown by immunofluorescence double-staining, an epitope shared by both proteins colocalized with cortical microtubules in situ, but exclusively in elongating cells. In non-elongating cells, only the nuclei were stained. Partially purified nuclei from elongating cells were enriched in P100, whereas the 50 kDa MAP became enriched in a partially purified plasma membrane fraction.  相似文献   

11.
8-Azido cyclic AMP has been used as a photoaffinity probe to identify cyclic AMP-binding proteins in microtubule preparations. Bovine brain microtubule proteins and rabbit muscle protein kinase were incubated with the photoaffinity ligand in reduced light for 15 min, without additions or with 100-fold excess unlabeled cyclic AMP or 5′-AMP. Samples were then irradiated at 254 nm at a distance of 1 cm for 5 min, in ice. After irradiation aliquots were taken for electrophoresis in one or two dimensions. Polypeptides which bound the photoaffinity label were visualized by autoradiography. The apparent molecular weights of the most prominent 8-azido 32P-cyclic AMP-binding proteins are in the same range as those of the RII of the muscle enzyme. Following two-dimensional electrophoresis the major microtubule-associated cyclic AMP-binding proteins resolve as two spots with about the same pI (~pH 5.0) but slightly different molecular weights. Both spots are in the molecular weight range of the tubulins but they are clearly resolved from the tubulins in the first dimension. Cyclic AMP, but not 5′-AMP blocks the labeling of these proteins. There are low levels of labeling of the tubulins, the high-molecular-weight MAPs and several polypeptides with molecular weights near tubulin but with more basic pI. The photoaffinity probe has demonstrated that the major microtubule-associated cyclic AMP-binding protein of bovine brain is distinct from other RII proteins and from tubulin isomorphs.  相似文献   

12.
The 205-kD microtubule-associated protein (205K MAP) is one of the principal MAPs in Drosophila. 205K MAP is similar to the HeLa 210K/MAP4 family of MAPs since it shares the following biochemical properties: it is present in several isoforms, has a molecular mass of approximately 200 kD, and is thermostable. Furthermore, immuno-crossreactivity has been observed between mouse MAP4, HeLa 210K, and Drosophila 205K MAP. Currently, there is little information concerning the biological function of this group of nonmotor MAPs. We have used a classical genetic approach to try to identify the role of the 205K MAP in Drosophila by isolating mutations in the 205K MAP gene. An F2 lethal screen was used to acquire deficiencies of 100EF, the chromosomal location of the 205K MAP gene. Drosophila bearing a homozygous deficiency for the 205K MAP region are fully viable and show no obvious phenotype. A recently developed polymerase chain reaction screen was also used to recover five P-element insertions upstream from the 205K MAP gene. Western blot analysis has shown that these insertions result in hypomorphic mutations of the 205K MAP gene. As was seen with animals that have no 205K MAP, these mutations appear to have no phenotype. These data unambiguously demonstrate that the 205K MAP gene is inessential for development. These results also suggest that there may exist protein(s) with redundant function that can substitute for 205K MAP.  相似文献   

13.
Recently, we and others reported that the doublecortin gene is responsible for X-linked lissencephaly and subcortical laminar heterotopia. Here, we show that Doublecortin is expressed in the brain throughout the period of corticogenesis in migrating and differentiating neurons. Immunohistochemical studies show its localization in the soma and leading processes of tangentially migrating neurons, and a strong axonal labeling is observed in differentiating neurons. In cultured neurons, Doublecortin expression is highest in the distal parts of developing processes. We demonstrate by sedimentation and microscopy studies that Doublecortin is associated with microtubules (MTs) and postulate that it is a novel MAP. Our data suggest that the cortical dysgeneses associated with the loss of Doublecortin function might result from abnormal cytoskeletal dynamics in neuronal cell development.  相似文献   

14.
We have examined the relationship of the ubiquitous 68-70-kDa cytoskeletal-associated protein beta-internexin (Napolitano, E. W., Pachter, J. S., Chin, S. S. M., and Liem, R. K. H. (1985) J. Cell Biol. 101, 1323-1331) to heat-shock cognate 70 (hsc70), the major constitutive member of the mammalian heat-shock protein 70 (hsp70) family of stress proteins. We purify beta-internexin from rat brain microtubules and confirm its identity with hsc70 and the clathrin-uncoating ATPase by the following criteria: 1) The partial sequence of a cyanogen bromide-derived peptide from beta-internexin matches the inferred amino acid sequence of the cDNA clone pRC62 encoding hsc70 from rat brain (O'Malley, K., Mauron, A., Barchas, J. D., and Kedes, L. (1985) Mol. Cell. Biol. 5, 3476-3483). 2) Mixing experiments followed by two-dimensional gel analyses reveal the precise co-migration of beta-internexin, the clathrin-uncoating ATPase, and the in vitro translation product of cDNA clone pHSP-4 encoding rat brain hsc70. 3) beta-Internexin is recognized by a monoclonal antibody reactive against the class of hsp70 proteins. 4) beta-Internexin purified from a microtubule-associated protein-enriched fraction of rat brain by virtue of high affinity binding to ATP-agarose possesses clathrin cage-specific ATPase activity.  相似文献   

