首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the yeast Kluyveromyces marxianus two forms of inulinase were present, namely, an inulinase secreted into the culture fluid and an inulinase retained in the cell wall. Both forms were purified and analyzed by denaturing and nondenaturing polyacrylamide gel electrophoresis. With the use of endo-beta-N-acetyl-glucosaminidase H, it was established that the enzyme retained in the cell wall and the enzyme secreted into the culture fluid have similar subunits consisting of a 64-kDa polypeptide with varying amounts of carbohydrate (26 to 37% of the molecular mass). The two forms of inulinase differed in size because of their differences in subunit aggregation. The enzyme present in the culture fluid was a dimer, and the enzyme retained in the cell wall was a tetramer. The differences in oligomerization did not affect the apparent Km values towards the substrates sucrose and raffinose. These findings support the hypothesis that the retention of glycoproteins in the yeast cell wall may be caused by a permeability barrier towards larger glycoproteins. The amino-terminal end of inulinase was determined and compared with the amino terminus of the closely related invertase. The kinetic and structural evidence indicates that in yeasts two distinct beta-fructosidases exist, namely, invertase and inulinase.  相似文献   

2.
Regulation of transport of D-glucose and D-fructose was studied in Kluyveromyces marxianus grown in continuous culture. Both substrates could be transported by at least two different transport systems, low-affinity transport and high-affinity proton-sugar symport. The low-affinity transporter, specific for both glucose and fructose, was constitutively present and was apparently not regulated by carbon catabolite repression. Regulation of the activity of the glucose- and fructose-specific proton symport systems appeared to proceed mainly through catabolite repression. Activation of symport did not need the presence of specific inductor molecules in the medium. Nevertheless, the capacities of the proton-sugar symporters varied in cells grown on a wide variety of carbon sources. The possibility that the control of proton symport activity is related to the presence of specific intracellular metabolites is discussed.  相似文献   

3.
The production of extracellular inulinase (\-1,2-d-fructan fructanohydrolase, EC 3.2.1.7) was studied in fed-batch cultures of the yeast Kluyveromyces marxianus CBS 6556 at 30 and at 40° C. At both temperatures, the final biomass concentration exceeded 100 g·l–1 and more than 2 g enzyme. L–1 of culture supernatant was produced. The biomass yield on O2 at 40° C was substantially lower than at 30°C. Nevertheless, at 40° C a growth rate of 0.20 h–1 could be maintained for a longer period than at 30° C. The unexpected higher O2-transfer rate at 40°C is probably due to a lower viscosity of the culture broth. The 40°C fermentation took only 33 h as compared to 42 h at 30° C. These results indicate that K. marxianus is a promising host for the extracellular production of heterologous proteins under the control of the inulinase promoter.  相似文献   

4.
From a screening of several Kluyveromyces strains, the yeast Kluyveromyces marxianus CBS 6556 was selected for a study of the parameters relevant to the commercial production of inulinase (EC 3.2.1.7). This yeast exhibited superior properties with respect to growth at elevated temperatures (40 to 45°C), substrate specificity, and inulinase production. In sucrose-limited chemostat cultures growing on mineral medium, the amount of enzyme decreased from 52 U mg of cell dry weight−1 at D = 0.1 h−1 to 2 U mg of cell dry weight−1 at D = 0.8 h−1. Experiments with nitrogen-limited cultures further confirmed that synthesis of the enzyme is negatively controlled by the residual sugar concentration in the culture. High enzyme activities were observed during growth on nonsugar substrates, indicating that synthesis of the enzyme is a result of a derepression/repression mechanism. A substantial part of the inulinase produced by K. marxianus was associated with the cell wall. The enzyme could be released from the cell wall via a simple chemical treatment of cells. Results are presented on the effect of cultivation conditions on the distribution of the enzyme. Inulinase was active with sucrose, raffinose, stachyose, and inulin as substrates and exhibited an S/I ratio (relative activities with sucrose and inulin) of 15 under standard assay conditions. The enzyme activity decreased with increasing chain length of the substrate.  相似文献   

