共查询到20条相似文献,搜索用时 0 毫秒
1.
Lluis Morey Alexandra Santanach Luciano Di Croce 《Molecular and cellular biology》2015,35(16):2716-2728
Embryonic stem cells (ESCs) are characterized by their ability to self-renew and to differentiate into all cell types of a given organism. Understanding the molecular mechanisms that govern the ESC state is of great interest not only for basic research—for instance, ESCs represent a perfect system to study cellular differentiation in vitro—but also for their potential implications in human health, as these mechanisms are likewise involved in cancer progression and could be exploited in regenerative medicine. In this minireview, we focus on the latest insights into the molecular mechanisms mediated by the pluripotency factors as well as their roles during differentiation. We also discuss recent advances in understanding the function of the epigenetic regulators, Polycomb and MLL complexes, in ESC biology. 相似文献
2.
多能性干细胞是一类具有体外无限自我复制和分化为体内多种细胞类型能力的多潜能细胞,是研究基因功能、建立疾病模型和促进再生医学领域发展的一种重要工具。自1981年小鼠胚胎干细胞建立以来,科学家们已经先后成功地建立了灵长类、人、大鼠的胚胎干细胞和小鼠、大鼠的上胚层干细胞等。但是,目前研究表明,维持人、灵长类胚胎干细胞的多能性信号通路与维持小鼠、大鼠胚胎干细胞的截然不同,而与维持小鼠、大鼠上胚层干细胞的信号通路比较类似。因此,该文对目前研究较多的维持小鼠胚胎干细胞、人胚胎干细胞和小鼠上胚层干细胞的多能性信号通路进行了综述,希望能够对其它物种的多能性干细胞研究提供有益的借鉴。 相似文献
3.
4.
5.
Sukanya Shyamasundar Shweta P. Jadhav Boon Huat Bay Samuel Sam Wah Tay S. Dinesh Kumar Danny Rangasamy S. Thameem Dheen 《PloS one》2013,8(6)
Background
Maternal diabetes alters gene expression leading to neural tube defects (NTDs) in the developing brain. The mechanistic pathways that deregulate the gene expression remain unknown. It is hypothesized that exposure of neural stem cells (NSCs) to high glucose/hyperglycemia results in activation of epigenetic mechanisms which alter gene expression and cell fate during brain development.Methods and Findings
NSCs were isolated from normal pregnancy and streptozotocin induced-diabetic pregnancy and cultured in physiological glucose. In order to examine hyperglycemia induced epigenetic changes in NSCs, chromatin reorganization, global histone status at lysine 9 residue of histone H3 (acetylation and trimethylation) and global DNA methylation were examined and found to be altered by hyperglycemia. In NSCs, hyperglycemia increased the expression of Dcx (Doublecortin) and Pafah1b1 (Platelet activating factor acetyl hydrolase, isoform 1b, subunit 1) proteins concomitant with decreased expression of four microRNAs (mmu-miR-200a, mmu-miR-200b, mmu-miR-466a-3p and mmu-miR-466 d-3p) predicted to target these genes. Knockdown of specific microRNAs in NSCs resulted in increased expression of Dcx and Pafah1b1 proteins confirming target prediction and altered NSC fate by increasing the expression of neuronal and glial lineage markers.Conclusion/Interpretation
This study revealed that hyperglycemia alters the epigenetic mechanisms in NSCs, resulting in altered expression of some development control genes which may form the basis for the NTDs. Since epigenetic changes are reversible, they may be valuable therapeutic targets in order to improve fetal outcomes in diabetic pregnancy. 相似文献6.
7.
8.
构建Stella基因真核表达质粒,转染小鼠胚胎干细胞(Embryonic stem cells,ESC)并初步探讨Stella对减数分裂起始相关基因(Stra8)及胚胎干细胞多能性的影响。通过RT-PCR扩增目的基因,并连接至真核表达载体pEGFP-C1,利用重组质粒转染小鼠胚胎干细胞。对转染细胞进行荧光检测,确认Stella的表达,并利用免疫荧光及PCR检测转染细胞基因表达情况。酶切鉴定及测序分析表明成功构建含Stella基因的重组真核表达质粒,过表达Stella对ES细胞的增殖和形态学特征、进入减数分裂阶段的相关基因及其多能性基因的表达影响并不显著。故此得出结论:Stella在小鼠胚胎干细胞中能够正确表达,但对ES细胞的分化、Stra8基因的表达及其多能性基因的表达并无显著影响。 相似文献
9.
10.
11.
Bingyun Sun Li Ma Xiaowei Yan Denis Lee Vinita Alexander Laura J. Hohmann Cynthia Lorang Lalangi Chandrasena Qiang Tian Leroy Hood 《PloS one》2013,8(2)
E14.Tg2a mouse embryonic stem (mES) cells are a widely used host in gene trap and gene targeting techniques. Molecular characterization of host cells will provide background information for a better understanding of functions of the knockout genes. Using a highly selective glycopeptide-capture approach but ordinary liquid chromatography coupled mass spectrometry (LC-MS), we characterized the N-glycoproteins of E14.Tg2a cells and analyzed the close relationship between the obtained N-glycoproteome and cell-surface proteomes. Our results provide a global view of cell surface protein molecular properties, in which receptors seem to be much more diverse but lower in abundance than transporters on average. In addition, our results provide a systematic view of the E14.Tg2a N-glycosylation, from which we discovered some striking patterns, including an evolutionarily preserved and maybe functionally selected complementarity between N-glycosylation and the transmembrane structure in protein sequences. We also observed an environmentally influenced N-glycosylation pattern among glycoenzymes and extracellular matrix proteins. We hope that the acquired information enhances our molecular understanding of mES E14.Tg2a as well as the biological roles played by N-glycosylation in cell biology in general. 相似文献
12.
