首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.

Background

In this review we report on recent literature concerned with studies of gynodioecy, or the co-occurrence of female and hermaphrodite individuals in natural plant populations. Rather than review this literature in its entirety, our focus is on the interplay between theoretical and empirical approaches to the study of gynodioecy.

Scope

Five areas of active inquiry are considered. These are the cost of restoration, the influence of population structure on spatial sex-ratio variation, the influence of inbreeding on sex expression, the signature of cyto-nuclear coevolution on the mitochondrial genome, and the consequences of mitochondrial paternal leakage.

Conclusions

Recent advances in the study of gynodioecy have been made by considering both the ecology of female:hermaphrodite fitness differences and the genetics of sex expression. Indeed theory has guided empiricism and empiricism has guided theory. Future advances will require that some of the methods currently available only for model organisms be applied to a wider range of species.Key words: Breeding system, gynodioecy, cytoplasmic male sterility, restoration, sex ratio, inbreeding, population structure, genetic conflict  相似文献   

3.

Background

Wheat is an excellent plant species for nuclear mitochondrial interaction studies due to availability of large collection of alloplasmic lines. These lines exhibit different vegetative and physiological properties than their parents. To investigate the level of sequence changes introduced into the mitochondrial genome under the alloplasmic condition, three mitochondrial genomes of the Triticum-Aegilops species were sequenced: 1) durum alloplasmic line with the Ae. longissima cytoplasm that carries the T. turgidum nucleus designated as (lo) durum, 2) the cytoplasmic donor line, and 3) the nuclear donor line.

Results

The mitochondrial genome of the T. turgidum was 451,678 bp in length with high structural and nucleotide identity to the previously characterized T. aestivum genome. The assembled mitochondrial genome of the (lo) durum and the Ae. longissima were 431,959 bp and 399,005 bp in size, respectively. The high sequence coverage for all three genomes allowed analysis of heteroplasmy within each genome. The mitochondrial genome structure in the alloplasmic line was genetically distant from both maternal and paternal genomes. The alloplasmic durum and the Ae. longissima carry the same versions of atp6, nad6, rps19-p, cob and cox2 exon 2 which are different from the T. turgidum parent. Evidence of paternal leakage was also observed by analyzing nad9 and orf359 among all three lines. Nucleotide search identified a number of open reading frames, of which 27 were specific to the (lo) durum line.

Conclusions

Several heteroplasmic regions were observed within genes and intergenic regions of the mitochondrial genomes of all three lines. The number of rearrangements and nucleotide changes in the mitochondrial genome of the alloplasmic line that have occurred in less than half a century was significant considering the high sequence conservation between the T. turgidum and the T. aestivum that diverged from each other 10,000 years ago. We showed that the changes in genes were not limited to paternal leakage but were sufficiently significant to suggest that other mechanisms, such as recombination and mutation, were responsible. The newly formed ORFs, differences in gene sequences and copy numbers, heteroplasmy, and substoichiometric changes show the potential of the alloplasmic condition to accelerate evolution towards forming new mitochondrial genomes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-67) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Maternal smoking during pregnancy has been reported to negatively impact sperm counts of the sons. Sufficient data on the effect of paternal smoking is lacking.

Objectives

We wished to elucidate the impact of maternal and paternal smoking during pregnancy and current own smoking on reproductive function of the male offspring.

Methods

Semen parameters including sperm DNA integrity were analyzed in 295 adolescents from the general population close to Malmö, Sweden, recruited for the study during 2008–2010. Information on maternal smoking was obtained from the Swedish Medical Birth Register, and regarding own and paternal smoking from questionnaires. The impacts of maternal, paternal and own smoking were evaluated in a multivariate regression model and by use of models including interaction terms. Totally, three exposures and five outcomes were evaluated.

Results

In maternally unexposed men, paternal smoking was associated with 46% lower total sperm count (95%CI: 21%, 64%) in maternally unexposed men. Both paternal and maternal smoking were associated with a lower sperm concentration (mean differences: 35%; 95%CI: 8.1%, 55% and 36%; 95%CI: 3.9%, 57%, respectively) if the other parent was a non-smoker. No statistically significant impact of own smoking on semen parameters was seen.

