首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic distances (GDs) based on molecular markers are important parameters for identifying essentially derived varieties (EDVs). In this context information about the variability of molecular markers within maize inbred lines is essential. Our objectives were to (1) determine the variation in the size of simple sequence repeat (SSR) fragments among different accessions of maize inbreds and doubled haploid (DH) lines, (2) attribute the observed variation to genetic and marker system-specific sources, and (3) investigate the effect of SSR fragment size differences within maize lines on the GD between maize lines and their consequences for the identification of essentially derived varieties. Two to five accessions from nine inbred lines and five DH lines were taken from different sources or drawn as independent samples from the same seed lot. Each accession was genotyped with 100 SSR markers that evenly covered the whole maize genome. In total, 437 SSR fragments were identified, with a mean of 4.4 alleles per locus. The average polymorphic information content (PIC) was 0.58. GD estimates between two accessions of the same genotype ranged from 0.00 to 0.12 with an average of 0.029 for inbred lines and 0.001 for DH lines. An average of 11.1 SSRs was polymorphic between accessions of the same inbred line due to non-amplification (8.1 SSRs), heterogeneity (4.0 SSRs) or unknown alleles (2.6 SSRs). In contrast to lab errors, heterogeneity contributed considerably to the observed variation for GD. In order to decrease the probability to be suited for infringing an EDV threshold by chance, we recommend to increase the level of homogeneity of inbred lines before applying for plant variety protection.  相似文献   

2.
 The challenge to maize breeders is to identify inbred lines that produce highly heterotic hybrids. In the present study we surveyed genetic divergence among 13 inbred lines of maize using DNA markers and assessed the relationship between genetic distance and hybrid performance in a diallel set of crosses between them. The parental lines were assayed for DNA polymorphism using 135 restriction fragment length polymorphisms (RFLPs) and 209 amplified-fragment polymorphisms (AFLPs). Considerable variation among inbreds was detected with RFLP and AFLP markers. Moreover AFLPs detect polymorphisms more efficiently in comparison to RFLPs, due to the larger number of loci assayed in a single PCR reaction. Genetic distances (GDs), calculated from RFLP and AFLP data, were greater among lines belonging to different heterotic groups compared to those calculated from lines of the same heterotic group. Cluster analysis based on GDs revealed associations among lines which agree with expectations based on pedigree information. The GD values of the 78 F1 crosses were partioned into general (GGD) and specific (SGD) components. Correlations of GD with F1 performance for grain yield were positive but too small to be of predictive value. The correlations of SGDs, particularly those based on AFLP data, with specific combining-ability effects for yield may have a practical utility in predicting hybrid performance. Received: 15 August 1997 / Accepted: 19 September 1997  相似文献   

3.
Genetic similarities (GS) based on molecular markers have been proposed as a tool for identification of essentially derived varieties (EDVs). Nevertheless, scientifically reliable criteria for discrimination of EDVs and independently derived varieties with GS estimates are scanty, and implementation into practical breeding has not yet taken place. Our objectives were to (1) assess the influence of chromosome number and length, marker density, and distribution, as well as the degree of polymorphism between the parental inbreds on the distribution of GS between parental inbreds and their progenies [GS(P1,O)] derived from F2 and different backcross populations and (2) evaluate these factors with regard to the power for distinguishing F2- versus BC1- and BC1- versus BC2-derived lines with molecular markers. We developed an approach based on statistical test theory for the identification of EDVs with molecular markers. Standard deviations and overlaps of distributions of GS(P1,O) of F2-, BC1-, and BC2-derived lines were smaller with (1) increasing chromosome number and length, (2) increasing marker density, and (3) uniformly instead of randomly distributed markers, approaching a lower boundary determined by the genetic parameters. The degree of polymorphism between the parental inbreds influenced the power only if the remaining number of polymorphic markers was low. Furthermore, suggestions are made for (1) determining the number of markers required to ascertain a given power and (2) EDV identification procedures.  相似文献   