Ganeshkumar Rajendran Debasree Dutta James Hong Arindam Paul Biswarup Saha Biraj Mahato Soma Ray Pratik Home Avishek Ganguly Mark L. Weiss Soumen Paul 《The Journal of biological chemistry》2013,288(34):24351-24362
Embryonic stem cell (ESC) pluripotency is orchestrated by distinct signaling pathways that are often targeted to maintain ESC self-renewal or their differentiation to other lineages. We showed earlier that inhibition of PKC signaling maintains pluripotency in mouse ESCs. Therefore, in this study, we investigated the importance of protein kinase C signaling in the context of rat ESC (rESC) pluripotency. Here we show that inhibition of PKC signaling is an efficient strategy to establish and maintain pluripotent rESCs and to facilitate reprogramming of rat embryonic fibroblasts to rat induced pluripotent stem cells. The complete developmental potential of rESCs was confirmed with viable chimeras and germ line transmission. Our molecular analyses indicated that inhibition of a PKCζ-NF-κB-microRNA-21/microRNA-29 regulatory axis contributes to the maintenance of rESC self-renewal. In addition, PKC inhibition maintains ESC-specific epigenetic modifications at the chromatin domains of pluripotency genes and, thereby, maintains their expression. Our results indicate a conserved function of PKC signaling in balancing self-renewal versus differentiation of both mouse and rat ESCs and indicate that targeting PKC signaling might be an efficient strategy to establish ESCs from other mammalian species. 相似文献
13.
14.
Ludovic Vallier Thomas Touboul Zhenzhi Chng Minodora Brimpari Nicholas Hannan Enrique Millan Lucy E. Smithers Matthew Trotter Peter Rugg-Gunn Anne Weber Roger A. Pedersen 《PloS one》2009,4(6)
Human embryonic stem cells have unique value for regenerative medicine, as they are capable of differentiating into a broad variety of cell types. Therefore, defining the signalling pathways that control early cell fate decisions of pluripotent stem cells represents a major task. Moreover, modelling the early steps of embryonic development in vitro may provide the best approach to produce cell types with native properties. Here, we analysed the function of key developmental growth factors such as Activin, FGF and BMP in the control of early cell fate decisions of human pluripotent stem cells. This analysis resulted in the development and validation of chemically defined culture conditions for achieving specification of human embryonic stem cells into neuroectoderm, mesendoderm and into extra-embryonic tissues. Importantly, these defined culture conditions are devoid of factors that could obscure analysis of developmental mechanisms or render the resulting tissues incompatible with future clinical applications. Importantly, the growth factor roles defined using these culture conditions similarly drove differentiation of mouse epiblast stem cells derived from post implantation embryos, thereby reinforcing the hypothesis that epiblast stem cells share a common embryonic identity with human pluripotent stem cells. Therefore the defined growth factor conditions described here represent an essential step toward the production of mature cell types from pluripotent stem cells in conditions fully compatible with clinical use ant also provide a general approach for modelling the early steps of mammalian embryonic development. 相似文献
15.
《Cell cycle (Georgetown, Tex.)》2013,12(10):1323-1326
In order to exploit the exceptional potential of human embryonic stem cells (hESCs) incell-replacement therapies, the genetic and epigenetic factors controlling early humandevelopment must be better defined. Limitations in human embryonic material restrict thescale of studies that can be performed, and therefore an in vitro model in which to studyepigenetic regulation in human pre-implantation cell types would be desirable. HESCscould provide such a model, but since they are derived from a stage in mammaliandevelopment when the genome is undergoing global epigenetic remodelling, it is unclearwhether their epigenetic status would be stable or subject to variation. Herein, we discussrecent work that examines allele-specific imprinted gene expression and methylationpatterns, thereby demonstrating that hESCs maintain a substantial degree of epigeneticstability during culture. Therefore, we suggest that hESCs could provide a model forstudying epigenetic regulation during the early stages of human cellular pluripotency anddifferentiation. Furthermore, we propose specific experiments using such a model toaddress important questions pertaining to epigenetic mechanisms of certain humandisorders. 相似文献
16.
17.
无血清无饲养层条件下培养小鼠胚胎干细胞 总被引:2,自引:0,他引:2
目的研究在无血清无饲养层条件下小鼠胚胎干细胞的培养方法,为最终建立无血清无饲养层培养系统打下基础。方法比较小鼠胚胎干细胞ES-S8株在无血清培养体系和有血清培养体系中的生长情况,分析ES-S8细胞克隆形成效率,测定其生长速度;然后在撤去血清和饲养层的条件下培养ES-S8细胞,进行AKP染色和表面标记物SSEA-1免疫荧光检测。结果ES-S8细胞在无血清培养条件下细胞生长速度减缓,克隆形成率降低,但AKP染色、SSEA-1免疫荧光均显阳性;在无血清无饲养层条件下ES-S8细胞培养仍能形成克隆,且AKP染色、SSEA-1免疫荧光均显阳性。结论研究表明ES-S8细胞能够在无血清无饲养层的培养条件下生长,保持其良好的未分化特性。 相似文献
18.