Conclusions

Prenatal both maternal and paternal smoking were separately associated with some decrease in sperm count in men of whom the other parent was not reported to smoke.  相似文献   

5.

Background

Alzheimer’s disease (AD) is the most common cause of dementia and AD risk clusters within families. Part of the familial aggregation of AD is accounted for by excess maternal vs. paternal inheritance, a pattern consistent with mitochondrial inheritance. The role of specific mitochondrial DNA (mtDNA) variants and haplogroups in AD risk is uncertain.

Methodology/Principal Findings

We determined the complete mitochondrial genome sequence of 1007 participants in the Cache County Study on Memory in Aging, a population-based prospective cohort study of dementia in northern Utah. AD diagnoses were made with a multi-stage protocol that included clinical examination and review by a panel of clinical experts. We used TreeScanning, a statistically robust approach based on haplotype networks, to analyze the mtDNA sequence data. Participants with major mitochondrial haplotypes H6A1A and H6A1B showed a reduced risk of AD (p = 0.017, corrected for multiple comparisons). The protective haplotypes were defined by three variants: m.3915G>A, m.4727A>G, and m.9380G>A. These three variants characterize two different major haplogroups. Together m.4727A>G and m.9380G>A define H6A1, and it has been suggested m.3915G>A defines H6A. Additional variants differentiate H6A1A and H6A1B; however, none of these variants had a significant relationship with AD case-control status.

Conclusions/Significance

Our findings provide evidence of a reduced risk of AD for individuals with mtDNA haplotypes H6A1A and H6A1B. These findings are the results of the largest study to date with complete mtDNA genome sequence data, yet the functional significance of the associated haplotypes remains unknown and replication in others studies is necessary.  相似文献   

6.

Background

Multipartite mitochondrial genomes are very rare in animals but have been found previously in two insect orders with highly rearranged genomes, the Phthiraptera (parasitic lice), and the Psocoptera (booklice/barklice).

Results

We provide the first report of a multipartite mitochondrial genome architecture in a third order with highly rearranged genomes: Thysanoptera (thrips). We sequenced the complete mitochondrial genomes of two divergent members of the Scirtothrips dorsalis cryptic species complex. The East Asia 1 species has the single circular chromosome common to animals while the South Asia 1 species has a genome consisting of two circular chromosomes. The fragmented South Asia 1 genome exhibits extreme chromosome size asymmetry with the majority of genes on the large, 14.28 kb, chromosome and only nad6 and trnC on the 0.92 kb mini-circle chromosome. This genome also features paralogous control regions with high similarity suggesting a very recent origin of the nad6 mini-circle chromosome in the South Asia 1 cryptic species.

Conclusions

Thysanoptera, along with the other minor paraenopteran insect orders should be considered models for rapid mitochondrial genome evolution, including fragmentation. Continued use of these models will facilitate a greater understanding of recombination and other mitochondrial genome evolutionary processes across eukaryotes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1672-4) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.

Aim/Hypothesis

Maternal diabetes and high-fat feeding during pregnancy have been linked to later life outcomes in offspring. To investigate the effects of both maternal and paternal hyperglycemia on offspring phenotypes, we utilized an autosomal dominant mouse model of diabetes (hypoinsulinemic hyperglycemia in Akita mice). We determined metabolic and skeletal phenotypes in wildtype offspring of Akita mothers and fathers.

Results

Both maternal and paternal diabetes resulted in phenotypic changes in wildtype offspring. Phenotypic changes were more pronounced in male offspring than in female offspring. Maternal hyperglycemia resulted in metabolic and skeletal phenotypes in male wildtype offspring. Decreased bodyweight and impaired glucose tolerance were observed as were reduced whole body bone mineral density and reduced trabecular bone mass.Phenotypic changes in offspring of diabetic fathers differed in effect size from changes in offspring of diabetic mothers. Male wildtype offspring developed a milder metabolic phenotype, but a more severe skeletal phenotype. Female wildtype offspring of diabetic fathers were least affected.