4.
Application of association mapping to plant breeding populations has the potential to revolutionize plant genetics. The main objectives of this study were to (i) investigate the extent and genomic distribution of linkage disequilibrium (LD) between pairs of amplified fragment length polymorphism (AFLP) markers, (ii) compare these results with those obtained with simple sequence repeat (SSR) markers, and (iii) compare the usefulness of AFLP and SSR markers for genomewide association mapping in plant breeding populations. We examined LD in a cross-section of 72 European elite inbred lines genotyped with 452 AFLP and 93 SSR markers. LD was significant (p < 0.05) for about 15% of the AFLP marker pairs and for about 49% of the SSR marker pairs in each of the two germplasm groups, flint and dent. In both germplasm groups the ratio of linked to unlinked loci pairs in LD was higher for AFLPs than for SSRs. The observation of LD due to linkage for both marker types suggested that genome-wide association mapping should be possible using either AFLPs or SSRs. The results of our study indicated that SSRs should be favored over AFLPs but the opposite applies to populations with a long history of recombination.  相似文献   

5.
6.
A high-density genetic linkage map of Brassica juncea (2n = 36) was constructed with 996 AFLP (amplified fragment length polymorphism) and 33 RFLP (restriction fragment length polymorphism) markers using a F1-derived doubled-haploid (DH) population of 123 individuals. This mapping population was developed by crossing a well-adapted, extensively grown Indian variety Varuna and a canola quality line Heera. The two lines are highly divergent and contain a number of contrasting qualitative and quantitative traits of high agronomic value. AFLPs were generated by the use of restriction enzymes EcoRI or PstI in combination with either MseI or TaqI. Using 91 primer pairs, a total of 1,576 parental polymorphic bands were detected of which 996 were used for mapping. In addition, 33 RFLP markers, developed from genomic clones of B. napus, were added to the map. The segregation of each marker and linkage analysis was performed using the program JoinMap version 2.0. The 1,029 mapped-markers were aligned in 18 linkage groups, which is the haploid chromosome number of the species, at LOD values ranging from 5 to 8. The total map length was 1,629 cM with an average marker interval of 3.5 cM. AFLP markers generated by EcoRI were more clustered, whereas PstI markers showed more extensive distribution. A set of 26 primer pairs (9 EcoRI/ MseI, 6 EcoRI/ TaqI, 6 PstI/ MseI and 5 PstI/ TaqI) generating 385 markers were identified for AFLP-based whole-genome selection as these markers covered 96% of the genome mapped with the 91 primer pairs. The map developed in the present study could be used for dissection and the transfer of agronomically important traits and favourable QTLs from ill-adapted exotic germplasm to cultivated Indian varieties.  相似文献   

7.
A comparison of the different methods of the estimation of genetic diversity is important to evaluate their utility as a tool in germplasm conservation and plant breeding. Amplified fragment length polymorphism (AFLP), microsatellites or SSR and morphological traits markers were used to evaluate 45 sorghum germplasm for genetic diversity assessment and discrimination power. The mean polymorphism information content (PIC) values were 0.65 (AFLPs) and 0.46 (SSRs). The average pairwise genetic distance estimates were 0.57 (morphological traits), 0.62 (AFLPs) and 0.60 (SSRs) markers data sets. The Shannon diversity index was higher for morphological traits (0.678) than AFLP (0.487) and SSR (0.539). The correlation coefficients obtained by the Mantel matrix correspondence test, which was used to compare the cophenetic matrices for the different markers, showed that estimated values of genetic relationship given for AFLP and SSR markers, as well as for morphological and SSR markers were significantly related (p <0.001). However, morphological and AFLP data showed non-significant correlation (p >0.05). Both data sets from AFLP and SSR allowed all accessions to be uniquely identified; two accessions could not be distinguished by the morphological data. In summary, AFLP and SSR markers proved to be efficient tools in assessing the genetic variability among sorghum genotypes. The patterns of variation appeared to be consistent for the three marker systems, and they can be used for designing breeding programmes, conservation of germplasm and management of sorghum genetic resources.  相似文献   