5.
The yeast Kluyveromyces marxianus has been pointed out as a promising microorganism for a variety of industrial bioprocesses. Although genetic tools have been developed for this yeast and different potential applications have been investigated, quantitative physiological studies have rarely been reported. Here, we report and discuss the growth, substrate consumption, metabolite formation, and respiratory parameters of K. marxianus CBS 6556 during aerobic batch bioreactor cultivations, using a defined medium with different sugars as sole carbon and energy source, at 30 and 37 °C. Cultivations were carried out both on single sugars and on binary sugar mixtures. Carbon balances closed within 95 to 101 % in all experiments. Biomass and CO2 were the main products of cell metabolism, whereas by-products were always present in very low proportion (<3 % of the carbon consumed), as long as full aerobiosis was guaranteed. On all sugars tested as sole carbon and energy source (glucose, fructose, sucrose, lactose, and galactose), the maximum specific growth rate remained between 0.39 and 0.49 h?1, except for galactose at 37 °C, which only supported growth at 0.31 h?1. Different growth behaviors were observed on the binary sugar mixtures investigated (glucose and lactose, glucose and galactose, lactose and galactose, glucose and fructose, galactose and fructose, fructose and lactose), and the observations were in agreement with previously published data on the sugar transport systems in K. marxianus. We conclude that K. marxianus CBS 6556 does not present any special nutritional requirements; grows well in the range of 30 to 37 °C on different sugars; is capable of growing on sugar mixtures in a shorter period of time than Saccharomyces cerevisiae, which is interesting from an industrial point of view; and deviates tiny amounts of carbon towards metabolite formation, as long as full aerobiosis is maintained.  相似文献   

6.
The yeast Kluyveromyces marxianus var. bulgaricus produced large amounts of extracellular inulinase activity when grown on inulin, sucrose, fructose and glucose as carbon source. This protein has been purified to homogeneity by using successive DEAE-Trisacryl Plus and Superose 6HR 10/30 columns. The purified enzyme showed a relative molecular weight of 57 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 77 kDa by gel filtration in Superose 6 HR 10/30. Analysis by SDS-PAGE showed a unique polypeptide band with Coomassie Blue stain and nondenaturing PAGE of the purified enzyme obtained from media with different carbon sources showed the band, too, when stained for glucose oxidase activity. The optimal hydrolysis temperature for sucrose, raffinose and inulin was 55°C and the optimal pH for sucrose was 4.75. The apparent K m values for sucrose, raffinose and inulin are 4.58, 7.41 and 86.9 mg/ml, respectively. Thin layer chromatography showed that inulinase from K. marxianus var. bulgaricus was capable of hydrolyzing different substrates (sucrose, raffinose and inulin), releasing monosaccharides and oligosaccharides. The results obtained suggest the hypothesis that enzyme production was constitutive. Journal of Industrial Microbiology & Biotechnology (2000) 25, 63–69. Received 17 November 1999/ Accepted in revised form 30 May 2000  相似文献   

7.
The aim of this work was to investigate the physiology of Kluyveromyces marxianus CBS 6556 in terms of its low tendency to form ethanol under exposure to sugar excess, and the split of carbon flux which takes place at the level of glucose-6-phosphate. Measurements were performed in batch cultivations, and after a glucose or a lactose pulse applied to chemostat-grown respiring cells (with a dilution rate of 0.1 h(-1)). No ethanol formation was observed in batch cultivations or during pulse experiments, unless the oxygen supply was shut down, indicating that this organism is more strictly Crabtree-negative than its close relative K. lactis and other known Crabtree-negative yeasts. During the pulse experiments, activities of phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and phosphoglucomutase in cell-free extracts remained rather constant, at higher levels than those of Saccharomyces cerevisiae grown at similar conditions. When cells were exposed to glucose concentrations as high as 26 gl(-1), the activity of phosphoglucomutase was higher than that in cells exposed to 14 gl(-1) glucose, whereas the activities of phosphoglucoisomerase and glucose-6-phosphate dehydrogenase did not change. Our results suggest that the low tendency for ethanol formation in K. marxianus might be a consequence of this yeast's capacity of keeping the glycolytic flux constant, due at least in part to the diversion of carbon flux towards the biosynthesis of carbohydrates and towards the pentose phosphate pathway.  相似文献   