Conclusions

Both maternal and paternal diabetes led to the development of metabolic and skeletal changes in wildtype offspring, with a greater effect of maternal diabetes on metabolic parameters and of paternal diabetes on skeletal development. The observed changes are unlikely to derive from Mendelian inheritance, since the investigated offspring did not inherit the Akita mutation. While fetal programming may explain the phenotypic changes in offspring exposed to maternal diabetes in-utero, the mechanism underlying the effect of paternal diabetes on wildtype offspring is unclear.  相似文献   

9.
Ji YQ  Wu DD  Wu GS  Wang GD  Zhang YP 《PloS one》2011,6(10):e26416

Background

A major reduction of genetic diversity in mtDNA occurred during the domestication of East Asian pigs. However, the extent to which genetic diversity has been lost in the nuclear genome is uncertain. To reveal levels and patterns of nucleotide diversity and to elucidate the genetic relationships and demographic history of domestic pigs and their ancestors, wild boars, we investigated 14 nuclear markers (including 8 functional genes, 2 pseudogenes and 4 intergenic regions) from 11 different chromosomes in East Asia-wide samples and pooled them with previously obtained mtDNA data for a combined analysis.

Principal Findings

The results indicated that domestic pigs and wild boars possess comparable levels of nucleotide diversity across the nuclear genome, which is inconsistent with patterns that have been found in mitochondrial genome.

Conclusions

This incongruence between the mtDNA and nuclear genomes is suggestive of a large-scale backcross between male wild boars and female domestic pigs in East Asia. Our data reveal the impacts of founder effects and backcross on the pig genome and help us better understand the complex demographic histories of East Asian pigs, which will be useful for future work on artificial selection.  相似文献   

10.

Background

Forming a new species through the merger of two or more divergent parent species is increasingly seen as a key phenomenon in the evolution of many biological systems. However, little is known about how expression of parental gene copies (homeologs) responds following genome merger. High throughput RNA sequencing now makes this analysis technically feasible, but tools to determine homeolog expression are still in their infancy.

Results

Here we present HyLiTE – a single-step analysis to obtain tables of homeolog expression in a hybrid or allopolyploid and its parent species directly from raw mRNA sequence files. By implementing on-the-fly detection of diagnostic parental polymorphisms, HyLiTE can perform SNP calling and read classification simultaneously, thus allowing HyLiTE to be run as parallelized code. HyLiTE accommodates any number of parent species, multiple data sources (including genomic DNA reads to improve SNP detection), and implements a statistical framework optimized for genes with low to moderate expression.

Conclusions

HyLiTE is a flexible and easy-to-use program designed for bench biologists to explore patterns of gene expression following genome merger. HyLiTE offers practical advantages over manual methods and existing programs, has been designed to accommodate a wide range of genome merger systems, can identify SNPs that arose following genome merger, and offers accurate performance on non-model organisms.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0433-8) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.

Background

Mate preference behavior is an essential first step in sexual selection and is a critical determinant in evolutionary biology. Previously an environmental compound (the fungicide vinclozolin) was found to promote the epigenetic transgenerational inheritance of an altered sperm epigenome and modified mate preference characteristics for three generations after exposure of a gestating female.

Results

The current study investigated gene networks involved in various regions of the brain that correlated with the altered mate preference behavior in the male and female. Statistically significant correlations of gene clusters and modules were identified to associate with specific mate preference behaviors. This novel systems biology approach identified gene networks (bionetworks) involved in sex-specific mate preference behavior. Observations demonstrate the ability of environmental factors to promote the epigenetic transgenerational inheritance of this altered evolutionary biology determinant.

Conclusions

Combined observations elucidate the potential molecular control of mate preference behavior and suggests environmental epigenetics can have a role in evolutionary biology.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-377) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Phylogenetic mitochondrial DNA haplogroups are highly partitioned across global geographic regions. A unique exception is the X haplogroup, which has a widespread global distribution without major regions of distinct localization.