8.
利用 RFLP、SSR.AFLP和RAPD 4种分子标记方法研究了 15个玉米(Zea mays L.)自交系的遗传多样性,同时对4种标记系统进行比较。在供试材料中筛选到具多态性的RFLP探针酶组合56个,66对SSR引物,20个RAPD引物和9个AFLP引物组合,分别检测到多态性带167、201、87和108条。SSR标记位点的平均多态性信息量(PIC)最大(0.54),AFLP标记位点最小(0.36),但AFLP标记具有最高的多态性检测效率(Ai,32.2)。4种分子标记所得遗传相似系数相关性显著,比较相关系数表明 RAPD可靠性较低。依据 4种分子标记结果将 15个供试自交系划分为塘四平头、旅大红骨、兰卡斯特、瑞德和PN共5个类群,与系谱分析基本一致。认为SSR和RFLP两种分子标记方法适合进行玉米种质遗传多样性的研究。  相似文献   

9.
Striga-resistant maize inbred lines are of interest to maize breeding programs in the savannas of Africa where the parasitic weed is endemic and causes severe yield losses in tropical maize. Assessment of the genetic diversity of such inbred lines is useful for their systematic and efficient use in a breeding program. Diversity analysis of 41 Striga-resistant maize inbred lines was conducted using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers to examine the genetic relationships among these lines and to determine the level of genetic diversity that exists within and between their source populations. The two marker systems generated 262 and 101 polymorphic fragments, respectively. Genetic similarity (GS) values among all possible pairs of inbred lines varied from 0.45 to 0.95, with a mean of 0.61±0.002 for AFLPs, and from 0.21 to 0.92, with a mean of 0.48±0.003, for SSRs. The inbred lines from each source population exhibited a broad range of GS values with the two types of markers. Both AFLPs and SSRs revealed similar levels of within population genetic variation for all source populations. Cluster and principal component analysis of GS estimates with the two markers revealed clear differentiation of the Striga-resistant inbred lines into groups according to their source populations. There was clear separation between early- and late-maturing Striga-resistant inbred lines. Considering the paucity of germplasm with good levels of resistance to Striga in maize, the broad genetic diversity detected within and among source populations demonstrates the genetic potential that exists to improve maize for resistance to Striga.  相似文献   

10.
The genus Origanum is often referred to as an under-utilized taxon because of its complex taxonomy. Origanum vulgare L., the most variable species of the genus, is a spice and medicinal herb that is characterized by high morphological diversity (six subspecies). In this study, the relative efficiencies of two PCR-based marker approaches, amplified fragment length polymorphism (AFLP) and selectively amplified microsatellite polymorphic loci (SAMPL), were used for comparable genetic diversity surveys and subspecies discrimination among 42 oregano accessions. Seven assays each of AFLP and SAMPL markers were utilized. Effective multiplex ratio (EMR), average heterozygosity (Hav-p), marker index (MI), and resolving power (RP) of the primer combinations were calculated for the two marker systems. UPGMA and Structure analysis along with PCoA plots derived from the binary data matrices of the two markers depicted the genetic distinction of accessions. Our results indicate that both marker systems are suitable but SAMPL markers are slightly more efficient in differentiating accessions and subspecies than AFLPs.  相似文献   

11.
中国食用向日葵种质资源遗传变异的RAPD及AFLP分析   总被引:7,自引:0,他引:7  
本研究采用RAPD和AFLP方法对23个中国不同地区的食用向日葵(Helianthus annuus L.)骨干品种进行了遗传变异分析,同时对两种标记系统进行了比较。26个RAPD引物产生了总计192条DNA条带,大小分布 于0.26kb-1.98kb之间,其中165条(86.12%)具有多态性,每条引物产生DNA条带的平均数为7.38。8对AFLP引物组合共产生了576条带,分布于100bp-500bp之间,其中的341条具有多态性,多态百分率为76.00%,每对引物组合产生DNA条带的平均数为72。RAPD方法检测的每位点有效等位基因数(1.76)大于AFLP(1.65),AFLP标记位点的平均多态性信息量(PIC)(0.38)低于RAPD标记位点PIC(0.41),但AFLP标记具有很高的多态性检测效率(Ai=38.52)。用RAPD标记分析23个食用向日葵材料的亲缘关系,Nei氏相似性系数分布在47.84%-82.06%,平均相似性系数为0.6495,而采用AFLP的Nei氏相似性系数分布在54.15%-83.52%,平均相似性系数为0.6884。RAPD数据的标准差为0.13,而AFLP数据的标准差为0.08。因此,采用RAPD和AFLP方法分析食用向日葵遗传变异,RAPD标记具有较低相似性系数和较高方差而AFLP则相反。源于两种不同标记的遗传相似矩阵的相关系数为0.51,说明采用RAPD和AFLP系统分析食用向日葵遗传变异得到的结果有一定的相关性,无论采用RAPD还是AFLP标记进行聚类分析,都将23个不同基因型的食用向日葵材料分成了三个类群。  相似文献   