15.
16.
A heat-stable microtubule-associated protein (MAP) with a molecular weight of 190,000, termed 190-kDa MAP, has been purified from bovine adrenal cortex (Murofushi, H. et al. (1986) J. Cell Biol. 103, 1911-1919). Immunoblotting experiments using an antibody against this MAP revealed that several kinds of culture cells derived from human tissues contain proteins with an apparent molecular weight of 180,000 reacting with the antibody. Indirect immunofluorescence microscopic observation of HeLa cells showed that the immunoreactive protein co-exists with microtubules, indicating that the protein is one of the HeLa MAPs. A heat-stable MAP with a molecular weight of 180,000, termed here HeLa 180-kDa MAP, was purified by the taxol-dependent procedure (Vallee, R.B. (1982) J. Cell Biol. 92, 435-442) and successive co-polymerization with brain tubulin. This protein was the most abundant MAP in HeLa cells, suggesting that the MAP is identical to the major HeLa MAP previously reported by Bulinski and Borisy (Bulinski, J.C. & Borisy, G.G. (1980) J. Biol. Chem. 255, 11570-11576) and Weatherbee et al. [1980) Biochemistry 19, 4116-4123). It was shown that, like bovine adrenal 190-kDa MAP, yet distinct from brain MAP2 and tau, purified HeLa 180-kDa MAP does not interact with actin filaments. This common characteristic of the two MAPs along with the same heat-stability strongly suggests that they are members of the same group of MAPs. The fact that HeLa 180-kDa MAP reacts with an antibody against bovine adrenal 190-kDa MAP means that they share common epitopes, in other words, common local amino acid sequences. However, the limited proteolytic patterns of the two MAPs with S. aureus V8 protease and chymotrypsin were distinct from each other, suggesting the presence of large differences in the overall primary structures between bovine adrenal 190-kDa MAP and HeLa 180-kDa MAP.  相似文献   

17.
In diffusely growing plant cells, cortical microtubules play an important role in regulating the direction of cell expansion. Arabidopsis (Arabidopsis thaliana) spiral2 (spr2) mutant is defective in directional cell elongation and exhibits right-handed helical growth in longitudinally expanding organs such as root, hypocotyl, stem, petiole, and petal. The growth of spr2 roots is more sensitive to microtubule-interacting drugs than is wild-type root growth. The SPR2 gene encodes a plant-specific 94-kD protein containing HEAT-repeat motifs that are implicated in protein-protein interaction. When expressed constitutively, SPR2-green fluorescent protein fusion protein complemented the spr2 mutant phenotype and was localized to cortical microtubules as well as other mitotic microtubule arrays in transgenic plants. Recombinant SPR2 protein directly bound to taxol-stabilized microtubules in vitro. Furthermore, SPR2-specific antibody and mass spectrometry identified a tobacco (Nicotiana tabacum) SPR2 homolog in highly purified microtubule-associated protein fractions from tobacco BY-2 cell cultures. These results suggest that SPR2 is a novel microtubule-associated protein and is required for proper microtubule function involved in anisotropic growth.  相似文献   

18.
The cell-to-cell spread of Tobacco mosaic virus infection depends on virus-encoded movement protein (MP), which is believed to form a ribonucleoprotein complex with viral RNA (vRNA) and to participate in the intercellular spread of infectious particles through plasmodesmata. Previous studies in our laboratory have provided evidence that the vRNA movement process is correlated with the ability of the MP to interact with microtubules, although the exact role of this interaction during infection is not known. Here, we have used a variety of in vivo and in vitro assays to determine that the MP functions as a genuine microtubule-associated protein that binds microtubules directly and modulates microtubule stability. We demonstrate that, unlike MP in whole-cell extract, microtubule-associated MP is not ubiquitinated, which strongly argues against the hypothesis that microtubules target the MP for degradation. In addition, we found that MP interferes with kinesin motor activity in vitro, suggesting that microtubule-associated MP may interfere with kinesin-driven transport processes during infection.  相似文献   

19.
We have identified a class of tau fragments inducing apoptosis in different cellular contexts, including a human teratocarcinoma-derived cell line (NT2 cells) representing committed human neuronal precursors. We have found a transition point inside the tau molecule beyond which the fragments lose their ability to induce apoptosis. This transition point is located around one of the putative caspase-3 cleavage sites. This is the only site that can be effectively used by caspase-3 in vitro, releasing the C-terminal 19 amino acids of tau. These results establish tau as a substrate for an apoptotic protease that turns tau itself into an effector of apoptosis. Accordingly, tau may be involved in a self-propagating process like what has been predicted for the pathogenesis of different neurodegenerative disorders.  相似文献   

20.
We have developed a procedure to isolate the microtubule-associated protein 2c (MAP2c), a juvenile form of MAP2 occurring in mammalian brain. The shape, size, self-association, and antibody interactions of MAP2c were studied. Monomeric MAP2c is an elongated molecule with a length approximately 48 nm, considerably shorter than the higher molecular weight forms MAP2a or b of adult brain. Two monoclonal antibodies whose epitopes are near the N or C terminus, respectively, are located close to the opposite ends of the MAP2c rods. This places constraints on the types of internal folding of the molecule. MAP2c self-associates into dimers and fibrous aggregates. The dimers are predominantly antiparallel and nearly in register, as judged by antibody labeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号