Principal Findings

We have examined mitochondrial DNA sequence variation together with Y-chromosome-based haplogroup structure among the Druze, a religious minority with a unique socio-demographic history residing in the Near East. We observed a striking overall pattern of heterogeneous parental origins, consistent with Druze oral tradition, together with both a high frequency and a high diversity of the mitochondrial DNA (mtDNA) X haplogroup within a confined regional subpopulation. Furthermore demographic modeling indicated low migration rates with nearby populations.

Conclusions

These findings were enabled through the use of a paternal kindred based sampling approach, and suggest that the Galilee Druze represent a population isolate, and that the combination of a high frequency and diversity of the mtDNA X haplogroup signifies a phylogenetic refugium, providing a sample snapshot of the genetic landscape of the Near East prior to the modern age.  相似文献   

14.

Background

The adverse effects of advancing maternal age on offspring''s health and development are well understood. Much less is known about the impact of paternal age.

Methods

We explored paternal age-offspring cognition associations in 772 participants from the West of Scotland Twenty-07 study. Offspring cognitive ability was assessed using Part 1 of the Alice Heim 4 (AH4) test of General Intelligence and by reaction time (RT).

Results

There was no evidence of a parental age association with offspring RT. However, we observed an inverse U-shaped association between paternal age and offspring AH4 score with the lowest scores observed for the youngest and oldest fathers. Adjustment for parental education and socioeconomic status somewhat attenuated this association. Adjustment for number of, particularly older, siblings further reduced the scores of children of younger fathers and appeared to account for the lower offspring scores in the oldest paternal age group.

Conclusion

We observed a paternal age association with AH4 but not RT, a measure of cognition largely independent of social and educational experiences. Factors such as parental education, socioeconomic status and number of, particularly older, siblings may play an important role in accounting for paternal age-AH4 associations. Future studies should include parental intelligence.  相似文献   

15.

Context

Anorexia nervosa is a common illness among adolescents and is characterised by oxidative stress.

Objective

The effects of anorexia on mitochondrial function and redox state in leukocytes from anorexic subjects were evaluated.

Design and setting

A multi-centre, cross-sectional case-control study was performed.

Patients

Our study population consisted of 20 anorexic patients and 20 age-matched controls, all of which were Caucasian women.

Main outcome measures

Anthropometric and metabolic parameters were evaluated in the study population. To assess whether anorexia nervosa affects mitochondrial function and redox state in leukocytes of anorexic patients, we measured mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels, mitochondrial mass, and complex I and III activity in polymorphonuclear cells.

Results

Mitochondrial function was impaired in the leukocytes of the anorexic patients. This was evident in a decrease in mitochondrial O2 consumption (P<0.05), mitochondrial membrane potential (P<0.01) and GSH levels (P<0.05), and an increase in ROS production (P<0.05) with respect to control subjects. Furthermore, a reduction of mitochondrial mass was detected in leukocytes of the anorexic patients (P<0.05), while the activity of mitochondrial complex I (P<0.001), but not that of complex III, was found to be inhibited in the same population.

Conclusions

Oxidative stress is produced in the leukocytes of anorexic patients and is closely related to mitochondrial dysfunction. Our results lead us to propose that the oxidative stress that occurs in anorexia takes place at mitochondrial complex I. Future research concerning mitochondrial dysfunction and oxidative stress should aim to determine the physiological mechanism involved in this effect and the physiological impact of anorexia.  相似文献   

16.