12.
Amplified fragment length polymorphism (AFLP) analysis is a PCR-based technique capable of detecting more than 50 independent loci in a single PCR reaction. The objectives of the present study were to: (1) assess the extent of AFLP variation in cultivated (Gycine max L. Merr.) and wild soybean (G. soja Siebold & Zucc.), (2) determine genetic relationships among soybean accessions using AFLP data, and (3) evaluate the usefulness of AFLPs as genetic markers. Fifteen AFLP primer pairs detected a total of 759 AFLP fragments in a sample of 23 accessions of wild and cultivated soybean, with an average of 51 fragments produced per primer pair per accession. Two-hundred and seventy four fragments (36% of the total observed) were polymorphic, among which 127 (17%) were polymorphic in G. max and 237 (31%) were polymorphic in G. soja. F2 segregation analysis of six AFLP fragments indicated that they segregate as stable Mendelian loci. The number of polymorphic loci detected per AFLP primer pair in a sample of 23 accessions ranged from 9 to 27. The AFLP phenotypic diversity values were greater in wild than in cultivated soybean. Cluster and principal component analyses using AFLP data clearly separated G. max and G. soja accessions. Within the G. max group, adapted soybean cultivars were tightly clustered, illustrating the relatively low genetic diversity present in cultivated soybean. AFLP analysis of four soybean near-isogenic lines (NILs) identified three AFLP markers putatively linked to a virus resistance gene from two sources. The capacity of AFLP analysis to detect thousands of independent genetic loci with minimal cost and time requirements makes them an ideal marker for a wide array of genetic investigations.  相似文献   

13.
In a previous study, bulked segregant analysis with amplified fragment length polymorphisms (AFLPs) identified several markers closely linked to the sugarcane mosaic virus resistance genes Scmv1 on chromosome 6 and Scmv2 on chromosome 3. Six AFLP markers (E33M61-2, E33M52, E38M51, E82M57, E84M59 and E93M53) were located on chromosome 3 and two markers (E33M61-1 and E35M62-1) on chromosome 6. Our objective in the present study was to sequence the respective AFLP bands in order to convert these dominant markers into more simple and reliable polymerase chain reaction (PCR)-based sequence-tagged site markers. Six AFLP markers resulted either in complete identical sequences between the six inbreds investigated in this study or revealed single nucleotide polymorphisms within the inbred lines and were, therefore, not converted. One dominant AFLP marker (E35M62-1) was converted into an insertion/deletion (indel) marker and a second AFLP marker (E33M61-2) into a cleaved amplified polymorphic sequence marker. Mapping of both converted PCR-based markers confirmed their localization to the same chromosome region (E33M61-2 on chromosome 3; E35M62-1 on chromosome 6) as the original AFLP markers. Thus, these markers will be useful for marker-assisted selection and facilitate map-based cloning of SCMV resistance genes.  相似文献   

14.
Knowledge about genetic variability of a crop allows for more efficient and effective use of resources in plant improvement programs. The genetic variation within temperate maize has been studied extensively, but the levels and patterns of diversity in tropical maize are still not well understood. Brazilian maize germplasm represents a very important pool of genetic diversity due to many past introductions of exotic material. To improve our knowledge of the genetic diversity in tropical maize inbred lines, we fingerprinted 85 lines with 569 AFLP bands and 50 microsatellite loci. These markers revealed substantial variability among lines, with high rates of polymorphism. Cluster analysis was used to identify groups of related lines. Well-defined groups were not observed, indicating that the tropical maize studied is not as well organized as temperate maize. Three types of genetic distance measurements were applied (Jaccard’s coefficient, Modified Rogers’ distance and molecular coefficient of coancestry), and the values obtained with all of them indicated that the genetic similarities were small among the lines. The different coefficients did not substantially affect the results of cluster analysis, but marker types had a large effect on genetic similarity estimates. Regardless of genetic similarity coefficient used, estimates based on AFLPs were poorly correlated with those based on SSRs. Analyses using AFLP and SSR data together do not seem to be the most efficient manner of assessing variability in highly diverse materials because the result was similar to using AFLPs alone. It was seen that molecular markers can help to organize the genetic variability and expose useful diversity for breeding purposes.  相似文献   