8.
Cell wall inulinase (EC 3.2.1.7) was purified from Kluyveromyces marxianus var. marxianus (formerly K. fragilis) and its N-terminal 33-amino acid sequence was established. PCR amplification of cDNA with 2 sets of degenerate primers yielded a genomic probe which was then used to screen a genomic library established in the YEp351 yeast shuttle vector. One of the selected recombinant plasmids allowed an invertase-negative Saccharomyces cerevisiae mutant to grow on inulin. It was shown to contain an inulinase gene (INU 1) encoding a 555-amino acid precursor protein with a typical N-terminal signal peptide. The sequence of inulinase displays a high similarity (67%) to S. cerevisiae invertase, suggesting a common evolutionary origin for yeast beta-fructosidases with different substrate preferences.  相似文献   

9.
Inulinase from K. marxianus was extracted into a reversed micelle phase of the cationic surfactant BDBAC (n-benzyl-n-dodecyl-n-bis(2-hydroxyethyl)ammonium chloride) in isooctane/hexanol. The extractions carried out with cells (5.9 g/l) presented a recovery yield of 87% and a purification factor 2.8. Similar values were found for inulinase recovered from the clarified medium (91% recovery yield and 2.8 purification factor). For scaled-up (400-fold) extractions, the recovery of the initial activity reached 77% and the enrichment factor was 2.8.  相似文献   

10.
A highly expressed inulinase gene, KcINU1 was cloned and sequenced from Kluyveromyces cicerisporus CBS4857 a strain which secrets high levels of inulinase into the growth medium. The result of DNA sequencing showed that KcINU1 contained a 1665 bp ORF, coding for a 555 amino acid protein, in which a 23 amino acid signal peptide was included. The sequence has the GenBank Accession no. AF 178979. The analysis of conserved domain in the ORF indicated there was a consensus sequence about 470 amino acids long. The 0.7 Kb promoter and 0.9 Kb terminator were also cloned and sequenced.  相似文献   

11.
Summary Inulinase activity produced by a mixed culture of Aspergillus niger and Kluyveromyces marxianus growing on Jerusalem artichoke powder was investigated. Inulinase produced by this mixed culture had a higher invertase-type activity than inulinase from respective monocultures. When hydrolysis was carried out at 50°C with Jerusalem artichoke exctract (total sugar 16% w/v) at pH 5.0, 90% hydrolysis was achieved after 4 h with 5% v/v of crude cell free enzyme preparation.  相似文献   

12.
An intracellular esterase from the yeast Kluyveromyces marxianus CBS 1553 with interesting enantioselective hydrolytic activity towards racemic esters of 1,2-O-isopropylidene glycerol (IPG) was purified and characterized. Optimal culture conditions for the obtainment of the enantioselective esterase on a 5 l-fermentation scale were investigated. Two esterase activities (EST1 and EST2) in the crude cell extract were identified by native PAGE with specific activity staining and separated from each other by anion-exchange chromatography. EST1 showed higher activity and enantioselectivity than EST2 in the resolution of racemic IPG acetate and was further purified by hydrophobic interaction chromatography and preparative electrophoresis (final specific activity approximately = 300 U mg(-1), showing a main protein band with a molecular mass of 29 kDa. EST1 showed optimal activity between pH 8.0 and 10.0 and was stable in the pH range 7.0-10.0. Moreover, it was rather thermostable and active up to 80 degrees C, and retained most of its activity in the presence of 15% (v/v) of various organic solvents. The enzyme showed similar Vmax in the hydrolysis of the acetate esters of IPG, whereas the Km value towards (S)-IPG acetate was significantly lower than the one towards the (R)-enantiomer (5.3 and 70 microM, respectively). Finally, comparison of EST1 activity in the presence of different glycerol esters and synthetic substrates with different chain lengths showed a strong preference of this biocatalyst for short-chain substrates.  相似文献   