Background

Helicosporidia are achlorophyllous, non-photosynthetic protists that are obligate parasites of invertebrates. Highly specialized, these pathogens feature an unusual cyst stage that dehisces inside the infected organism and releases a filamentous cell displaying surface projections, which will penetrate the host gut wall and eventually reproduce in the hemolymph. Long classified as incertae sedis or as relatives of other parasites such as Apicomplexa or Microsporidia, the Helicosporidia were surprisingly identified through molecular phylogeny as belonging to the Chlorophyta, a phylum of green algae. Most phylogenetic analyses involving Helicosporidia have placed them within the subgroup Trebouxiophyceae and further suggested a close affiliation between the Helicosporidia and the genus Prototheca. Prototheca species are also achlorophyllous and pathogenic, but they infect vertebrate hosts, inducing protothecosis in humans. The complete plastid genome of an Helicosporidium species was recently described and is a model of compaction and reduction. Here we describe the complete mitochondrial genome sequence of the same strain, Helicosporidium sp. ATCC 50920 isolated from the black fly Simulium jonesi.

Methodology/Principal Findings

The circular mapping 49343 bp mitochondrial genome of Helicosporidium closely resembles that of the vertebrate parasite Prototheca wickerhamii. The two genomes share an almost identical gene complement and display a level of synteny that is higher than any other sequenced chlorophyte mitochondrial DNAs. Interestingly, the Helicosporidium mtDNA feature a trans-spliced group I intron, and a second group I intron that contains two open reading frames that appear to be degenerate maturase/endonuclease genes, both rare characteristics for this type of intron.

Conclusions/Significance

The architecture, genome content, and phylogeny of the Helicosporidium mitochondrial genome are all congruent with its close relationship to Prototheca within the Trebouxiophyceae. The Helicosporidium mitochondrial genome does, however, contain a number of novel features, particularly relating to its introns.  相似文献   

17.
18.
19.

Background

A problem has remained unresolved regarding the exceptions to the unilateral inheritance of chloroplast DNA (cpDNA) from MT+/female in Chlamydomonas and other volvocaleans demonstrated by the previous genetic analyses. For identification of the parental types of cpDNA, these studies used parents that have differences in restriction fragment length polymorphisms and exhibit partial sexual incompatibility.

Methodology/Principal Findings

In the present study, we used sexually compatible parents of the isogamous colonial volvocalean Gonium maiaprilis that seemed an ideal species to identify the pattern of cpDNA inheritance based on the length difference in the putative group I intron interrupted in the Rubisco large subunit gene and objective identification of mating types by the presence or absence of the minus-dominance (MID) gene. We examined patterns of inheritance of cpDNA and presence/absence of a MID ortholog (GmMID) in 107 F1 progeny of G. maiaprilis that were obtained by inducing germination of separated single zygotes. The results demonstrated no exception of the uniparental inheritance of cpDNA from the MT+ parent (lacking GmMID) in sexually compatible or genetically less divergent strains of G. maiaprilis.

Conclusions/Significance

The present data suggest that the uniparental inheritance of cpDNA is likely more strict in crossings of less diverged strains or sexually compatible parental volvocaleans, and some genetic inconsistency between the parents may cause exceptional uniparental inheritance of cpDNA.  相似文献   

20.

Background and Aims

Most molecular phylogenetic studies of Orchidaceae have relied heavily on DNA sequences from the plastid genome. Nuclear and mitochondrial loci have only been superficially examined for their systematic value. Since 40% of the genera within Vanilloideae are achlorophyllous mycoheterotrophs, this is an ideal group of orchids in which to evaluate non-plastid gene sequences.

Methods

Phylogenetic reconstructions for Vanilloideae were produced using independent and combined data from the nuclear 18S, 5·8S and 26S rDNA genes and the mitochondrial atpA gene and nad1b-c intron.

Key Results

These new data indicate placements for genera such as Lecanorchis and Galeola, for which plastid gene sequences have been mostly unavailable. Nuclear and mitochondrial parsimony jackknife trees are congruent with each other and previously published trees based solely on plastid data. Because of high rates of sequence divergence among vanilloid orchids, even the short 5·8S rDNA gene provides impressive levels of resolution and support.

Conclusions

Orchid systematists are encouraged to sequence nuclear and mitochondrial gene regions along with the growing number of plastid loci available.Key words: 26S rDNA, 18S rDNA, 5·8S rDNA, atpA, nad1, orchids, plastid, Vanilla, vanilloid orchids, Vanilloideae  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号