15.
Spike morphology is a key characteristic in the study of barley domestication, yield, and use. Multiple alleles at the vrs1 locus control the development and fertility of the lateral spikelets of barley. We developed five amplified fragment length polymorphism (AFLP) markers tightly linked to the vrs1 locus using well-characterized near-isogenic lines as plant materials. The AFLP markers were integrated into three different maps, in which 'Azumamugi' was used as the maternal parent. Of the three maps, Hordeum vulgare L. 'Azumamugi' x H. vulgare 'Golden Promise' showed recombination of the AFLP markers and the vrs1 locus (closest, 0.05 cM), providing the best mapping population for positional cloning of alleles at the vrs1 locus. Conversion of AFLP bands into polymorphic sequence-tagged sites (STSs) is necessary for further high-throughput genotype scoring and for bacterial artificial chromosome (BAC) library screening. We cloned and sequenced the five AFLP bands and synthesized primer pairs. PCR amplification generated DNAs of the same size from all four parental lines for each marker. Restriction endonuclease treatment of e40m36-1110/AccIII, e34m13-260/Psp1406I, e52m32-270/FokI, and e31m26-520/MnlI revealed fragment length polymorphisms between 'Azumamugi' and all the two-rowed parents. Allelism between the AFLPs and corresponding STS markers was confirmed genetically, indicating the usefulness of the STSs as genetic markers.  相似文献   

16.
The utility of RFLP (restriction fragment length polymorphism), RAPD (random-amplified polymorphic DNA), AFLP (amplified fragment length polymorphism) and SSR (simple sequence repeat, microsatellite) markers in soybean germplasm analysis was determined by evaluating information content (expected heterozygosity), number of loci simultaneously analyzed per experiment (multiplex ratio) and effectiveness in assessing relationships between accessions. SSR markers have the highest expected heterozygosity (0.60), while AFLP markers have the highest effective multiplex ratio (19). A single parameter, defined as the marker index, which is the product of expected heterozygosity and multiplex ratio, may be used to evaluate overall utility of a marker system. A comparison of genetic similarity matrices revealed that, if the comparison involved both cultivated (Glycine max) and wild soybean (Glycine soja) accessions, estimates based on RFLPs, AFLPs and SSRs are highly correlated, indicating congruence between these assays. However, correlations of RAPD marker data with those obtained using other marker systems were lower. This is because RAPDs produce higher estimates of interspecific similarities. If the comparisons involvedG. max only, then overall correlations between marker systems are significantly lower. WithinG. max, RAPD and AFLP similarity estimates are more closely correlated than those involving other marker systems.Abbreviations RFLP restriction fragment length plymorphism - RAPD random-amplified polymorphic DNA - AFLP amplified fragment length polymorphism - SSR simple sequence repeat - PCR polymerase chain reaction - TBE Tris-borate-EDTA buffer - MI marker index - SENA sum of effective numbers of alleles  相似文献   

17.
Homology of AFLP products in three mapping populations of barley   总被引:15,自引:0,他引:15  
Segregation of 850 polymorphic AFLP (amplified fragment length polymorphism) fragments was followed in three different doubled haploid (DH) barley populations, Dicktoo × Morex (DM), Igri × Franka (IF) and Blenheim × E224/3 (BE), which had previously been used to construct linkage maps using other molecular markers. The final maps consisted of 310, 655 and 474 markers, of which 234, 194 and 376, respectively, were AFLPs. A comparison of profiles from the parental lines identified 51 similar-sized AFLPs segregating in both DM and IF populations, 20 in the DM and BE populations and 18 in the IF and BE populations. Eight segregated in all three. Analysis of the complete datasets for each of the populations using Joinmap V.2. indicated that in general terms each of the AFLPs which were polymorphic in more than one population mapped to the same genetic locus. The number of co-dominant markers segregating in a single population ranged from 6% for DM to 12.6% for IF. These results are discussed in the context of using AFLP in genetic linkage and diversity studies. Received: 5 November 1996 / Accepted: 10 March 1997  相似文献   