13.
从腐烂的菊芋及实验室保存的菌种中,选育到一株发酵菊芋产乙醇的菌株克鲁维酵母Kluyveromyces marxianus Y1。利用正交实验法对克鲁维酵母产菊粉酶的培养基组成及培养条件进行优化,确定培养基组成(g/L)为:菊粉40,酵母粉4,蛋白胨4,尿素1;初始pH5.0,温度30℃,150r/min条件下培养达到最佳产酶效果(57U/mL)。该菌株所产菊粉酶的性质测定结果表明:以菊粉为底物,该菊粉酶最适反应温度为55℃,在60℃以下稳定性很好,高于60℃时酶迅速失活;最适pH为5.0,pH4.6—5.2范围内酶稳定性很好;该酶属于外切型菊粉酶,体积分数为8%的乙醇对酶活力基本没有影响。  相似文献   

14.
15.
An experimental design was carried out to evaluate the effect of the concentrations of sodium alginate, glutaraldehyde and activated coal on the immobilization of inulinase from Kluyveromyces marxianus NRRL Y-7571. The experimental condition of 20?g/L of sodium alginate, 50?mL/L of glutaraldehyde and 30?g/L of activated coal led to the highest specific activity (2,063.5?U/mg of protein), corresponding to an enhancement of about 26 times compared to the activity of the free enzyme (79.1?U/mg of protein). The effect of pH and temperature on the immobilized enzyme activity was also evaluated, showing optimal activities at pH of 5.5 and 55?°C. The study of storage of immobilized inulinase in different temperatures showed that the extract kept its initial activity after 43?days of storage at 40 and 50?°C and after 138?days of storage either at 4 or 25?°C.  相似文献   

16.
Factorial design and response surface analyses were used to optimize the production of inulinase (2,1-β-d-fructan fructanohydrolase, EC 3.2.1.7) by Kluyveromyces marxianus ATCC 16045, using sucrose as carbon source. Effects of aeration, agitation and type of impeller (disk turbine, marine, pitched blade) were studied in a batch stirred reactor. Two factorial designs 22 were carried out. Agitation speed varied from 50 to 550 rpm (revolution per minute), aeration rate from 0.5 to 2.0 vvm (air volume/broth volume·minute). It has been shown that the enzyme production was strongly influenced by mixing conditions, while aeration rate was shown to be less significant. Additionally, the increase in the agitation speed is limited by the death rate, which increases drastically at high speeds, lowering the enzyme production. Also, the impeller type has significant influence in the production, the disk impeller at 450 rpm and aeration at 1.0 vvm led to an activity of 121 UI/mL, while the pitched blade was shown to be the best impeller for this process, leading to the best production, 176 UI/mL, at 450 rpm and 1.0 vvm. The maximum shear stress for inulinase production was about 0.22 Pa, since higher values cause higher cell death rates, affecting the enzyme production. The same results were confirmed with another microorganism, which was also sensible to shear stress. Therefore, it has been concluded that in some cases, mainly when the microorganism is sensible to shear stress, the interaction between mass transfer and mechanical stress should be considered in scale up processes.  相似文献   

17.
Kluyveromyces marxianus cells with inulinase (2,1-β-d-fructan fructanohydrolase, EC 3.2.1.7) activity have been immobilized in open pore gelatin pellets with retention of > 90% of the original activity. The open pore gelatin pellets with entrapped yeast cells were obtained by selective leaching out of calcium alginate from the composite matrix, followed by crosslinking with glutaraldehyde. Enzymatic properties of the gelatin-entrapped cells were studied and compared with those of the free cells. The immobilization procedure did not alter the optimum pH of the enzymatic preparation; the optimum for both free and immobilized cells was pH 6.0. The optimum temperature of inulin hydrolysis was 10°C higher for immobilized cells. Activation energies for the reaction with the free and immobilized cells were calculated to be 6.35 and 2.26 kcal mol?1, respectively. Km values were 8 mM inulin for the free cells and 9.52 mM for the immobilized cells. The thermal stability of the enzyme was improved by immobilization. Free and immobilized cells showed fairly stable activities between pH 4 and 7, but free cell inulinase was more labile at pH values below 4 and above 7 compared to the immobilized form. There was no loss of enzyme activity of the immobilized cells on storage at 4°C for 30 days. Over the same period at room temperature only 6% of the original activity was lost.  相似文献   

18.
Ethanol production from Jerusalem artichoke tubers through a consolidated bioprocessing (CBP) strategy using the inulinase-producing yeast Kluyveromyces marxianus is an economical and competitive than that from a grainbased feedstock. However, poor inulinase production under ethanol fermentation conditions significantly prolongs the fermentation time and compromises ethanol productivity. Improvement of inulinase activity appears to be promising for increasing ethanol production from Jerusalem artichoke tubers by CBP. In the present study, expression of the inulinase gene INU with its own promoter in K. marxianus (K/INU2) was explored using the integrative cassette. Overexpression of INU was explored using chromosome integration via the HO locus of the yeast. Inulinase activity and ethanol were determined from inulin and Jerusalem artichoke tubers under fed-batch operation. Inulinase activity was 114.9 U/mL under aerobic conditions for K/INU2, compared with 52.3 U/mL produced by the wild type strain. Importantly, inulinase production was enhanced in K/INU2 under ethanol fermentation conditions. When using 230 g/L inulin and 220 g/L Jerusalem artichoke tubers as substrates, inulinase activities of 3.7 and 6.8 U/mL, respectively, were measured using K/INU2, comparing favorably with 2.4 and 3.1 U/mL, respectively, using the wide type strain. Ethanol concentration and productivity for inulin were improved by the recombinant yeast to 96.2 g/L and 1.34 g/L/h, respectively, vs 93.7 g/L and 1.12 g/L/h, respectively, by the wild type strain. Ethanol concentration and productivity improvements for Jerusalem artichoke tubers were 69 g/L and 1.44 g/L/h, respectively, from the recombinant strain vs 62 g/L and 1.29 g/L/h, respectively, from the wild type strain.  相似文献   

19.
It is established that ion exchange resins AV-17-2P, KU-2, AV-16-GS, AM 21A, IMAC-HP, PUROLITE and fiber VION KN-1 can be applied as carriers for inulinase immobilization. The analysis of IR spectra for an enzyme, carriers and heterogeneous enzyme preparations showed that inulinase binding to matrices of various carriers occurs in general through electrostatic interactions. It is assumed that the mechanisms of interaction between inulinase from Kluyveromyces marxianus and the matrices of cation and anion exchange polymers differ essentially from each other: different sites of protein molecule take part in adsorption that causes various conformational reorganizations in an enzyme molecule.  相似文献   

20.
The extracellular inulinase system of a strain of Arthrobacter sp. consists of a β -fructofuranosidase active on inulin raffinose and sucrose with a relative rate inulin/sucrose (I/S) of 0.2.
Crude enzyme preparations were obtained by fractionation of the liquid culture at stationary phase of growth with ammonium sulphate. Purification was carried out by DEAE cellulose chromatography and ultrogel ACA 34. Only one protein band was observed by electrophoresis. The enzyme was stable at high temperatures and was active at neutral or slightly alkali pH. Fructose is liberated as the sole reaction product of inulin hydrolysis, suggesting that the enzyme was an exoinulinase. The Michaelis constant (calculated at 40°C and pH 6) was 0.25 × 10-2 mol/l for the inulin and 0.12 × 10-2 mol/l for sucrose.
The enzyme was suitable for fructose production from root extracts of plants rich in polyfructosans or sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号