18.
 DNA-based fingerprinting technologies have proven useful in genetic similarity studies. RFLP is still most commonly used in the estimation of genetic diversity in plant species, but the recently developed PCR-based marker techniques, RAPDs, SSRs and AFLPs, are playing an increasingly important role in these investigations. Using a set of 33 maize inbred lines we report on a comparison of techniques to evaluate their informativeness and applicability for the study of genetic diversity. The four assays differed in the amount of polymorphism detected. The information content, measured by the expected heterozygosity and the average number of alleles, was higher for SSRs, while the lowest level of polymorphism was obtained with AFLPs. However, AFLPs were the most efficient marker system because of their capacity to reveal several bands in a single amplification. In fact, the assay efficiency index was more than ten-fold higher for AFLPs compared to the other methods. Except for RAPDs, the genetic similarity trees were highly correlated. SSR and AFLP technologies can replace RFLP marker in genetic similarity studies because of their comparable accuracy in genotyping inbred lines selected by pedigree. Bootstrap analysis revealed that, in the set of lines analysed, the number of markers used was sufficient for a reliable estimation of genetic similarity and for a meaningful comparison of marker technologies. Received: 11 April 1998 / Accepted: 19 May 1998  相似文献   

19.
Appropriate selection of parents for the development of mapping populations is pivotal to maximizing the power of quantitative trait loci detection. Trait genotypic variation within a family is indicative of the family's informativeness for genetic studies. Accurate prediction of the most useful parental combinations within a species would help guide quantitative genetics studies. We tested the reliability of genotypic and phenotypic distance estimators between pairs of maize inbred lines to predict genotypic variation for quantitative traits within families derived from biparental crosses. We developed 25 families composed of ~200 random recombinant inbred lines each from crosses between a common reference parent inbred, B73, and 25 diverse maize inbreds. Parents and families were evaluated for 19 quantitative traits across up to 11 environments. Genetic distances (GDs) among parents were estimated with 44 simple sequence repeat and 2303 single-nucleotide polymorphism markers. GDs among parents had no predictive value for progeny variation, which is most likely due to the choice of neutral markers. In contrast, we observed for about half of the traits measured a positive correlation between phenotypic parental distances and within-family genetic variance estimates. Consequently, the choice of promising segregating populations can be based on selecting phenotypically diverse parents. These results are congruent with models of genetic architecture that posit numerous genes affecting quantitative traits, each segregating for allelic series, with dispersal of allelic effects across diverse genetic material. This architecture, common to many quantitative traits in maize, limits the predictive value of parental genotypic or phenotypic values on progeny variance.  相似文献   

20.
In cereals, albinism is a major obstacle to produce doubled haploids (DH) for breeding programs. In order to identify QTLs for green plant percentage in barley anther culture, a specific population was developed. This population, consisting of 100 DH lines, was generated by crossing the model cultivar for anther culture “Igri” with an albino-producing DH line (DH46) selected from Igri × Dobla, in search of a maximum segregation for the trait and minimum for the other anther culture variables. A combination of bulked segregant analysis and AFLP methodology was used to identify markers linked to the trait. A linkage map was constructed using these AFLPs, together with RAPD, STS and SSR markers. This study identified a new QTL for green plant percentage on chromosome 3H and confirmed the previously reported one on chromosome 5H. Up to 65.2% of the phenotypic variance for this trait was explained by the additive effects of these two QTLs. Thirty elite cultivars of barley from different origin, row type, growth habit and end use, were selected to validate these QTLs. Since two of the markers linked to the QTLs were AFLPs, we successfully converted them into simple PCR-based SCAR markers. Only the SSR HVM60, on chromosome 3H, was significantly associated with the trait, explaining near 20% of the phenotypic variance. Among the allelic variants identified for this marker, HVM60-120bp was associated with the highest values of green plant percentage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号